
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Unity 5 vs UE4 vs Photon vs DIY for MMO
posted February 22, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VIII from the upcoming book “Development&Deployment of
Massively Multiplayer Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book, and provides free e-
copy of the “release” book to those who help with improving; for further details
see “Book Beta Testing“. All the content published during Beta Testing, is
subject to change before the book is published.

To navigate through the book, you may want to use Development&Deployment
of MMOG: Table of Contents.]]

By this point, we’ve discussed all the major parts of Modular MMOG
Architecture. Now we are in a good position to take a look at some of
the popular game engines and their support for MMOG, aiming to find
out how they support those features which we’ve described for
Modular Architecture.

There are lots of game engines out there, so we’ll consider only the most popular
ones: Unity 5, Unreal Engine 4, and Photon Server (which is not a game engine in a
traditional sense, but does provide MMOG support on top of the existing game
engines). Note that comparing graphics advantages and disadvantages of Unity vs
UE, as well as performance comparisons, pricing, etc. are out of scope; if you
want to find discussion on these issues, Google “Unity 5 vs UE4”, you will easily
find a ton of comparisons of their non-network-related features. We, however,
are more interested in network-related things, and these comparisons are not
that easy to find (to put it mildly). So,

Let the comparison begin!

DIY
Do it yourself ,
also know n as

DIY , is the
method of

building,
modif ying, or

repairing
something

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/wp-content/uploads/BB_part080_BookChapter008_v1.png
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
https://en.wikipedia.org/wiki/Do_it_yourself

As usual,
support of CLI
on non-MS
platf orms
requires Mono
w hich is not
exactly 100%
compatible w ith
CLR, but f rom
w hat I've heard,
most of the time
it w orks

Unity 5
Unity 5 is a very popular (arguably the most popular) 3D/2D game engine. It supports tons of different
platforms (HTML5 support via IL2CPP+emscripten included, though I have no idea how practical it is),
uses .NET CLI/CLR as a runtime, and supports C#/JS/Boo (whatever the last one is) as a
programming language. One thing about Unity is that it targets a very wide range of games, from first-
person shooters to social games (i.e. “pretty much anything out there”).

As usual, support of CLI on non-MS platforms requires Mono which is not exactly
100% compatible with CLR, but from what I’ve heard, most of the time it works
(that is, as long as you adhere to the “write once – test everywhere” paradigm).

Another thing to keep in mind when dealing with Unity is that CLR (as a pretty
much any garbage-collected VM, see discussion in Chapter VI) suffers from certain
potential issues. These issues include infamous “stop-the-world”; for slower
games it doesn’t really matter, but for really fast ones (think MMOFPS) you’ll need
to make sure to read about mitigation tricks which were mentioned in Chapter VI.

Event-driven Programming/FSMs

Unity is event-driven by design. Normally the game loop is hidden from sight, but
it does exist “behind the scenes”, so everything basically happens in the same
thread, so you don’t need to care about inter-thread synchronisation, phew. From
our point of view, Unity is an ad-hoc FSM as defined in Chapter V.

In addition, Unity encourages co-routines. They (as co-routines should) are
executed within the same thread, so no inter-thread synchronisation is necessary.
For more discussion on co-routines and their relation to other asynchronous
handling mechanisms, see Chapter VI. [[TODO! – add discussion on co-routines
there]]

One thing Unity event-driven programs are missing (compared to our ad-hoc FSMs discussed in
Chapter V) is an ability to serialise the program state; it implies that Unity (as it is written now) can’t
support such FSM goodies discussed in Chapter V as production post-mortem, server fault tolerance,
replay-based testing, and so on. While not fatal, this is a serious disadvantage, especially when it comes
to debugging of distributed systems (see “Distributed Systems: Debugging Nightmare” section in Chapter V for
relevant discussion).

 or at least “as if” it happens in the same thread

Unity for MMOG

When using Unity for MMOG, you will notice that it deals with one single Game World, and that
separation between Client and Server is quite rudimentary. In “Engine-Centric Development Flow”
section below we’ll see that this might be either a blessing (if your game is more on “Client-Driven
Development Flow” side) or a curse (for “Server-Driven Development Flows”). On the other hand, in
any case it is not a show-stopper.

w ithout the
direct aid of

experts or
prof essionals

— Wikipedia —

“

1

1

Y ou SHOULD
NOT use

Command
requests to

allow the client
to modif y state

of the PC on the
server directly

Communications: HLAPI

Communication support in Unity 5 (known as UNet) is split into two separate API levels: High-Level
API (HLAPI), and Transport-Level API (LLAPI). Let’s take a look at HLAPI first.

One potential source of confusion when using HLAPI, is an HLAPI term “Local
Authority” as used in [UNet]. When the game runs, HLAPI says that usually a client
has an “authority” over the corresponding PC. It might sound as a bad case of
violating the “authoritative server” principle (that we need to avoid cheating, see
Chapter III), but in fact it isn’t. In HLAPI-speak, “client authority” just means that
the client can send [Command] requests to the server (more on [Command]s
below), that’s pretty much it, so it doesn’t necessarily give any authority to the
client, phew.

