
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
MMOG: World States and Reducing Traffic
posted February 1, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VII(b) from the upcoming book
“Development&Deployment of Massively Multiplayer Online
Games”, which is currently being beta-tested. Beta-testing is
intended to improve the quality of the book, and provides free e-
copy of the “release” book to those who help with improving; for
further details see “Book Beta Testing“. All the content published
during Beta Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of Contents.]]

Ok, so we’ve finished describing data flows which may
apply to your game, and can now go one level deeper,
looking into specifics of those messages going between client and server. First, let’s take a
closer look at the message that tends to cause most of trouble at least for fast-paced
simulation-based games. This is “World Update” message from Fig. VII.1-Fig. VII.3, which
in turn is closely related to Publishable World State.

Server-Side, Publishable, and Client-Side Game World States
Among aspiring simulation-based game developers, there is often a misunderstanding
about Game World State – “Why we need to care about different states for our Game

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/wp-content/uploads/BB_part077_BookChapter007b_v1.png

The most
important
reason to
minimize
bandw idth is
that traf f ic is
expensive.

World, and cannot have only one state, so that Server-Side State is the same as Client-Side
One?”

The answer is that “Well, depending on your game, you MIGHT be able to have one state,
but for simulation games, in many cases you won’t” . The problem here is purely technical,
but very annoying – it is a problem of bandwidth.

The most important reason to minimize bandwidth is that traffic is
expensive. While traffic prices go down and, as of beginning of 2016,
you can get unmetered 1Gbit/s for around $500-1000/month, and
unmetered 10GBit/s for around $3-5K/month, it is still far from
being free. On the other hand, if you’re too wasteful with your traffic
(like trying to send all the updates to all the meshes over the network),
it simply won’t fit into your player’s “last mile” (connection from him
to his ISP). And if you’ve done a good job already, still keep in mind
that, as an additional incentive, making your Publishable State smaller
tends to make updates to it smaller, and the smaller updates are – the
less chances you have to overload your player’s “last mile” (and
overloading “last mile” inevitably leads to latencies going through the
roof for that specific player).

Note that here we’re not discussing systems based on so-called
“deterministic lockstep” network models; with all their simplicity, they don’t work well for
MMOs (in fact, [GafferOnGames.SnapshotsAndInterpolation] doesn’t recommend it for
Internet games with over 4 players).

 interestingly, sometimes reducing server packet size MAY help even if client’s “last mile”
overload is caused by a concurrent download, as there are some routers out there
configured to give preference to smaller packets; unfortunately, I don’t have stats on how
widespread this effect is in practice

Client-Side State
Let’s consider an example MMORPG game, OurRPG. Let’s assume that our players can
move within some 3D world, talk, fight, gain experience, and so on. Physics-wise, let’s
assume that we want to have rigid body physics and ragdoll animations, but our fights are
very simple and don’t really simulate physics and have fight movements animated instead
(think “Skyrim”).

If we have our game as a single-player, the only thing we will need, would be a Client-Side
State – complete with all the meshes (with thousands of triangles per character), textures,
and so on.

Server-Side State
Now, as we’re speaking about MMOs, we need a Server-Side State. And one thing we can
notice about this Server-Side State is that it doesn’t need to be as detailed as Client-Side

“

1

1

In practice,
f or most

classical RPGs
you can get
aw ay w ith

simulating each
of your PCs and

NPCs as a box
(parallelepiped),

or as a prism
(say, hexagonal

or octagonal
one).

State.

As we don’t need to render anything on the server side,
we usually can (and SHOULD) use much more low-poly 3D

models on the server side

Actually, to keep the number of our servers within reason, we need to
leave only the absolute minimum of processing on the server side,
and this absolute minimum is defined as “drop everything which
doesn’t affect gameplay”. In practice, for most classical RPGs (those
without karate-like fights where limb positions are essential for
gameplay) you can get away with simulating each of your PCs and
NPCs as a box (parallelepiped), or as a prism (say, hexagonal or
octagonal one). Cylinders are also possible, though these usually
apply if you don’t really make a classical polygon-based 3D
simulation. Models of your server-side rooms can (and SHOULD) also
be simplified greatly – while you do need to know that there is a wall
there with a lever to be pulled in the middle, in most cases you don’t
need to know the exact shape of the lever.

