
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Pre-Coding Checklist: Things Everybody Hates, but
Everybody Needs Them Too. From Source Control to
Coding Guidelines
posted February 29, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter IX from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to
use Development&Deployment of MMOG: Table of
Contents.]]

We’ve discussed a lot of architectural issues specific and not-so-specific to MMOs,
and now you’ve hopefully already drawn a nice architecture diagram for your
multiplayer game.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/wp-content/uploads/BB_part081_BookChapter009_v1.png
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

I don't w ant
to go into a

discussion why
you need source
control system,
just saying that

there is a
consensus out

there on it being
necessary

However, before actually starting coding, you still need to do quite a few things.
And I am perfectly aware that there are lots of developers. Let’s take a look at them
one by one.

Source Control System
To develop pretty much anything, you do need a source
control system. I don’t want to go into a discussion why you
need source control system, just saying that there is a
consensus out there on it being necessary for all the
meaningful development environments. Even if you’re single
developer, you still need source control: the source control
system will act as a natural backup of your code, plus being
able to rollback to that-version-which-worked-just-
yesterday, will save you lots of time in the long run. And if
you’re working in a team, benefits of source control are so
numerous that nobody out there dares to develop without it.

The very first question about source control is “what to put
under your source control system?” And as a rule of thumb,
the answer is like

Y ou should put under source control
pretty much everything you need to build

your game, but usually NOT the results of the builds

And yes, “pretty much everything” generally includes assets, such as meshes and
textures.

On the other hand, as with most of the rules of thumb out there, there are certain
(but usually very narrow) exceptions to both parts of this statement. For “pretty
much everything” part, you MIGHT want to keep some egregiously large-and-
barely-connected-to-your-game things such as in-game videos outside of your
source control system (for example, replacing them with stubs), but such cases
should be very few and far between. Most importantly,

the game should be buildable from source control
system, and the build should be playable

, that’s the strict requirement, other than that – you MIGHT bend the rules a bit.

For not including results-of-your-build – I’ve seen examples when having YACC-
compiled .c files within source control has simplified development flow (i.e. not all

“

Even I
myself , being a
w ell-
recognized
retrograde, has
been convinced
that git has
enough
advantages to
qualif y as “the
w ay to go”

developers needed to setup YACC on their local machines), but once again – this is
merely a very narrow exception from the common rule of thumb stated above.

Git
The next obvious question with regards to source control is
“Which source control system to use?”. Fortunately or not,
there is a pretty much consensus about the-best-source-
control-system-out-there being git. Even I myself, being a
well-recognized retrograde, has been convinced that git has
enough advantages to qualify as “the way to go” for objective
reasons (opposed to just being a personal preference).

Whether to host git server yourself or whether to use some
third-party service such as github – is less obvious, especially
for games. I would say that if by any (admittedly slim) chance
your game is open source – you should go ahead with a github.

If your game is closed-source – then the choice becomes less
obvious and depends on lots of things: from the size of your
team to having on the team somebody who’s willing to
administrate (and backup!) your own git server (while it is
certainly not a rocket science, it will involve some command-
line stuff). Even more importantly, if your game has lots (such
as multiple gigabytes) of assets – you probably should settle
for an in-house git server, at least because downloading all that stuff over the
Internet will take too much time.

 Actually, you can do more or less the same things with Mercurial, but unless you
already have it in place, in most cases I suggest to stick with git, even in spite of
Git’s lack of support for locks, see “Git and unmergeable files” section below

Git and unmergeable files
For game development (and unlike most of other software development projects),
you’re likely to have binary files which need to be edited. More precisely, it is not
only about binary files, but also includes any file which cannot be effectively merged
by git. One example of these is Unity scene files, but there are many others out
there (even simple text-based Wavefront .obj is not really mergeable).

A question “what to do with such files” is not really addressed by Git philosophy.
The best way would be to learn how to merge these unmergeable files, but this is
so much work that doing it for all the files your artists and game designers need, is

“
1

1

2

hardly realistic .