On the other hand, you SHOULD NOT use [Command] requests to allow the client
to modify state of the PC on the server directly; doing this will violate server
authority, widely opening a door for cheating. For example, if you’re allowing a
Client to send a [Command] which sets PC’s coordinates directly and without any
server-side checks, you’re basically inviting a trivial attack when a PC controlled
by a hacked client can easily teleport from one place to another one. To avoid it,

instead of making decisions on the client-side and sending
coordinates resulting from player’s inputs, you should send the
player’s inputs to the server, and let the (authoritative) server

simulate the world and decide where the player goes as a result
of those inputs

State Synchronization

In HLAPI, basically you have two major mechanisms – “state synchronization” and RPCs.

State synchronization is a Unity 5’s incarnation of Server State -> Publishable State -> Client State
process which we’ve discussed in Chapter VII. In Unity 5, state synchronization can be done via simple
adding of [SyncVar] tag to a variable [UNetSync], it is as simple as that.

Importantly, Unity does provide support for both distance-based and custom interest management.
Distance-based interest management is implemented via NetworkProximityChecker, and custom one –
via RebuildObservers() (with related OnCheckObservers()/OnRebuildObservers()).

For quite a few games, you will need to implement Interest
Management. Not only it helps to reduce traffic, it is also

necessary to deal with “see through walls” and “lifting fog of
war” cheats

On top of [SyncVars], you may need to implement some (or all) of the Client-Side stuff discussed in
Chapter VII (up to and including Client-Side Prediction); one implementation of Client-Side
Prediction for Unity is described in [UnityClientPrediction].

“

2

While Unity
does use per-
f ield delta
compression (or
a reasonable
f acsimile), it
cannot possibly
implement most
of the
compression
w hich w e've
discussed in
'Compression'
section of
Chapter VII.

Y ou can still
use HLAPI
despite its

shortcomings

So far so good, but the real problems will start later. In short – such
synchronization is usually quite inefficient traffic-wise. While Unity seems to use
per-field delta compression (or a reasonable facsimile), it cannot possibly
implement most of the compression which we’ve discussed in “Compression”
section of Chapter VII. In particular, restricting precision of Publishable State is
not possible (which in turn makes bitwise streams pretty much useless), dead
reckoning is out of question, etc. Of course, you can create a separate set of
variables just for synchronization purposes (effectively creating a Publishable
State separate from your normal Client State), but even in this case (which BTW
will require quite an effort, as well as being a departure from HLAPI philosophy,
even if you’re formally staying within HLAPI) you won’t be able to implement many
of the traffic compression techniques which we’ve discussed in Chapter VII.

These problems do not signal the end of the world for HLAPI-based development,
but keep in mind that at a certain stage you may need to re-implement state sync
on top of LLAPI; more on it in “HLAPI Summary” subsection below.

 see Chapter VII for discussion on Interest Management

RPCs (a.k.a. “Remote A ctions”)

In Unity 5, RPCs were renamed into “Remote Actions”. However, not much has
changed in reality (except that now there is a [Command] tag for Client-to-Server
RPC, and [ClientRpc] tag for Server-to-Client RPC). In any case, Unity RPCs still MUST be void. As it was
discussed in Chapter VII, this implies quite a few complications when you’re writing your code. For
example, if you need to query a server to get some value, then you need to have an RPC call going from
client to server ([Command] in Unity), and then you’ll need to use something like
Networking.NetworkConnection.Send() to send the reply back (not to mention that all the matching
between requests and responses needs to be done manually). In my books it qualifies as “damn
inconvenient” (though you certainly can do things this way).

In addition, Unity HLAPI seems to ignore server-to-server communications completely.[[PLEA SE
CORRECT ME IF I’M W RONG HERE]]

 pun intended

HLA PI summary

As noted above, for quite a few simulation games, HLAPI’s [SyncVar] won’t provide
“good enough” traffic optimization. But does it make HLAPI hopeless? IMHO the
answer is “no, you can still use HLAPI despite its shortcomings”. HLAPI’s
[SyncVar] will work reasonably good for early stages of development (that
includes testing, and probably even over-the-Internet small-scale testing),
speeding development up. And then, when/if your game is almost-ready to launch
(and if you’re not satisfied with your traffic measurements), you will be able to
rewrite [SyncVars] into something more efficient using LLAPI. It is not going to be
a picnic, and you’ll need to allocate enough time for this task, but it can be done.

As for RPCs calls (and network events) – due to their only-void nature, they’re not
exactly convenient to use (to put it mildly), but if you have nothing better (and you

won’t as long as you’re staying within Unity’s network model) – you’ll have to deal with it yourself, and
will be able to do it too.[[IF Y OU KNOW SOME W ORKA BLE LIBRA RIES PROV IDING non-v oid RPCs

“

2

3

3

“

Just as
advertised,
Unity Transport
Layer API (a.k.a.
LLAPI), is an
extremely thin
layer on top of
UDP.