In extreme cases, you won’t even need 3D on server side at all. While
this is not guaranteed, start your analysis from checking if you can
get away with 2D server-side simulation – even if you will need 3D,
such analysis will help you to drop quite a few things which are
unnecessary on the server side.

For OurRPG, however, we do need 3D on the server side (well, we
want to simulate rigid body stuff and ragdolls, not to mention multi-

level houses). On the other hand, we don’t need more than hexagonal prism (with
additional attributes such as “attacking/crouching/…” and things such as “animation
frame number”) to represent our PCs/NPCs; when it comes to rigid objects simulated on
the server-side – they also can be represented using only a few dozens triangles each.

When we need to simulate ragdoll on the server-side – we won’t even try to simulate
movements of all the limbs. What we will do, however, is calculate movement of the center
of mass of the dying character. While for some games this may happen to result in too-
unrealistic movements, for some other games we might be able to get away with it (and
doing it this way will save lots of CPU power on the server-side), so that’s what we’ll try
first.

This polygon reduction will lead to a drastic simplification from the classical Client-Side
State (the one we’ll need to render the game).

Publishable State
Now, as we’ve got Server-Side State and Client-Side State, we need to pass the data from
the Server-Side to the Client-Side. To do it, we’ll need another state – let’s name it
Publishable State.

“

to represent
PCs/NPCs, w e
usually can
(and theref ore
SHOULD) throw
aw ay all the
meshes, and use
only a tuple of
(x,y,z,x-y-
angle,animation-
state,animation-
f rame)

And one thing to note about Publishable State is that it usually SHOULD be simpler than
Server-Side state. When discussing simplifications of the Publishable State compared to
Server-Side state, let’s observe the following:

As a rule of thumb, Publishable State MAY be simplified compared to Server-Side
State. For example, for OurRPG the following simplifications are possible:

to represent PCs/NPCs, we usually can (and therefore
SHOULD) throw away all the meshes, and use only a tuple of
(x,y,z,x-y-angle,animation-state,animation-frame)

in addition to the tuple required for rendering, there
likely to be dozens of fields such as “inventory”,
“relationships with the others”, and so on; whether they
need to be published, depends on your client-side
logic.

By default (and until proven that you need
specific field for the client side), avoid publishing
these things. The smaller your publishable state is
– the better.

In some cases, however, you may need them. For
example, if your game allows to steal something
from PC/NPC, then your client’s UI will likely
want to show other character’s inventory to find
out what can be stolen. This information about
the other character’s inventory MAY be obtained
by request, or MAY be published. In the latter
case, it becomes a part of publishable state. Note
that making inventory publishable won’t have too
bad effect on the update size, as it will be optimized via delta
compression (see “Delta Compression” subsection below); on the
other hand, it will increase traffic during initializations/transitions,
so depending on your game it still MAY make sense to exclude
inventory from publishable state and make this information available
on request from a client.

Even if you need such rarely-changing fields as a part of your
publishable state, you usually SHOULD separate them from the
frequently-changed ones (for example, into separate structs or
something). This is related to them having different timing
requirements, which potentially lead to different retransmit policies,
and it is simpler to express these policies when you have separate
structs. For example, inventory is updated rarely, and is usually quite
tolerant to delays of the order of 3*RTT or so; as a result, it is usually
unwise to be too aggressive with re-sending it (in other words, it is
usually ok to send it once and to wait for 2*RTT for confirmation
before re-sending it). On the other hand, coordinates and other
rendering-related stuff do need to be updated in real-time, so you
should be quite aggressive with re-sending them. More discussion on
re-transmission policies will be provided in Chapter [[TODO]].

to represent rigid objects, we again SHOULD throw away all the meshes and use

“

23

If w e'd try to
transf er all the
thousands of
triangles every
“netw ork tick”
w hile our
character is
moving, w e'd
need to send
around
100Kbytes per
“netw ork tick”
per character,
and if our PC
can see 20
characters at
the same time,
and w e're using
20 “netw ork
ticks” per
second, w e'll
end up w ith
40MBytes/second/player

only (x,y,z,x-y-angle,x-z-angle,y-z-angle) tuple.