The second best option would be to have a ‘lock’ so that only one person really
works with the asset file at any given time. However, git’s position with regards of
locks is that there won’t be mandatory locks, and that advisory locks are just a way
of communication so that should be done out-of-git (!). The latter statement leads
to having chat channels or mailing lists just for the purposes of locking (ouch!). I
strongly disagree with such approaches:

all stuff which is related to source-controlled code,
SHOULD be within source control system, locks

(advisory or not) included

To use advisory (non-enforced) locks in git, I suggest to avoid stuff such as chat
channels, and to use lock files (located within git, right near real files) instead. Such
a lock file MUST contain the name (id) of the person who locked it, as a part of file
contents (i.e. having lock file with just “locked” in it is not sufficient for several
reasons). Such an approach does allow to have a strict way of dealing with the
unmergeable files (that is, if people who’re working with it, are careful enough to
update – and push(!) – lock file before starting to work with the unmergeable file),
and also doesn’t require any 3rd-party tools (such as an IM or Skype) to work. For
artists/game designers, it SHOULD be wrapped into a “I want to work with this file
– get it for me” script (with the script doing all the legwork and saying “Done” or
“Sorry, it’s already locked by such-and-such user”). If you like your artists better
than that, you can make a shell extension which calls this script for them.

The approach of lock-files described above is known to work (though creating
commits just for locking purposes), but still remains quite a substantial headache.
Actually, for some projects it can be so significant that they MIGHT be better with
Mercurial and it’s Lock Extension (which supports mandatory locking).

Let’s note that there is also an issue which is often mentioned in this context, the
one about storing large files in git, but this is a much more minor problem, which
can be easily resolved (for example, by using git LFS plugin).

 Actually, for merging Unity scene files there was an interesting project
[GitMergeForUnity], but it seems abandoned now
 and of course, another script “I’m done with file”, which will be doing unlock-and-

push

Git and 3rd-party Libraries

3

2

3

How to
handle those

3rd-party
libraries you're

going to use?

One of the
things you need
to decide w hen
using git, is how
do you w ork

One subtle issue with regards to source control system is how
to handle those 3rd-party libraries you’re going to use.
Ideally, 3rd-party libraries should be present in your source
control system as links-pointing-to-specific-version of the
library, with your source control system automagically
extracting them before you’re building your game. It is
important to point to a specific version of the library (and not
just to head), as otherwise a 3rd-party update can
cause your code to start crashing, with you having no idea what
happened. On the other hand, such an approach means that it
is your responsibility to update this link-to-specific-version to
newer versions, at the points when you’re comfortable with
doing it.

git submodule does just that, and git submodule update will allow you to update your
links to the most recent version of the 3rd-party library. However, it works only
when your 3rd-party libraries are git repositories themselves

If your 3rd-party library is available as an svn repository instead of git – you may
setup a git mirror of svn repository and then to use git submodule
[StackOverflow.SvnAsGitSubmodule]. A similar trick can be used with Mercurial too
(see [HgGitMirror] on creating git mirror from Mercurial).

And if you’re using a non-open-source library – you’ll probably need to put a copy
of it under your source control system .

BTW, about open-source and non-open-source 3rd-party libraries: there is
another (even more important) issue with them, make sure to read “3rd-party
Libraries: Licensing” section below.

Git Branching
As noted above, as a rule of thumb, you should be using git. And
one of the things you need to decide when using git, is how do
you work with branches. In pre-git source control systems,
branching was a second- (if not third-) class citizen, and
developers were avoiding branches at all costs. In git, however,
everything is pretty much about branches, and in fact this
ease-of-branching-and-merging is what gives git an advantage
over svn etc.