All-in-all,
Unity 5/UNet

does a decent
job if you w ant

to try
converting

your existing
single-player

game into a
low -player-

number multi-
player one.

in Unity, PLEA SE LET ME KNOW]]

In addition, I need to note that the absence of support for Server-to-Server communications is very
limiting for quite a few games out there. Having your server side split into some kind of micro-services
(or even better, Node.js-style nodes) is a must for any sizeable server-side development, and having
your network/game engine to support interactions between these nodes/micro-services is extremely
important. While manual workarounds to implement Server-to-Server communications in Unity are
possible, doing it is a headache, and integrating it with game logic is a headache even more . This is
probably one of the Biggest Issues you will face when using Unity for a serious MMOG development.

Communications: LLAPI

Just as advertised, Unity Transport Layer API (also known as LLAPI), is an
extremely thin layer on top of UDP. There is no RPC support, no authentication, no
even IDL or marshalling (for this purpose you can use .NET BinaryFormatter,
Google Protocol Buffers, or write something yourself).

For me, the biggest problem with LLAPI lies with its IP:Port addressing model.
Having to keep track at application level all those IP/port numbers is a significant
headache, especially as they can (and will) change. Other issues include lack of IDL
(which means manual marshalling for any not-so-trivial case, and discrepancies
between marshalling of different communication parties tend to cause a lot of
unnecessary trouble), lack of explicit support for state synchronization, and lack
of RPCs (even void RPCs are better than nothing from development speed point of
view).

On the positive side, LLAPI provides you with all capabilities in the world – that is,
as long as you do it yourself. Still, it is that cumbersome that I’d normally suggest
to avoid it at earlier stages of development, and introduce only when/if you have problems with HLAPI.

 don’t ask why it is named LLAPI and not TLAPI

Unity 5/UNet Summary

All-in-all, Unity 5/UNet does a decent job if you want to try converting your
existing single-player game into a low-player-number multi-player one. On the
other hand, if you’re into serious MMO development (with thousands of
simultaneous players), you’re going to face quite a few significant issues; while
not show-stoppers, they’re going to take a lot of your time to deal with (and if you
don’t understand what they’re about, you can easily bring your whole game to the
knees).

If going Unity way, I would suggest to start with HLAPI to get your game running
as a MMO. Most likely, when using HLAPI for a serious MMOG, you’ll face traffic
problems with replicated states (and/or cheating) when number of players goes
up, but to have your prototype running HLAPI is pretty good. At this stage you’ll
probably need to rewrite the handling of your Publishable State, most likely on
top of LLAPI. This rewrite can include all those optimizations we’ve spoke
about, and is going to be quite an effort. On the positive side, it can usually be
done without affecting the essence of your game logic, so with some luck and
experience, it is not going to be too bad.

Additionally, you’ll also have issues with server-to-server communications (which
are necessary to split your servers into manageable portions). You can either

“

4

4

“

Unreal
Engine is more
oriented
tow ards f irst-
person games,
and (arguably)
does it better.

implement these on top of LLAPI, or to use good old TCP sockets, but in any case you will stay even
without RPCs, just with bare messages. While I’ve seen such message-based architectures to work for
quite large projects, they are a substantial headache in practice .

At this point you might think that your problems are over, but actually the next problem you’re going to
face, is likely to be at least as bad as the previous ones. As soon as a number of your players goes above
a few hundred, you’ll almost certainly need to deal with load balancing (see Chapter VI for discussion
on different ways of dealing with load balancing). And Unity as such won’t help you for this task, so
you’ll need to do it yourself. Once again, it is doable, but load balancing is going to take a lot of efforts
to do it right .

Unreal Engine 4
Unreal Engine 4 is a direct competitor of Unity, though it has somewhat different
positioning. Unlike Unity (which tries to be a jack of all trades), Unreal Engine is
more oriented towards first-person games, and (arguably) does it better. Just as
Unity, UE also supports a wide range of platforms (with differences from Unity
being of marginal nature), and does have support for HTML (also using
emscripten, and once again I have no idea whether it really works).

As of UE4, supported programming languages are C++ and UE’s own Blueprints.
At some point, Mono team has tried to add support for C# to UE4, but dropped
the effort shortly afterwards .

It should be noted that UE4’s variation of C++ has its own garbage collector (see,
for example, [UnrealGC]). Honestly, I don’t really like hybrid systems which are
intermixing manual memory management with GC (they introduce too many
concepts which need to be taken care of, and tend to be rather fragile as a result),
but Unreal’s one is reported to work pretty well.

 as of beginning of 2016, support for HTML5 in UE4 is tagged Experimental

Event-driven Programming/FSMs

Unreal Engine is event-driven by design. As with Unity, normally game loop is hidden from sight, but
you can override and extend it if necessary. And exactly as with Unity or our FSMs, everything happens
within the same thread, so (unless you’re creating threads explicitly) there is no need for thread
synchronization.

On the negative side of things, and also same as Unity, UE’s event-driven programs don’t have an
ability to serialize the program state, and (same as with Unity), it rules out certain FSM goodies.