Whenever we CAN make Publishable State smaller, we SHOULD do it (see reasoning
about reducing bandwidth above).

 actually, we can use this representation for Server-Side too, but it may or may not be
convenient for the Server-Side. On the other hand, removing meshes is an almost-must for
Publishable State
 whether we need velocities to be published is not that obvious, see “Dead reckoning”

section below

Why Not Keep them The Same?
Now let’s go back to the question – why not use the very same Client-
Side State as Server-Side State and as Publishable State? The answer
is simple – because of bandwidth. Just compare – if we’d try to
transfer all the thousands of triangles every “network tick” while our
character is moving, we’d need to send around 100Kbytes per
“network tick” per character, and if our PC can see 20 characters at
the same time, and we’re using 20 “network ticks” per second, we’ll
end up with 100KBytes/tick/character * 20characters/player *
20ticks/second = 40MBytes/second/player; this would in turn mean
that we can fit only 30 players in that $5K/month 10Gbit/s channel
(not to mention that only a few people will be able to play the game),
Big Ouch! With our Publishable State (and even before any
compression techniques are used) it is more like 50
bytes/tick/character, or (with the same assumptions) is much more
manageable 50bytes/tick/character * 20characters/player *
20ticks/second = 20KBytes/second/player.

Throw in the reduced Server-Side CPU load (which you will be paying
for) for simplified Server-Side State, and the need to have simplified
Server-Side State and Publishable State becomes obvious.

 here we’re implying that we’ve implemented “interest management”
to avoid sending unnecessary stuff, see “Interest Management”
section below for further discussion
 it can be reduced further (see “Compression” section below), but for

the moment this 3+ orders of magnitude improvement will suffice.

Non-Sim Games and Summary
For non-simulation games (such as social games or blackjack), the
difference between different States is much less pronounced, and in
many cases Server-Side State MAY be the same as Publishable State
(though Client-Side State often will still be different). For example, whenever a card is

2

3

“4

5

4

5

dealt for a blackjack game, usually it is represented as an immediate update of the Server-
Side State to reflect that the card is already dealt, and update to Server-Side State is
immediately pushed to the Client. All the animation of the card being dealt, is processed
purely on the Client-Side (so that Client-Side State is updated without any input from the
Server while the card is flying across the table).

On the other hand, even if we try to generalize our findings over the whole spectrum of the
MMO games (from social ones to MMOFPS), two observations can be made. First of all,
whatever our game is, the following inequation should stand:

Publishable State <= Server-Side State <= Client-Side
State

The second observation is the following:

we SHOULD work hard on reducing the size of
Publishable State

Publishable State: Delivery, Updates, Interest Management, and
Compression
Ok, so we’ve decided on our Publishable State (and have done it in a reasonably optimal
way), and know how to update it on the server side. The next question we face is “How to
deliver this Publishable State (including updates) from Server to Client?”

Of course, the most obvious way of doing it would be just to transfer the whole state once
(when the client is connected), and then to transfer updates whenever the update of the
Game World occurs (which may be “each network tick” for quite a few simulation-based
games out there).

However, very often we can do better than that traffic-wise. And as reducing traffic is a
Good Thing(tm) both for the reducing server costs and player’s latencies, let’s take a
closer look at these optimizations.

Interest Management: Traffic Optimization AND Preventing
Cheating
Interest Management deals with sending each client only those updates within the Game
World, which it needs to render the scene. It is very important for quite a few games out
there.

Mathematically
speaking,

w ithout Interest
Management,

the amount of
data on our

servers w ill
need to send (to

all players
combined), is

O(N^2). Interest
Management

reduces this
number to O(N).

Let’s consider OurRPG mentioned above, and the Publishable State
which needs to transfer 50 bytes/network-tick/character. Now let’s
assume that OurRPG is a big world with 10000 players. Transferring
all the data about all the players to all the players would mean
transferring
10000characters*50bytes/tick/character*20ticks/second =
10MBytes/second to each player, and 100GBytes/second total (and
that’s with our Publishable State being reasonably optimal, i.e.
without transferring meshes). However, if we notice that out of that
10000 players each given player can see only 20 other players (which
is the case most of the time for most of the more-or-less realistic
scenes) – then we can implement “Interest Management” and send
each player only those updates-which-are-of-interest-to-her (in
other words, sending only those things which are needed for
rendering). Then, we need to send only
20characters*50bytes/tick/character*20ticks/second =
20KByte/second to each player (200MBytes/second total), MUCH
better.

Mathematically speaking, without Interest Management, the amount
of data on our servers will need to send (to all players combined), is
O(N^2). Interest Management (if properly implemented) reduces
this number to O(N). The same thing from a bit different perspective

can be stated as

Interest Management normally allows to establish a
capping on amount of traffic sent to each player,

regardless of total number of players in the game.