IMO, most of the time you should be following the branching
model by Vincent Driessen described in [GitFlow] and is known
as “Git Flow”. When you look at it for the very first time, it may

“

“

There is a
breed of
developers out
there w ho
pref er to live
w ithin their
ow n f eature
branch f or
many w eeks
and months,
implementing
many dif f erent
f eatures under
the same

w ith brancheslook complicated, but for the time being you’ll just need a few
pieces of it:

master branch. As a rule of thumb, you should merge here only when
milestone/release comes. All the commits to the master branch should come
from merges from develop branch. Direct commits (i.e. commits which are not
merges from develop) into master branch SHOULD NOT happen.

develop branch. The branch which is expected to work. More precisely – it is
usually understood as a branch that compiles and passes all the automated
tests, though it is understood that no amount of automated testing can really
guarantee that it is working. You should merge to develop branch as soon as
you’ve got your feature working “for you” (and all the automated regression
tests do pass). Direct commits (not from feature branches) into
develop branch are usually allowed. On the other hand, leaving develop branch
in a non-compilable or failing-automated-test state is a major fallacy, and
you’ll be beaten by fellow developers pretty hard for doing it (and for a good
reason). Note that having develop branch temporary failing to compile or run
tests (in a sequence like developer committed to develop – automated build
failed – developer fixed the problem or reverted the merge) is not
considered a problem; it is leaving develop branch in unusable state for several
hours which causes a backlash (and rightly so). More on it in “Continuous
Integration” section below.

feature branch. You should create your own feature
branches as you develop new features. These
feature branches should be merged into develop branch as
soon as your feature (fix, whatever) is ready. Consider
feature branch as your private playground where you’re
developing the feature until it is ready to be merged into
develop branch. Feature branches are generally not
required even to compile.

A note of caution: there is a breed of developers out
there who prefer to live within their own feature
branch for many weeks and months, implementing
many different features under the same branch and
postponing integration as long as they can. This is a
Bad Practice™, and a rule-of-thumb of one-feature-
for-one-feature-branch should be observed as soon
as you’ve past your very first milestone.

It is also interesting and useful to note that modern
source control systems (git included) tend to punish
those who do their merges later. When both you and
a fellow developer are working on your respective
branches, and she got committed her merge 5
minutes before you, then it becomes your problem to

4

“

branch and
postponing
integration as
long as they can

The basic
idea behind
Continuous

Integration is
simple: as soon
as you commit

something, a
build is

automatically
run w ith all the

tests you w ere
able to invent

by that time

resolve any conflicts which may arise from the
changes both of you have made. In most cases for a
reasonably mature codebase, there won’t be any
conflicts, but sometimes they do happen, and

it is the second developer who
becomes a rotten egg responsible for

resolving conflicts

Print this profound truth in a 144pt font and post it on the wall to make
your fellow developers merge their feature branches more frequently.

 not that revert of the merge in git is very peculiar and counter-intuitive, see
[kernel.RevertFaultyMerge] for discussion

Continuous Integration
One thing which is closely related to source control, and which you should start
using as soon as possible for any sizeable project, is Continuous Integration a.k.a.
CI (not to be confused with Continuous Deployment, a.k.a. CD which is a very
different beast and will be discussed in Chapter [[TODO]]).

The basic idea behind Continuous Integration is simple: as
soon as you commit something (usually it applies to develop
branch merges/commits as described above), a build is
automatically run with all the tests you were able to invent by
that time. If the build or tests fail – whoever made the “bad”
commit, gets notified immediately.

In a sense, continuous integration is an extension of a long-
standing practice of “night builds”, but instead of builds being
made overnight, they’re made in real-time, further reducing
the impact from “bad commits”.

In general, continuous integration is almost a must-have for
any serious development, how to implement it – is a different
story.

In this regard, I tend to agree with [Bugayenko2014] that
build-before-commit is a better way to implement
Continuous Integration than classical build-after-commit.