UE for MMOG

Just like Unity, UE doesn’t really provide a way to implement a clean separation between the client and
the server code (while there is a WITH_SERVER macro for C++ code, it is far from being really cleanly
separated). More on advantages and disadvantages of such “single-Game-World” approach in
“Engine-Centric Development Flow” section below.

UE Communications: very close to Unity 5 HLAPI

“
5

5

There is not
much to discuss

here, as both
replication and

RPCs are very
close to Unity
counterparts

w hich w ere
discussed

above.

Photon
Server is quite a
dif f erent beast
f rom Unity and
Unreal Engine

Just like Unity, UE4 has two primary communication mechanisms: state
synchronization (“Replication” in UE-speak), and RPCs. There is not much to
discuss here, as both replication and RPCs are very close to Unity counterparts
which were discussed above.

In particular, replication in UE4 is very similar to Unity’s [SyncVars] (with a
different syntax of UPROPERTY(Replicated) and DOREPLIFETIME()). UE4’s RPCs
(again having a different syntax of UFUNCTION(Client)/UFUNCTION(Server))
are again very similar to that of Unity HLAPI (with the only-void restriction, no
support for addressing and for server-to-server communications, and so on).

Interest management in UE4 is based on the concept of being “network relevant”
and is dealt with via AActor::NetCullDistanceSquared() and
AActor::IsNetRelevantFor() functions (ideologically similar to Unity’s
NetworkProximityChecker and RebuildObservers respectively).

Being so close to Unity 5 means that UE4 also shares all the drawbacks described
for Unity HLAPI above; it includes sub-optimal traffic optimization for replicated

variables, void-only RPCs, and lack of support for server-to-server communications; see “HLAPI
summary” section above for further discussion.

On the minus side compared to Unity 5, UE4 doesn’t provide LLAPI, so bypassing these drawbacks as it
was suggested for Unity, is more difficult. On the other hand, UE4 does provide classes to work
directly over sockets (look for FTcpSocketBuilder/FUdpSocketBuilder), and implementing a (very
thin) analogue of LLAPI is not that much of a headache. So, even in this regard the engines are very close
to each other. As a result, for UE4 MMO development I still suggest about-the-same development path
as discussed in “Unity 5/UNet Summary” section for Unity, starting from Replication-based game, and
moving towards manually controlled replication (implemented over plain sockets) when/if the need
arises.

Photon Server
Photon Server is quite a different beast from Unity and Unreal Engine: unlike
Unity/UE, Photon isn’t an engine by itself, but is rather a way to extend a game
developed using an existing engine (such as Unity or Unreal) into an MMO. It is
positioned as an “independent network engine”, and does as advertised – adds its
own network layer to Unity or to Unreal. As a result, it doesn’t need to care about
graphics etc., and can spend more effort of MMO-specific tasks such as load
balancing and matchmaking service.

As Photon is always used on top of existing game engine, it is bound to inherit
quite a few of its properties; this includes using game engine graphics and most of
scripting. One restriction of Photon Server is that server-side always runs on top
of Windows .NET and APIs are written with C# in mind (I have no idea how it feels
to use other .NET languages with Photon, and whether Photon will run reasonably
good on top of Mono). For the client-side, however, Photon supports pretty much every platform you
may want, so as long as you’re ok with your servers being Windows/.NET – you should generally be fine.

Functionally, Photon Server is all about simulated worlds consisting of multiple rooms; while it can be
considered a restriction, this is actually how most of MMOs out there are built anyway, so this is not as
limiting as it may sound. In short – as we’ve discussed it briefly in Chapter VII [[TODO! – add discussion
on Big Fat World there]], if your MMO needs to have one Big Fat World, you’ll need to split it into
multiple zones anyway to be able to cope with the load.

Within Photon Server, there are two quite different flavours for networked game development: Photon

“

“
6

7

Photon
Server SDK

doesn't
explicitly
support a

concept of
synchronized

state

On the
positive side
(and unlike all
the netw ork
engines
described

Server SDK and Photon Cloud / PUN.

 or should I rather say underneath existing game engine?
 Exit Games also provide Photon/Realtime and Photon/Turnbased cloud products, but I know too

little about them to cover them here [[TODO! – try to learn more about them]]

Photon Server SDK: Communications

IMPORTANT: Photon Server SDK is not to be confused with Photon Cloud/PUN, which will be discussed below.

Unfortunately, personally I didn’t see any real-world projects implemented over Photon Server SDK,
and documentation on Photon Server SDK is much less obvious than on Photon Cloud and PUN, so I
can be missing a few things here and there, but I will try my best to describe it. [[PLEA SE CORRECT ME
IF I’M MISSING SOMETHING HERE]]

First of all, let’s note that Photon Server SDK doesn’t explicitly support a concept
of synchronized state. Instead, you can BroadcastEvent() to all connected peers,
and handle this broadcast on all the clients to implement state synchronization.
While BroadcastEvent() can be used to implement synchronized state, there is
substantial amount of work involved in making your synchronization work reliably
(I would estimate the amount of work required to be of the same order of
magnitude as implementing synchronised states on top of Unity’s LLAPI). In
addition, keep in mind that when relying on BroadcastEvent(), quite a few traffic
optimizations won’t work, so you may need to send events to individual clients
(via SendEvent()).