In practice, implementations of the Interest Management can vary significantly. In the
simplest form, it can be a sending only information of those characters which are
currently within certain radius from the target player (or even “send updates only to
players within the same “zone”). In more complicated implementations, we can take into
account walls etc. between players. The latter approach will also help to address “see-
through-walls” cheating.

This also leads us to a second advantage of Interest Management:

Interest Management (if properly implemented) MAY
allow you to address “lifting fog-of-war” and “see-

through-walls” cheats

The logic here is simple: if the client doesn’t receive information on what is going on in
“fog-of-war” areas or behind the wall, then no possible hacking of the client will allow to
reveal this information, making this kind of attacks pretty much hopeless.

“

An extreme
case of this
class of cheats
w ould be f or an
(incredibly
stupid) poker
site w hich has
pocket cards
data as a part of
Publishable
State and
doesn't
implement any
Interest
Management.

An extreme case of this class of cheats would be for an (incredibly
stupid) poker site which has pocket cards data as a part of
Publishable State and doesn’t implement any Interest Management. It
would mean that such an implementation will send pocket cards to all
the clients (and then clients won’t show other players’ cards until the
flag show_all_cards is sent from the server). DON’T DO THIS – the
client will be hacked very soon, with pocket card revealed to cheaters
from the very beginning of the hand (ruining the whole game). Interest
Management (or even better – excluding pocket cards from
Publishable State altogether, with, say, point-to-point delivery of
pocket cards) is THE ABSOLUTE MUST for this kind of games. More
or less the same stands for quite a few MMORTS out there, where
lifting “fog of war” via cheating would give way too much unfair
advantage.

Note that when choosing you Interest Management algorithm, you
need to think about worst-case scenarios when a large chunk of your
players gather in the same place (what about that wedding ceremony
which everybody will want to attend?). This can be really unpleasant,
and you do need to think how to handle it well in advance. If going
beyond the most obvious (and BTW working pretty well) solution of
“we don’t have any Big Events, so it won’t be a problem” – things may
become complicated (and if your game is a 3D one – the same
scenarios can easily bring the number of triangles to be rendered on
the client-side, beyond any reasonable limits, bringing any graphics
card to its knees). One of the ways to deal with it – is to limit the number of transferred-
characters to a constant limit (ensuring that O(N) thing), and when this limit is exceeded –
to render the rest as a “generic crowd” simulated purely by client-side and wandering by
some simple rules (and the same “generic crowd” people can be rendered as really-low-
poly models to deal with polygon numbers issue).

Before Compression: Minimizing Data
One thing which needs to be mentioned even before we start to compress our Publishable
State, is that most of the time we can (and SHOULD) minimize the amount of data we want
to include into our Publishable State. Way too often it happens that we’re publishing data
field in an exactly the same form as it is available on the Server-Side, and this form is
usually redundant, leading to unnecessary data being transferred over the network. A few
common minimization rules of thumb:

DON’T transfer doubles; while double operations are cheap (at least on x86/x64),
transferring them is not. In 99% of cases, transferring a float instead won’t lead to
any noticeable changes.

DO think about replacing floats with fixed-point numerics (in fact, an integer with an
understanding where the point is, or more precisely – what is the multiplier to be
used to convert from Server-State data to Publishable State and vice versa)

one pretty bad example of float being obviously too much, is transferring angle
for an RPG. In most cases, having it transferred as 2-byte fixed-point with lower

“

7 bits being fraction, will cover all your rendering needs with an ample reserve

for coordinates, calculations are more complicated, but as long as we need a
fixed spatial resolution (and for rendering this is exactly what we need), fixed-
point encodings are inherently more efficient than floating-point ones, as we
don’t need to transfer exponent for fixed-point. In addition, with standard
floats it is more difficult to use non-standard number of bits. For example, if we
have a 10000m by 10000m RPG world, and want to have positioning with a
precision of 1cm, then we need 1e6 possible values for each coordinate. With
fixed-point numerics, we can encode each coordinate with 20 bits, for 40 bits (5
bytes) total. With floats, it will take 2*32 bits = 8 bytes (that’s while having
comparable spatial resolution(!)), or 60% more (and if we’d transfer doubles – it
would go up to 16 bytes, over 3x loss compared to fixed-point encoding).