The problem with build-after-commit is the following. If (as in

4

“

5

Instead of
running the
build after
commit has
happened, you
should make
sure that your
build is clean
before
committing

nightly builds and with classical Continuous Integration) developers commit first,
and only then automated build+test runs, then there is a risk that the build/test
fails. And if it happens – there is a strong pressure to fix the commit-which-caused-
failure (instead of reverting it) – in part, because of git peculiar behaviour when it
comes to merge reverts (mentioned above). Which means that the whole team will
stop development and will be working on the fix, ouch. This practice is very
disruptive, and can easily introduce “commit fear” mentioned in [Bugayenko2014].

To address this problem, instead of running the build
after commit has happened, you should make sure that your
build is clean before committing. It means that “faulty” builds
never happen, yahoo!

To follow “build-before-commit” approach within your CI
system, you may want to do one of the following:

create a VM image with your “build server” and give every
developer a copy. Not that I really like this option, but it
does exist.

it MUST be a responsibility of every developer to run
a build+test before every commit to develop branch

write your own script which takes your-feature-branch as a
parameter, merges it with develop (without committing it
yet!), builds, runs all the tests, and commits-the-merge-
provided-that-everything-went-smoothly

it MUST be a responsibility of every developer to use
ONLY this script for committing into develop branch

use Travis CI as your Continuous Integration tool. Make all commits to
develop branch ONLY via “pull requests” (they still should reside within
your feature branches(!)).

in this case, Travis CI will report whether current pull request would
build ok after merge [TravisPullRequests]. It MUST be a responsibility of
every developer to check this “Travis OK” status before performing
merge (at least in GitHub it is shown as a nice green checkbox near the
pull request, if you have Travis integration enabled)

use Rultor set of scripts (by the very same Bugayenko). NB: I didn’t try it, so I
cannot vouch for it.

 I don’t agree with [Bugayenko2014] that “Continuous Integration is Dead”, but I do
agree that what he names “read-only master branch”, and I name “building-before-
committing” is a better way of doing things (though I consider it being yet another
way to implement Continuous Integration, and not something radically different)
 an alternative would be to fix merge revert in git, and to rely on merge reverts

“

6

5

6

Be caref ul
w ith open-

source projects
w hich don't

have any
license at all

instead. However, as current behaviour is considered a feature rather than a bug,
this is not going to happen any time soon

3rd-party Libraries: Licensing
One really important thing to remember when developing your game is that no
3rd-party library can be used without taking into account its license. Even open-
source libraries can come with all kinds of nasty licenses which may prevent you
from using them for your project.

In particular, beware of libraries which are licensed under GPL family of licenses
(and of so-called “copyleft” licenses in general). These licenses, while they do allow
you to use code for free, come with a caveat which forces you to publish (under the
very same license) all the code which is distributed together with the 3rd-party
library. There are a few mitigating factors though. First, LGPL license (in contrast
to GPL license) is not that aggressive, and usually might be used without the need
to publish all of your own code (while changes to library code itself will still need to
be published, this is rarely a problem). Second, if you’re not distributing your
server-side code – then only the client-side code will usually need to be published
(which tends to help a lot for web-based games). In any case, if in doubt – make
sure to consult your legal team.

Another two things to be aware of in open-source projects, is
(a) “something under license which is not a recognised open-
source license (see [OpenSource] for the list of recognised
ones), and (b) “something without any license at all” (you’ll see
quite a few such projects on github). (a) is usually a huge can
of worms, and in case of (b) you cannot really use the project
in any meaningful way (by default, everything out there is
subject to copyright, so to use it – you generally need some
kind of license).

On the other hand, anything which goes under BSD license,
MIT license, or Apache license – can usually be used without
licensing issues.