From RPC point of view, Photon Server does have kinda-RPC. Actually, while it is
named Photon.SocketServer.Rpc, it is more like message-based request-response
than really a remote procedure call as we usually understand it. In other words,
within Photon Server (I’m not speaking about PUN now) I didn’t find a way to declare
a function as an RPC, and then to call it, with all the stubs being automagically

generated for you. Instead, you need to create a peer, to send an operation request over the peer-to-peer
connection, and while you’re at it, to register an operation handler to manage operation response.

This approach is more or less functionally equivalent to Take 1 from “Take 1. Naïve Approach: Plain
Events (will work, but is Plain Ugly)” section of Chapter VI; as Take 1 is not the most convenient thing to
use (this it to put it very mildly), it will become quite a hassle to work with it directly. In addition, I have
my concerns about Peer.SetCurrentOperationHandler() function, which seems to restrict us to one
outstanding RPC request per peer, which creates additional (and IMHO unnecessary) hassles.

On the positive side (and unlike all the network engines described before), Photon
Server does support such all-important-for-any-serious-MMO-development
features as Server-to-Server communication and Load Balancing.

Photon Cloud / PUN: Communications

IMPORTANT: Photon Cloud / PUN is not to be confused with Photon Server SDK, which is
discussed above.

The second flavour of Photon-based development is Photon Cloud with Photon
Unity Networking (PUN). While Photon Cloud/PUN is implemented on top of
Photon Server which was discussed above, the way Photon Server is deployed for
Photon Cloud/PUN, is very different from the way you would develop your own
game on top of Photon Server SDK .

7

6

7

“

“

bef ore), Photon
Server does
support such
f eatures as
Server-to-
Server
communication
and Load
Balancing.

I w ant Y OU to
read page 2!

The key problem with Photon Cloud is that basically you’re not allowed to run your
own code on the server. While there is an exception for so-called “Photon Plugins”,
they’re relatively limited in their abilities, and what’s even even worse, they require
an “Enterprise Plan” for your Photon Cloud (which as of beginning of 2016 doesn’t
even have pricing published saying “contact us” instead, ouch).

And as long as you’re not allowed to run your own code on the server-side, you
cannot make your server authoritative, which makes dealing with cheaters next-
to-impossible. That’s the reason why I cannot recommend PUN for any serious
MMO development, at least until you (a) realize how to deal with cheaters given
limited functionality of Photon Plugins, and (b) get a firm quote from Exit Games
regarding their “Enterprise Plan” (as noted above, lack of publicly available quote is usually a pretty
bad sign of it being damn expensive).

This restriction is a pity, as the rest of PUN is quite easy to use (more or less in the same range as Unity
HLAPI, but with manual serialization of synchronization states, what is IMHO more of a blessing rather
than a curse, as it allows for more optimizations than [SyncVars]). Still, unless you managed to figure
out how to implement an authoritative server over PUN (and how to pay for it too), I’d rather stay away
from it, because any game without an authoritative server carries too much risk of becoming a
cheaterfest.

 BTW, I do sympathize Chris Wegmann in this regard and do realize that allowing foreign code on
servers opens more than just one can of worms, but still having an authoritative server is that
important, that I cannot really recommend Photon Cloud for any serious MMO

Keep reading for a Huge Table comparing 40+ different
network-related parameters of Unity 5, UE4, and Photon

Summary
The discussion above (with some subtle details added too) is summarized in the table below.

In this table, the rightmost column represents what I would like to see from my own DIY game network
engine. In this case, while the network engine itself is DIY, there is a big advantage of pushing all these
things into the network engine and to separate them from the game logic. The more things are
separated via well-defined interfaces, the less cluttered your game logic code becomes, and the more
time you have for really important things such as gameplay; in the extreme case, this difference can
even mean the difference between life and death of your project. Also keep in mind that if going a DIY
route, for any given game you won’t need to implement all the stuff in the table; think what is important
for your game, and concentrate only on those features which you really need. For example, UDP
support and dead reckoning are not likely to be important for a non-simulation game, and HTTP
polling isn’t likely to work for an MMOFPS.

[[PLEA SE CORRECT ME IF SOMETHING LOOKS W RONG HERE!]]

8

8

“

http://ithare.com/unity-5-vs-ue4-vs-photon-vs-diy-for-mmo/2/

Features (those

IMO most

important ones

are in bold)

Unity 5

(HLA PI)

Unity 5

(LLA PI)

Unreal

Engine 4

Photon

Serv er SDK

Photon

Cloud / PUN

My ideal

DIY

netw ork

engine

(along the

lines of

this book)

 Platforms

Desktop Win / MacOS / SteamOS
Win / MacOS

/ SteamOS Win / MacOS

Whatever

tickles your

fancy

Consoles PS / Xbox / Wii PS / XBox PS / Xbox / Wii

Whatever

floats your

boat

Mobile IOS / Android / WinPhone
iOS /

Android
iOS / Android / WinPhone

Whatever

butters

your biscuit

HTML 5 Yes / Websockets Experimental Yes / Websockets Yes

Server Windows / Linux
Windows /

Linux
Windows Only

Windows /

Linux

 Languages

C/C++ Sort Of Yes Client Only Yes

Garbage-

Collected
C#/CLI No C#/CLI

C#/Any,

Java/Any,

etc.