yet another case for transferring fixed-point numerics is all kinds of currencies
(actually, it is cents which are transferred, and the rest is just interpretation)

Compression
Now we have our Publishable State with a proper Interest Management, and want to
reduce our traffic further. Let’s name those techniques which help us to take whatever-
we-want-to-publish (after Interest Management has filtered out whatever is not
necessary for the specific client), and to deliver it to the client in an optimized way,
“Compression Techniques”. Note that we’ll interpret “Compression” much broader than
usual ZIP or JPEG compression (and it will have quite a few things which are not typically
used for compression), but essentially all of “Compression Techniques” are still following
exactly the same pattern:

take some data on the source side of things (server-side in our case)

“compress” it into some kind of “compressed data”

transfer the compressed data over the Internet

“decompress” it back on the receiving side (with or without data loss, see on
“lossless” vs “lossy” compression below)

to get more-or-less-the-same data on the target side of things.

Also let’s note that some of the techniques described below, while being well-known, are
usually not named “compression”; still, I think naming them “Compression Techniques” (as
a kind of “umbrella” term) makes a lot of sense and provides quite useful classification.

To make our compression practical and limited (in particular, to avoid using global
states), let’s define more strictly what “Compression Techniques” can and cannot do:

“Compression Techniques” are allowed to keep a buffer (of limited size) of past
values on both sides (just like ZIP/LZ77 does)

we MAY refer to the buffer (explicitly or implicitly) to reduce the amount of data
sent

using this buffer creates complications when working over UDP, but there are
known ways of handling it which will be discussed in Chapter [[TODO]]

“Compression Techniques” are allowed to know about the nature of specific fields
we’re transferring; these specifics can be described, for example, in IDL (see Chapter
[[TODO]] for more details)

in particular, if we have two fields, one of which is coordinate, and another one
is velocity along the same coordinate, this relation MAY be used by our
“Compression Technique”

“Compression Techniques” are allowed to rely on game-specific
constants, as long as they’re game-wide

for example, if we know that for OurRPG the usual pattern
when user presses “forward” button, is “linear acceleration
of A m/s^2 until speed reaches V, then constant speed” –
we ARE allowed to use this knowledge (alongside with A and
V constants) to reduce traffic

“Compression Techniques” are NOT allowed to use anything
else. In other words, we won’t consider things like client-side-
extrapolation-which-takes-into-account-running-into-the-wall,
as “Compression” (doing it would require “Compression” to
know wall positions, and we want to keep our “Compression”
within certain practical limits).

“Compression Techniques” can be either “lossless” or “lossy”. If
compression is “lossy”, we MUST be able to put some limits on
the maximum possible “loss” (for example, if our compression
transfers “x” coordinate in a lossy manner, so that client_x MAY
differ from server_x, we MUST be able to limit maximum
possible (server_x – client_x)). In the sections below, all the
compression techniques are lossless unless stated otherwise.

Now let’s start discussing various flavours of compression.

Delta Compression

Arguably the most well-known compression is so-called “delta compression”. Actually,
there are two subtly different things known under this name in the context of games.

The first flavour of “delta compression” is about skipping those fields of the game state
which exist in the publishable state, but which didn’t change since the last update (usually,
you’re just transferring a bit saying “these field didn’t change” instead). This kind of “delta
compression” is an extremely common technique (known at the very least since Quake)
which is applicable to any type of field, whether it is numerical or not. This, in turn, allows
publishing such rarely changing things as player’s inventories (though see note in
“Publishable State” section above about omitting inventory from publishable state
completely, or about making it available on demand; while not always possible, this is
generally preferable).

The second flavour of “delta compression” is a close cousin of the
first one, but is still a bit different. The idea here is to deal with
situations when a numerical field changes (so skipping the field
completely is not really an option), but instead of transferring new

Lossy
compression
Lossy
compression
(irreversible
compression) is
the class of data
encoding
methods that
uses inexact
approximations
(or partial data
discarding) to
represent the
content.

— Wikipedia —

VLQ
A variable-
length quantity

https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Variable-length_quantity

value, to transfer a difference between “new value” and “old value”
(pretty much like (A)DPCM is doing for audio signals). For example, if
the field is an x coordinate, and has had an “old value” of 293.87, “new
value” is likely to be “293.88”, and is unlikely to be 0, so spectrum of
differences becomes strongly skewed towards values with smaller
absolute value, that enables further optimizations. The gain here can
be obtained by either simply using less bits to encode the difference,
or to play around with variable-length encodings such as VLQ, or to
rely on running another layer of compression (such as Huffman
compression, see “Classical Compression” subsection below) which
will generally encode more-frequently-occurring-bytes (in this case –
zeros) with less bits.