And of course, if you’re using commercial libraries – make sure that you’re
complying with their terms (paying for the library does not necessarily mean that
you are allowed to use it as you wish).

 in practice, it is more complicated than that, but if you want legally correct
answers – you better ask your legal team
 distribution of server-side code may happen, for example, if you’re selling your

7

8

“

7

8

I am not
going to discuss
advantages and
disadvantages
of dif f erent
processes here,
as the
associated
debates are
going to be even
more heated
then Linux-vs-
Window s and
C++-vs-Java
holy w ars
combined.

server-side as an engine

Development Process
The next thing which you will need is almost-universally necessary (that is, unless
you’re a single-developer shop) and pretty much universally hated among
developers. It is related to the mechanics of the development process. All of us
would like to work at our leisure, doing just those things which we feel like doing at
the moment. Unfortunately, in reality development is very far from this idyllic
picture.

For your game, you do need a process, and you do need to follow it. What kind of
process to use – old-school project Gannt-chart-based planning with milestones,
or agile stuff such as XP, Scrum, or Kanban – is up to you, but you need to
understand how your development process is going to work.

I am not going to discuss advantages and disadvantages of
different processes here, as the associated debates are going
to be even more heated then Linux-vs-Windows and C++-vs-
Java holy wars combined. Usually, however, you will end up
with some kind of a process, which is (whether you realize it or
not) will be some combination of agile methods; in at least two
of my teams, we were using a combination of Scrum and XP
long before we learned these terms .

BTW, if you happen to consider Agile as a disease (like, for
example, [AgileDisease]) – that’s IMNSHO not because agile is
bad per se, but most likely because you’ve had a bad
experience dealing with an overly-confident (and way too
overzealous) Certified Scrum Master who was all about
following the process without even remote understanding of
specifics of your project (and quite often – without any clue
about programming). While I do admit that such guys are
indeed annoying (and often outright detrimental for the
project), I don’t agree that it makes the concepts behind agile
development, less useful even by a tiny bit.

One thing which should be noted about agile criticisms (such
as [AgileDisease]), is that there is no real disagreement about
what needs to be done; the sentiment in such criticisms is
usually more along the lines of “we’re doing it anyway, so do we
need fancy names and external consultants?” To summarize
my own feelings about it:

9

“

Do you need to have a well-defined

development process?

Certainly. A ll successful projects hav e

one, ev en if it is not formalized.

Do you need to have it written

down?

Up to you. At some point you’ll probably need

some rules written down, but it is not a strict

requirement.

Does your project need to be

iterative?
Certainly

Do you need to have your

iterations reasonably short (3

months being “way too much”)?

Certainly

Do you need to name your

iterations “sprints”?
Doesn’t matter at all

Do you need to have your iteration

carved in stone after it started?

It depends, pick the one which works for you

at a certain stage of your project

Do you need to analyze how your

iteration went?

A good idea, w hether naming it

“iteration” or “sprint”

Do you need to describe your goals

in terms of ‘use cases’/’user

stories’?

Certainly

Do you need to name them ‘use

cases’/’user stories’?
Doesn’t matter at all

Do you need to name your project

“Agile”, or “Scrum”, or <insert-

some-name-here>?

Doesn’t matter at all

Do you need a daily stand-up

meeting?
Up to you, but often it is not so bad idea

Y ou SHOULD. It is damn important to

10

Do you need Product Owner (as a

role)
hav e opinion of stakeholders to be

represented

Do you need Product Owner as a

full-time role?
Not necessarily, it depends

Do you need to name this role

“Product Owner”?
Doesn’t matter at all

Do you need Scrum Master (as a

role)?

You will have somebody-taking-care-of-

your-development-process (usually more

than one person), whether you name it

“Scrum Master” or not

Do you need a Kanban board? Up to you

Do you need to use XP’s techniques

such as pair programming,

merciless refactoring, test-driven

development?

Up to you on case by case basis

Do you need a Certified Scrum

Master on your team?
Probably not

Do you need an external

consultant to run your Agile

project?