Scripting JS/CLI, Boo/CLI “Blueprints” Client Only

JS/Any (incl

JS/V8 and

Node.js),

Python/Any,

etc.

Unity 5

(HLA PI)

Unity 5

(LLA PI)

Unreal

Engine 4

Photon

Serv er SDK

Photon

Cloud / PUN

My ideal

DIY

9 10 11

12

 Programming
Ev ent-driv en Yes Yes Yes Yes Yes Yes

Deterministic

Goodies No No No No No Yes

v oid non-

blocking RPCs
Yes No Yes No Yes Yes

non-v oid non-

blocking RPCs
No No No No No Yes

Futures for RPCs No No No No No Yes

Co-routines Yes Yes No Yes Yes Yes

Clear Client-

Serv er

Separation

No (favors

Client-

Driven

Development

Flow)

No (favors

Client-

Driven

Development

Flow)

No (favors

Client-

Driven

Development

Flow)

Yes (favors

Server-

Driven

Development

Flow)

No (favors

Client-

Driven

Development

Flow)

Whatever

you prefer

 Graphics

3D Yes Yes
External: Unity, Unreal

Engine
External

2D Yes Yes External: Cocos2X External

Model-View-

Controller
DIY DIY DIY No Yes

2D+3D Views on

the same game
No No DIY No Yes

Unity 5

(HLA PI)

Unity 5

(LLA PI)

Unreal

Engine 4

Photon

Serv er SDK

Photon

Cloud / PUN

My ideal

DIY

 Netw orking – General

Support for

A uthoritativ e

Serv er

Y es Y es Y es Y es No Y es

 Netw orking – Marshalling/IDL

In-

13
14

15

16

17

18

19

20

21

IDL In-Language No In-Language No Language External

State

Synchronization
Yes DIY Yes DIY DIY Yes

Clear Serv er-

State –

Publishable

State – Client

State separation

No N/A No N/A No Yes

Cross-language

IDL
No N/A No No N/A Yes

IDL Encodings No N/A No No N/A Yes

IDL Mappings No N/A No No N/A Yes

Interest

Management
Yes DIY Yes DIY DIY Yes

Client-Side

Interpolation
DIY DIY DIY DIY DIY DIY

Client-Side

Extrapolation
DIY DIY DIY DIY DIY DIY

Client-Side

Prediction
DIY DIY DIY DIY DIY DIY

Delta

Compression

(whole fields)

Automatic DIY Automatic DIY DIY Controlled

Delta

Compression

(field increments)

No DIY No DIY DIY Yes

Variable Ranges,

Rounding-when-

Transferring, and

Bit-Oriented

Encodings

No DIY No DIY DIY Yes

Dead Reckoning No DIY No DIY DIY Yes

21

22 22 22

Revision-Based

Large Objects

Sync [[TODO! Add

to Chapter VII]]

No DIY No DIY DIY Yes

VLQ No DIY No DIY DIY Yes

Huffman coding No DIY No DIY DIY Yes

IDL Backward

Compatibility

Support

No N/A No No N/A Yes

Unity 5

(HLA PI)

Unity 5

(LLA PI)

Unreal

Engine 4

Photon

Serv er SDK

Photon

Cloud / PUN

My ideal

DIY

 Netw orking – A ddressing/A uthentication

A ddressing

Model

“Client” /

”Server”
IP:Port

“Client” /

”Server”
IP:Port

“Client” /

”Server”

By server

name for

servers,

player ID /

“connected

client” for

players

Player

Authentication
DIY DIY DIY DIY DIY Yes

Serv er-to-Serv er

Communications
No DIY No Yes No Yes

 Netw orking – Supported Protocols

UDP Yes Yes Yes Yes Yes Yes

TCP No No No Yes Yes Yes

WebSockets Yes (only for WebGL apps?) ? Yes Yes Yes

HTTP No No No Yes Yes Yes

 Scalability/Deployment Features

Inter-World

Only

[[TODO!:

describe

Inter-World

Only

[[TODO!:

describe Both Inter-

23
24

23
24

23

25 25

The f irst
development

Load Balancing No No No inter-world

/ intra-

world

balancing in

Chapter VI]]

inter-world

/ intra-

world

balancing in

Chapter VI]]

world and

Intra-world

Front-End

Servers
No No No No No Optional

 Unmanaged code is possible, but cumbersome
 actually, UE4 is using a somewhat-garbage-collected dialect of C++
 on server side unmanaged C++ may work
 Mono tried to add support for C#, but this effort looks abandoned
 replay testing, production post-mortem, server failure handling
 to enable deterministic goodies while using either futures or co-routines, a source pre-processor

will be necessary
 to use futures with deterministic goodies enabled, a source pre-processor will be necessary
 to use co-routines with deterministic goodies enabled, or for a language which doesn’t support

them explicitly, a source pre-processor will be necessary
 yes, graphics comparison is intentionally VERY sketchy here
 in particular, can use Unity or Unreal Engine for rendering
 in particular, can use Cocos2X or a homegrown 2D library for rendering
 Photon Plugins MAY allow for a way out, but this needs separate analysis
 Last time I’ve checked, Photon has had only RPC part as declarative IDL; Publishable State was via

manual serialization
 it is possible to separate them, but it requires efforts
 i.e. there is no way to address anything except for “Client” on Server, and “Server” on Client; this

addressing model is too restrictive, and effectively excludes server-to-server communication
 quite cumbersome in practice
 support reportedly planned