Let’s note that the second flavour of “delta compression” can also be
made “lossy”: we MAY round the delta transferred, as long as we’re sure that pre-defined
loss limits are not exceeded. Note that ensuring of loss limits usually requires server to
keep track of the current value on the client side, so that rounding errors, while
accumulating, still remain below the loss limit (and are corrected when the limit is about
to be exceeded).

Dead Reckoning as Compression

Another big chunk of simulation-related “Compression Techniques”
is known as “dead reckoning”. Note that despite obvious similarities,
use of “dead reckoning” for the purposes of compression is subtly
different from it’s use for client-side extrapolation (see “Client-Side
Extrapolation a.k.a. Dead Reckoning” section above) When using
dead reckoning for client-side extrapolation purposes we’re trying
to deal with latency: we don’t have information on the client-side
(yet), and trying to predict the movement instead, reducing
perceivable latency; to do it, no server-side processing is required,
and there is no precision loss. When using dead reckoning for
compression purposes, we do know exact movement, and know on
the server side how exactly the client will behave, so we can use this
knowledge as a Compression Technique to reduce traffic (normally –
as a “lossy” compression); for compression purposes, we do need
server-side processing and “data loss” threshold.

The idea with a classical “dead reckoning” is to use velocities to
“predict” the next value of the coordinate, while putting a limit on
maximum deviation of the server-side coordinate from the client-
side coordinate, so from “Compression” point of view it is a “lossy”
technique with a pre-defined limit on data loss.

Let’s consider an example. Let’s say that we have tuple (x,vx) as a part
of our publishable state, and that at a certain moment client has it as
(x0,vx0), and that server knows this (x0,vx0) for this specific client.
Now, an update comes in to the server side, which needs to make it
(x1,vx1). Server calculates (x0+vx0,vx0) as a “predicted” state, and sees

(VLQ) is a
universal code
that uses an
arbitrary
number of
binary octets
(eight-bit bytes)
to represent an
arbitrarily
large integer.

— Wikipedia —

Dead
reckoning

In navigation,
dead reckoning

or dead-
reckoning (also

ded f or deduced
reckoning or

DR) is the
process of

calculating
one's current

position by
using a

previously
determined

position, or f ix,
and advancing

that position
based upon

know n or
estimated

speeds over

6

7

8

9

https://en.wikipedia.org/wiki/Dead_reckoning

Not only
coordinates can
be compressed
using dead
reckoning-like
compression;
actually, pretty
much anything
w hich can be
predicted w ith
high
probability, can
benef it f rom it.

if it is “too different” from (x1,vx1). If it is not too different – server
can skip sending any update for this coordinate (and if it is too
different – the second flavour of “delta compression” can be used to
send a message fixing the difference).

For further discussion of the classical “dead reckoning” as compression (with a discussion
of associated visual effects), see, for example, [Gamasutra.DeadReckoning].

One last note – not only coordinates can be compressed using dead
reckoning-like compression; actually, pretty much anything which can
be predicted with high probability, can benefit from it. One practical
example of such non-coordinates compressable by dead reckoning, is
animation frame number (that is, if you need to transfer it).

 in literature, it is usually considered to be one single “Dead
Reckoning” algorithm (part of “DIS” a.k.a. IEEE1278) which reduces
both perceivable latency and traffic. However, due to differences in
both the effects and implementation, I prefer to consider these two
uses of Dead Reckoning separately
 while it can be made lossless, it won’t get much in terms of

compression, so the lossless variation is almost-never used
 as noted above, when using UDP, this is tricky, but doable, see

Chapter [[TODO]] for further details
 ”too different” here is the same as “exceeding pre-defined loss limit”
 despite the title, most of the discussion within is not about latency,

but about reducing traffic with a pre-defined threshold, which we
refer to as one of “Compression Techniques”