If you do – your team is already in lots of

trouble

Ultimately, whether you’re using fancy names or not, your process will be a
combination of agile processes, using quite a few agile techniques along the road.
And it doesn’t matter too much whether you’re doing it because you read a book on
agile, or because you’ve invented them yourself.

 it applies to any kind of development, game or not
 while they’re not exactly similar, they’re close enough for our purposes now

9

10

Whether w e
like it or not,
there w ill be

bugs and other
issues w ithin

our game.

Issue Tracking System
Whether we like it or not, there will be bugs and other issues
within our game. And even if there would be a chance that we
wouldn’t have any bugs – we’ll have features which need to be
added. To handle all this stuff, we need an issue tracking
system.

If you’re hosted on github, and your team is really small (like <5
developers) – you MIGHT get away with github built-in issue
tracker. If you’re hosting your own git server (or if your team is
larger), you’re likely to use some 3rd-party issue tracking. The
most popular choices in this regard range from free Bugzilla,
Trac, and Redmine, to proprietary (and non-free as in “no free
beer”) JIRA.

Which one is better – honestly, IMHO it doesn’t matter much, and any of them will
do the job, at least until you’re running a 1000-people company (in particular, all 4
systems above do allow to integrate with git).

One extra thing to think about in this regard is support for the artifacts used within
your development process. Whether you want to use a Kanban board, Scrum
“burndown chart”, or a good old Gantt chart (or all of them together) – having
these artefacts well-integrated into the same system which provides you with issue
tracking can save you quite a bit of time. More importantly – it may help you to
follow your own development process. So think about artifacts of your
development process, and take it into account when choosing your issue tracking
system. Also keep in mind that some of the plugins which implement this
functionality (even for free systems(!)) can become pricey, so it is better to check
pricing for them in advance.

On the other hand, this support-for-development-process-artifacts is only a nice-
to-have feature of your tracking system; you can certainly live without it, and it only
comes into play when all-other-parameters of your issue tracking system are
about-the-same for your purposes. On the third hand , these days issue tracking
systems are pretty much about-the-same from purely issue-tracking point of
view.

 and if you do, you should look for a better source than this book for choosing your
issue tracking system, as issue tracking is very far from being a focus here

 I realise how hard I will be beaten for this statement by hardcore-zealots-of-
<insert-your-favorite-issue-tracking-system> but as an honest person I still need
to say it

“

11

12

11

12

One last thing
you should
establish bef ore
you start
coding, is
coding
guidelines f or
your specif ic

Issue Tracking: No Bypassing Allowed
There is one very important concept which you MUST adhere to while developing
pretty much any software product:

ALL the development MUST go through the issue
tracking system

It means that there MUST be an issue for ANY kind of development (and for each
commit too). Granted, there will be mistakes in this regard, but you MUST have
“each commit MUST mention its own issue” policy. The only exception to this rule
should be if it is not a feature, but an outright bug, and the whole issue can be
described by developer in the commit message.

It is perfectly normal for a BA to come into developer’s cubicle and saying “hey, we
need such and such feature, let’s do it” . What is not normal – is not to open an issue
for this feature (before or after speaking to the developer). As for using e-mails for
discussing features – I am against it entirely, and suggest to have an issue open on
the feature, and to have all the discussion within the issue. Otherwise, 3 months
down the road you will have lots of problems trying to find all those e-mails and to
reconstruct the reasons why the feature was implemented this way (and whether it
is ok to change it to a different way).

Even for a team of 5, for every change in the code, it is crucial to know why it has
been made, and there should be one single source of this information – your issue
tracking system.

Coding Guidelines
One last (but certainly not least) thing you should establish
before you start coding, is coding guidelines for your specific
project. In this regard my suggestion is not to copy a Big
Document from a reputable source, but rather start writing
your own (initially very small) list of DO’s and DON’Ts for your
specific project. This list SHOULD include such things as
naming conventions, and all the not-so-universal things which
you’re using within your project. More on naming conventions
and project peculiarities below.