Engine-Centric Development Flow
Ok, so we’ve got that nice table with lots of different things to compare. Still, the Big Question of “What
should I use for my game?” remains unanswered. And to answer it, we’ll need to speak a bit about
different development flows (which are not to be confused with data flows(!)).

In general, for a pretty much any game being developed, there are two possible development scenarios
which heavily depend on the nature of your MMO game.

Server-Driven Development Flow

The first development scenario occurs when the logic of your MMOG does not
require access to game assets. In other words, it happens when the gameplay is
defined by some internal rules, and not by object geometry or levels. Examples of
such games include stock exchanges, social games, casino-like games, some of
simpler simulators (maybe snooker simulator), and so on.

What is important for us in this case, is that you can easily write your game logic
(for your authoritative server) without any 3D models, and without any
involvement of graphics artist folks. It means that for such development server-

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

“

scenario occurs
w hen the logic
of your MMOG

does not
require access
to game assets.

From w hat
I've seen and
heard, if you're
using a 3rd-
party game
engine, and
your game is
suitable f or
Server-Driven
Development
Flow , starting
w ith Unity 5
HLAPI is
probably your
best bet.

side has no dependencies whatsoever, and that server-side becomes a main
driver of the things, plain and simple. And all the graphical stuff acts as a mere
rendering of the server world, without any ability to affect it.

In this kind of Server-Driven development workflow game designers are working
on server logic, and can express their ideas without referring to essentially-3D or
essentially-graphical things such as game levels, character geometry, or similar.

If your game allows it, Server-Driven development is a Good Thing(tm). It is generally simpler and
more straightforward than a Client-Driven one. Developing, say, a social game the other way around is
usually a Pretty Bad Idea. However, not all the MMOGs are suitable for such Server-Driven
development, and quite a few require a different development workflow.

 as discussed above in Chapter VII, from data flow point of view it will happen anyway when the game
is running, but from game designer point of view it might be different, see “Client-Driven
Development” section below

Serv er-Driv en Dev elopment Flow : Personal Suggestions

From what I’ve seen and heard, if you’re using one of the engines above (and not
your own one), and your game is suitable for Server-Driven Development Flow,
starting with Unity 5 HLAPI (and rewriting necessary portions into LLAPI when/if
it becomes necessary) is probably your best bet. UE4, as it is even more
simulation-world-oriented, is less likely to be suitable for the games which fit
Server-Driven Development Flow, but if it is – you can do it with UE4 too.

Photon Server SDK might work for Server-Driven development flow too, though
you IMO should stay away from Photon Cloud and PUN at least until you realize
how Photon Plugins will help to deal with cheaters, and figure out Photon Cloud
Enterprise pricing (as noted above, Enterprise plan is necessary to run Photon
Plugins).

And of course, a DIY engine can really shine for such development scenarios (using
some game engine or 2D/3D engine for client-side rendering purposes).

Client-Driven Development Flow

For those games where your game designers are not only laying out the game
rules, but are also involved in developing graphical things such as game levels,
Server-Driven development flow described above, tends to fall apart fairly quickly.
The problem here lies with the fact that game designers shouldn’t (and usually
couldn’t) think in terms of servers and clients. When thinking in terms of
“whenever character comes to city X and doesn’t have level 19, he is struck into his
face”, there is no way to map this kind of the world picture into servers and clients. In such cases, from
Game Designer perspective there is usually a single Game World which “lives” its own life, and
introducing separation between client and server into the picture will make their job so much more
difficult that their performance will be affected badly, quite often beyond any repair .

Games which almost universally won’t work well with Server-Driven development
flow and will require a Client-Driven approach described below, are MMORPGs
and MMOFPS.

For such games, the following approach is used pretty often (with varying degrees
of success):

26

26

“

Games w hich
almost
universally
w on't w ork w ell
w ith Server-
Driven
development
f low and w ill
require a
Client-Driven
approach
described
below , are
MMORPGs and
MMOFPS.