Dead Reckoning as Compression: V ariations

“Dead reckoning” as described above, is certainly not the only way to use kinematic
equations to optimize traffic. Possible variations include such things as:

using “delta compression” (the second variety described above) to encode data when
the “loss limit” is exceeded

using accelerations in addition to velocities (and predicting velocities based on
accelerations)

calculating velocities/accelerations (using previous values in the buffer) instead of
transferring them

use of smoothing algorithms to avoid sharp change of coordinates when the
correction is issued. These are similar to the smoothing algorithms used for server
reconciliation (see “Running into the Wall, and Server Reconciliation” section above),
and the same smoothing algorithm can be used for both purposes. Whether to
consider smoothing a part of compression (or a post-compression handling) – is not
that important and it depends.

using knowledge about the game mechanics to reduce traffic further.

elapsed time
and course

— Wikipedia —

9

10

“6

7

8

9

10

It is possible
to have a
compression
algorithm
optimized f or
small updates;
one example of
such an
algorithm is an
“LZHL”
algorithm

As one example, if in OurRPG velocity of PC always grows in a linear manner with
fixed acceleration until it reaches a well-defined limit – this can be used to
calculate “predicted speed” and to avoid sending updates along this typical
pattern.

Classical Compression

Classical lossless compression (such as ZIP/deflate) usually uses two
rather basic algorithms. The first one usually revolves around LZ77
(with the idea being to find similar stuff in the earlier buffer and to
transfer a reference instead of verbatim stream). The second
algorithm is usually related to so-called Huffman coding, with the
idea being to find out what symbols occur in the stream more
frequently than the others, and to use less bits to encode these more-
frequently-used symbols. Of course, there are lots of further
variations around these techniques, but the idea stays pretty much
the same. ZIP’s deflate is basically a combination of LZ77 and
Huffman.

Unfortunately, classical compression algorithms, such as deflate, are
not well-suited for game-related compression. One of the reasons

behind is that (as it was shown for deflate in [DrDobbs.OnlineCompression], these
algorithms are usually not optimized to handle small updates (in other words, “flush”
operation, which is required to send an update, is expensive for ZIP and other traditional
stream-oriented algorithms).

On the other hand, it is possible to have a compression algorithm
optimized for small updates; one example of such an algorithm is an
“LZHL” algorithm in the very same [DrDobbs.OnlineCompression] by
my esteemed translator. Like deflate, it is a combination of LZ77-like
and Huffman-like compression, unlike deflate, it is optimized for
small updates.

If nothing else, you can always try to use Huffman (or Huffman-like, as
described in [DrDobbs.OnlineCompression]) coding for your packets.
I won’t go into too much details of Huffman algorithm as such here (it
is described very well in [Wiki.Huffman]), but one trick which may help
here with regards to games, is the following. Usually, implementations
of Huffman algorithm transfer “character frequency tables” as a part
of compressed data; this leads to the complications in case of lost
packets (or, if you transfer the table for each packet, they will become
huge). For games, it is often possible to pre-calculate character
frequency table (for example, by gathering statistics in a real game
session) and to hardcode this frequency table both into the server and
into the client. In this case, lost packets won’t affect frequency tables
at all, and this variation of Huffman will work trivially over both TCP
and UDP. Note though that usually gains from Huffman are rather limited (even if your
data has lots of redundancies, don’t expect to gain more than 20% compression from pure
Huffman), but it is usually better than nothing.

LZ77
LZ77 is the

lossless data
compression

algorithm
published by

Abraham
Lempel and

Jacob Ziv in
1977.

— Wikipedia —

11

12

“
13

https://en.wikipedia.org/wiki/LZ77_and_LZ78#LZ77

 and its close cousins such as LZ78 and LZW
 or a bit more efficient but much slower arithmetic coding
 note that LZHL as such won’t work directly over UDP, and some significant adaptation

will be necessary to make it work there; for TCP and TCP-like streams, however, it has
been seen to work very well

Combining Different Compression Mechanisms and Law of Diminishing
Returns

It is perfectly possible to use different compression mechanisms together. For example:

for relatively static data (such as inventory), delta compression (1st variation),
followed by classical compression, can be used

for very dynamic coordinate-like data – dead reckoning (as a lossy compression),
with dead reckoning using delta compression (2nd variation), using VLQ to encode
differences, can be used

Note that the examples above are just that – examples, and optimal case for your game
may vary greatly.