Of course, your guidelines.txt file belongs to your source
control system. And while you’re at it – do yourself a favor and
find for it the most prominent place you can think of (root
directory/folder of your project is usually a pretty good
candidate).

“
13

project

For a C++
project there is
a common
question
w hether you'll
be using printf ()
or ostream f or
f ormatted
output –
regardless of
your decision, it
needs to be

 this book included; in Chapter [[TODO]] there will be an
example of my personal guidelines for C++, but as with any
other source – don’t copy it blindly

Naming Conventions
With naming conventions the situation is simple: it doesn’t really matter which
naming convention you use (myFunction() vs my_function() won’t make any
realistic difference, and debating it for hours is not worth the time spent). What is
important though, is to do it uniformly across the whole project, so you should just
quickly agree on some naming conventions and then adhere to them.

That being said, there is one thing in this regard which I actively dislike and which I
am arguing against (on the basis that it reduces readability) – it is so-called
“Hungarian notation”. If you really really feel like naming your name variable as
lpszName – the sky won’t fall, but I suggest to drop these prefixes completely.

As for having some kind of naming convention for class data members – two
popular conventions are mDataMember and data_member_, this is up to you whether
to have such convention, it won’t make that much difference anyway (that is, as long
as you’re using it consistently across the whole project).

Project Peculiarities
For pretty much every project you will have some peculiarities.
For example, as we’ll be programming within our ad-hoc FSMs,
then threads will be pretty much out of question (at least
outside of well-defined areas) – ok, so let’s write it down into
our guidelines.txt file (to the part which tells about FSMs). For
a C++ project there is a common question whether you’ll be
using printf() or ostream for formatted output and logging –
regardless of your decision, it needs to be consistent for the
whole project, so it also belongs to Code Guidelines. And so on,
and so forth.

For C++, my personal set of Coding Guidelines will be
discussed in Chapter [[TODO]], but as with any other 3 -party
source, you shouldn’t copy it blindly and should develop your
own one, based on your own task, your own style, and your own
design decisions.

 FWIW, my answer is ‘neither – use cppformat instead’, see
Chapter [[TODO]] for further discussion

13

“14

rd

15

14

15

consistent f or
the w hole
project

 roughly translated as: “whatever nonsense I write there, it is
your responsibility to filter it out, so don’t blame me if it
doesn’t work for you”

Per-Subproject Guidelines
One important thing to be mentioned here is that most of the projects will actually
need more than one set of coding guidelines. Not only the subprojects can be
written in different programming languages, but also subprojects can perform
very different jobs, what in turn requires different guidelines.

For example, even if all your code is written in C++, the guidelines for
infrastructure layer (the one outside of FSMs) and application layer (implementing
FSMs) is going to be quite different. The former is going to use threads, will
probably provide logging facilities so it will need to have direct file access (and
probably access OS-specific services too), etc., and the latter is basically going just
to call whatever-is-provided-by-infrastructure layer (concentrating on game logic
rather than on “how to interact with OS”).

As a result, I strongly suggest to use different guidelines for different layers of
your game even if all of them are written in the same programming language; at the
very least, they should be quite different between 3D engine, network engine, and
game logic.

Enforcement and Static Analysis Tools
All the rules and guidelines are useless if nobody cares to follow them. Even if it is
only somebody who ignores the guidelines, if such ignoring-guidelines-code is not
rectified soon enough, it is often used as an example for some other piece of code,
and so on, and so forth, which means a slippery road towards most of the code
ignoring the guidelines .

To deal with all such guideline violations, there is no real substitute for code
reviews. However, to catch some of them, it is usually a good thing to use an
automated tool which will complain about most obvious violations. Such tools are
specific to the programming language; list of such “static analysis” tools which (as
I’ve heard, no warranties of any kind) work in real-world projects, include:

checkstyle (Java). Checks for naming convention compliance etc.

astyle (C/C++/Objective-C/C#/Java). Re-formats your source according to
your preferences. Personally, I like to have a policy of “before committing
to develop branch, all the code should be run through astyle”.