If you're
using one of the
engines above
(and not your
ow n one), and
your game
requires Client-
Driven
Development
Flow , you may
w ant to start
w ith a single-
player Unity 5,

develop a game using existing game engine “as if” it is a single-player game.
There is only one Game World, and both game designers and 3D artists
who can work within a familiar environment, are able to test things right
away, and so on

at this stage there is no need to deal with network at all: there is no
[SyncVars], no RPCs, nothing

at certain point (when the engine as such is more or less stable), start a
project to separate server from the client. This may include one or more of
the following:

dropping all the textures from the server side

using much less detailed meshes for the server side; in the extreme
cases, your PCs/NPCs can become prisms or even rectangular
boxes/parallelepipeds.

taking existing Game World State as a Client-State, figuring out how it
can be reduced to get Server-State

working on further reducing Server-State for transfer purposes,
obtaining Published-State

this process is likely to involve certain visually observable trade-
offs and degradations, and is going to take a while

at the same time, work of game designers on high-level scripts etc., and of 3D artists on
further improvements, may continue

[[TODO! – vigilance]]

While this Client-Driven development process is not a picnic, it is IMHO the best you can do for such
games given the tools currently available. Most importantly, it allows game designers to avoid thinking
too much about complexities related to state synchronization; while certain network-related issues
such as “what should happen with a player when she got disconnected” will still appear in the game
designer space, it is still much better than making them think about clients and servers all the time.

Client-Driv en Dev elopment Flow : Personal Suggestions

If you’re using one of the engines above (and not your own one), and your game
requires Client-Driven Development Flow, you may want to start with a single-
player Unity 5, or with a single-player UE4. Then (as a part of “client-server
separation project” described above), you will be able to proceed either to Unity 5
HLAPI, or to UE4 Replication/RPCs. And as a further step, as discussed above, you
may need to rewrite state sync into LLAPI or on top of plain sockets respectively.

While Photon Server SDK might work for Client-Driven Development too, I expect
it to be too cumbersome here. As for Photon Cloud and PUN – just as with Server-
Driven Development workflow, you IMO still should keep away from them at least
until you realize how Photon Plugins will help to deal with cheaters, and figure out
Photon Cloud Enterprise pricing.

As for DIY network engine, you can certainly use it for “client-server separation”
too (and that’s what I would personally suggest if you have reasonably good
network developers).

Important Clarification: Development Flow vs Data Flow

One important thing to note that regardless of game development flow being
Server-Driven or Client-Driven, from the technical point of view the completed

“

“

or w ith a single-
player UE4.

« IDL: Encodings, Mappings, and Backw ard Compatibility

 Pre-Coding Checklist: Things Ev erybody Hates, but Ev erybody Needs Them T… »

game will always be server-driven: as our server needs to be authoritative, all
decisions are always made by the server and are propagated to the clients, which
merely render things as prescribed by the server (see more discussion on data
flows in Chapter VII). What we’re speaking about here, is only Development Flow (and yes, having
development flow different from program data flow is a major source of confusion among multi-
player game developers).

[[To Be Continued…
This concludes beta Chapter VIII from the upcoming book “Development and
Deployment of Massively Multiplayer Games (from social games to MMOFPS, with
social games in between)”. Stay tuned for beta Chapter IX, “Pre-Development
Checklist: Things everybody hates but everybody needs too”]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: game, multi-player, Photon, UE, unity

Copyright © 2014-2016 ITHare.com

[–] References
[UNet] “Unity 5 Network System Concepts”, Unity
[UNetSync] “Unity 5 State Synchronization”, Unity
[UnityClientPrediction] Christian Arellano, “UNET Unity 5 Networking Tutorial Part 2 of 3 - Client Side
Prediction and Server Reconciliation”, Gamasutra
[UnrealGC] https://wiki.unrealengine.com/Garbage_Collection_Overview

http://docs.unity3d.com/Manual/UNetConcepts.html
http://docs.unity3d.com/Manual/UNetStateSync.html
http://www.gamasutra.com/blogs/ChristianArellano/20151009/255873/UNET_Unity_5_Networking_Tutorial_Part_2_of_3__Client_Side_Prediction_and_Server_Reconciliation.php
https://wiki.unrealengine.com/Garbage_Collection_Overview
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/idl-encodings-mappings-and-backward-compatibility/
http://ithare.com/pre-coding-checklist-things-everybody-hates-but-everybody-needs-them-too-from-source-control-to-coding-guidelines/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/photon/
http://ithare.com/tag/ue/
http://ithare.com/tag/unity/

	Unity 5 vs UE4 vs Photon vs DIY for MMO
	Unity 5
	Event-driven Programming/FSMs
	Unity for MMOG
	Communications: HLAPI
	State Synchronization
	RPCs (a.k.a. “Remote Actions”)
	HLAPI summary

	Communications: LLAPI
	Unity 5/UNet Summary

	Unreal Engine 4
	Event-driven Programming/FSMs
	UE for MMOG
	UE Communications: very close to Unity 5 HLAPI

	Photon Server
	Photon Server SDK: Communications
	Photon Cloud / PUN: Communications

	Summary
	Engine-Centric Development Flow
	Server-Driven Development Flow
	Server-Driven Development Flow: Personal Suggestions

	Client-Driven Development Flow
	Client-Driven Development Flow: Personal Suggestions

	Important Clarification: Development Flow vs Data Flow

	[[To Be Continued…
	[–]References
	Acknowledgement