One further thing to note when combining different compression mechanisms, is that all
of them are merely reducing redundancy in your data, so even if they’re not conflicting
directly, traffic reduction from applying two of them simultaneously, will almost
universally be less than the sum of reductions from each of them separately. In other
words, if one compression gives you 20% traffic reduction and another one – another 20%,
don’t expect two of them combined to give you 20%+20%=40% or 1-(0.8*0.8)=36%
reduction – most likely, it will be less than that .

 examples of such direct conflicts would be trying to use dead reckoning after classical
compression, or using LZ77 compression after Huffman compression

 while there are known synergies between different compression algorithms, notably for
LZ77 followed by Huffman, they’re very few and far between

Traffic Optimization: Recommendations

When speaking about optimizing traffic, I usually recommend the following order of doing
it:

minimize your Server-Side State. It is important not only to minimize traffic, but also
to minimize server-side CPU load

11

12

13

14

15

14

15

Minimize
your
Publishable
State. Be
aggressive:
throw aw ay
everything, and
add f ields to
your
Publishable
State only w hen
you cannot live
w ithout them

minimize your Publishable State. Be aggressive: throw away
everything, and add fields to your Publishable State only when
you cannot live without them

split your Publishable State into several groups with different
timing requirements

make sure to use “Delta Compression” (the first variation above)
to allow skipping updates for non-changing objects

treat “non-changing objects” broadly; for example, for
many games out there an object which keeps moving with
the same speed in the same direction, can be treated as
“non-changing” (alternatively, you can handle it via “dead
reckoning”)

think about “Dead Reckoning” compression, keeping adverse
visual effects in check (and reducing threshold if necessary)

don’t forget about variations, they may make significant
difference depending on specifics of your game

think about running Classical Compression on top of the data
compressed by previous techniques, but don’t hold your breath
over it

deflate as such won’t work for most of the games (due to
the cost of “flush”, see above)

LZHL works for TCP, but adapting it for UDP will require an additional effort
(and will hurt efficiency too)

Huffman with pre-populated frequency tables (see above) will work for UDP,
but the gains are limited

when combining different compression techniques, keep in mind that their order is
very important

I strongly suggest to separate all types of compression from the rest of your code
(including simulation code)

moreover, I strongly suggest to say that compression code should be generated
by your IDL compiler based on specifications in IDL, instead of writing
compression ad-hoc. More on IDL in Chapter [[TODO]].

[[To Be Continued…
This concludes beta Chapter VII(b) from the upcoming book
“Development and Deployment of Massively Multiplayer Games (from
social games to MMOFPS, with social games in between)”. Stay tuned
for beta Chapter VII(c), “Point-to-Point Communications”]]

“

[–] References
[GafferOnGames.SnapshotsAndInterpolation] Glenn Fiedler, “Snapshots and
interpolation”, Gaffer on Games
[Gamasutra.DeadReckoning] Jesse Aronson, “Dead Reckoning: Latency Hiding for

http://gafferongames.com/networked-physics/snapshots-and-interpolation/
http://www.gamasutra.com/view/feature/131638/dead_reckoning_latency_hiding_for_.php

« MMOG. RTT, Input Lag, and How to Mitigate Them

 MMOG. Point-to-Point Communications and non-blocking RPCs »

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: client, compression, game, multi-player, network, protocol, server

Copyright © 2014-2016 ITHare.com

Networked Games”, Gamasutra
[DrDobbs.OnlineCompression] Sergey Ignatchenko, “An Algorithm for Online Data
Compression”
[Wiki.Huffman] “Huffman coding”, Wikipedia

http://www.drdobbs.com/an-algorithm-for-online-data-compression/184403560
https://en.wikipedia.org/wiki/Huffman_coding
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/mmog-rtt-input-lag-and-how-to-mitigate-them/
http://ithare.com/mmog-point-to-point-communications-and-non-blocking-rpcs/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/compression/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/network/
http://ithare.com/tag/protocol/
http://ithare.com/tag/server/

	MMOG: World States and Reducing Traffic
	Server-Side, Publishable, and Client-Side Game World States
	Client-Side State
	Server-Side State
	Publishable State
	Why Not Keep them The Same?
	Non-Sim Games and Summary

	Publishable State: Delivery, Updates, Interest Management, and Compression
	Interest Management: Traffic Optimization AND Preventing Cheating
	Before Compression: Minimizing Data
	Compression
	Delta Compression
	Dead Reckoning as Compression
	Classical Compression
	Combining Different Compression Mechanisms and Law of Diminishing Returns
	Traffic Optimization: Recommendations

	[[To Be Continued…
	[–]References
	Acknowledgement