StyleCop (C#).

15

cpplint (C++). Style checks against Google C++ style guide. Not to be confused
with lint.

Actually, static analysis tools go much broader than mere style checking, and quite
a few of them can find bugs. Most popular static analysis tools in this regard
include:

cppcheck (C++)

PMD (Java)

PC-lint (C/C++). Commercial.

There are also lots of other static analysis tools out there (see
[Wikipedia.StaticCodeAnalysis.Tools]), but quite a few of them are known to cause
more trouble then provide benefits (one of common problems of many tools is
having too many false positives), so don’t hold your breath until you tested the
tool and see that it works for you.

[[This Concludes V ol.1 “Architecture”. To Be Continued in
V ol.2 “Development”…

This concludes beta Chapter IX from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Moreover, this concludes “beta” of the whole vol.1
“Architecture”, yahoo! Further chapters from vol.2
“Development” will be published soon…]]

Acknowledgement

[–] References
[GitMergeForUnity] “GitMerge for Unity”
[StackOverflow.SvnAsGitSubmodule] “Is it possible to have a Subversion repository
as a Git submodule?”, StackOverflow
[HgGitMirror] “Create a Git Mirror”, hg tip
[GitFlow] Vincent Driessen, “A successful Git branching model”
[kernel.RevertFaultyMerge] kernel.org,
https://www.kernel.org/pub/software/scm/git/docs/howto/revert-a-faulty-
merge.txt
[Bugayenko2014] Yegor Bugayenko, “Continuous Integration is Dead”
[TravisPullRequests] “Travis CI. Building Pull Requests”
[OpenSource] “Open Source Initiative. Licenses by Name”
[AgileDisease] Luke Halliwell, “The Agile Disease”
[Wikipedia.StaticCodeAnalysis.Tools] “List of tools for static code analysis”,
Wikipedia

https://flashg.github.io/GitMerge-for-Unity/
http://stackoverflow.com/questions/465042/is-it-possible-to-have-a-subversion-repository-as-a-git-submodule
http://hgtip.com/tips/advanced/2009-11-09-create-a-git-mirror/
http://nvie.com/posts/a-successful-git-branching-model/
https://www.kernel.org/pub/software/scm/git/docs/howto/revert-a-faulty-merge.txt
http://www.yegor256.com/2014/10/08/continuous-integration-is-dead.html
https://docs.travis-ci.com/user/pull-requests
https://opensource.org/licenses/alphabetical
https://lukehalliwell.wordpress.com/2008/11/16/the-agile-disease/
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

« Unity 5 v s UE4 v s Photon v s DIY for MMO

Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System
Architecture, Uncategorized
Tagged With: Agile, game, git, issue tracking, multi-player

Copyright © 2014-2016 ITHare.com

/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/unity-5-vs-ue4-vs-photon-vs-diy-for-mmo/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/category/uncategorized/
http://ithare.com/tag/agile/
http://ithare.com/tag/game/
http://ithare.com/tag/git/
http://ithare.com/tag/issue-tracking/
http://ithare.com/tag/multi-player/

	Pre-Coding Checklist: Things Everybody Hates, but Everybody Needs Them Too. From Source Control to Coding Guidelines
	Source Control System
	Git
	Git and unmergeable files
	Git and 3rd-party Libraries

	Git Branching
	Continuous Integration
	3rd-party Libraries: Licensing
	Development Process
	Issue Tracking System
	Issue Tracking: No Bypassing Allowed

	Coding Guidelines
	Naming Conventions
	Project Peculiarities
	Per-Subproject Guidelines
	Enforcement and Static Analysis Tools
	[[This Concludes Vol.1 “Architecture”. To Be Continued in Vol.2 “Development”…
	[–]References
	Acknowledgement

