
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
MMOG Server-Side. Programming Languages
posted January 18, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VI(e) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested. Beta-
testing is intended to improve the quality of the book, and
provides free e-copy of the “release” book to those who
help with improving; for further details see “Book Beta
Testing“. All the content published during Beta Testing, is
subject to change before the book is published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of Contents.]]

Going Cross-Platform
In one of the previous sections we’ve discussed choosing a platform for your MMOG
servers. However, one of the first things I’ve noted was that you should certainly
consider developing cross-platform code. In fact, this is what I am usually doing
(that is, if I can get past management, which is usually supported by a bunch of
fellow developers who neither know, nor don’t want to learn anything but their-
favorite thing). But let’s see what going cross-platform means from the
programming languages point of view.

Cross-platform C++

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

Note that f or
some out-of -
FSM pieces of

Actually, my personal favorite for cross-platform development, is cross-platform
C++. To those having any doubts: yes, C++ can be made cross-platform, I’ve done it
myself on numerous occasions. It works even better when you have your code
restricted to event-driven side-effect-free processing (a.k.a. deterministic finite-
state-machines (FSMs), see Chapter V for details). For our current discussion, one
thing is important about FSMs: as soon as your FSM becomes deterministic, it
doesn’t really have any significant interaction with the system, so it is “pure logic”
(a.k.a. “moving bits around”, and is pretty much like “pure” functions from
functional programming). And “pure logic” is inherently cross-platform (that is, as
long as you keep it “pure”).

On the other hand, to keep your logic “pure”, you’ll need to make quite significant
effort, and to be extremely vigilant when it comes to platform-specific
dependencies (see also relevant discussion in Chapter V). This is especially true for
C++.

Note that for some out-of-FSM pieces of code, you MAY want
to use platform-specific stuff as an optimization. Usually, it
works as follows (yes, I know it is really old news for all the seasoned
C++ cross-platform developers, but believe me or not, there are lots of
C++ developers out there who don’t know it, especially hardcore
zealots of Windows-specific development):

You develop a perfectly cross-platform version, which
uses only cross-platform APIs. It doesn’t really matter

“

/wp-content/uploads/BB_part073_BookChapter006d_v1.png

code, you MAY
w ant to use
platf orm-
specif ic stuf f as
an
optimization.

whether cross-platform API is a part of official C++
standard, more important question is whether it is really
implemented across the board. In practice, there are
several big sets of APIs which we can safely consider
cross-platform:

C++11 standard (C++14 is still only partially
supported across the board), including std:: library

Most of C Standard Library (see discussion on it’s
limitations in Chapter [[TODO]])

boost:: library

Berkeley sockets (while it is not strictly 100% cross-platform, for
practical purposes it is very close)

Note that POSIX standard stuff (the one which is not a part of C library) is
generally NOT cross-platform. Notable example: fork() which is missing
under Windows

Moreover, some Windows functions which look like their POSIX
counterparts and have the same signatures, exhibit different
behavior. One notable example includes Microsoft _exec*() family of
functions, which has very different semantics from POSIX exec*() .

You launch it, and it works for a while

Then, you realize that performance of your cross-platform code can be
improved for one specific platform. Just as one example – your cross-platform
version implemented inter-thread queues-with-select() (see Chapter V for the
rationale behind these queues, which are waiting either for somebody pushing
something into the queue, or for data arriving to one of the sockets) via
sockets+anonymous-pipe, and you realized that under Windows
WaitForMultipleObjects()-based version will work faster.

Ok, you’re rewriting relevant piece of code (keeping all the external
interfaces of this piece intact), and placing it under an ugly (but still
working perfectly fine) #ifdef MY_DEFINE_WINDOWS_ONLY (and
relevant portion of the cross-platform code under #ifndef
MY_DEFINE_WINDOWS_ONLY). Bingo! You have your Windows-specific
version running under Windows, and your cross-platform version
running everywhere else.

Bottom line: C++ can be made cross-platform. For further details, see Chapter
[[TODO]].

Cross-platform Languages

…the purpose of Newspeak was not only to provide a medium of expression for the world-
view and mental habits proper to the devotees of IngSoc, but to make all other modes of

thought impossible.

Almost all
cross-platf orm
programming
languages I
know are
garbage-
collected

— G. Orwell —

Another way to achieve cross-platform code is to use one of the cross-platform
languages, such as Java, Python, C#, or Erlang.

From cross-platform point of view, these languages have one significant advantage
over cross-platform C++: most of their APIs are already cross-platform, so they
don’t provide you that much opportunities to deviate into platform-specific stuff.
While going platform-specific is still possible (via JNI/Python ctypes/PInvoke or
unmanaged code/…), it is usually more difficult with cross-platform languages.

This “going platform-specific being more difficult” is
actually the main advantage of cross-platform

languages when going cross-platform

In other words, the problem with C/C++ is that they’re providing you more freedom
with going platform-specific (and yes, having more freedom is not always a good
thing). The way cross-platform languages are doing it, can be seen as an (almost)
enforcement of a self-imposed rule that “everything should be cross-platform”.

Now let’s consider these languages against our “baseline” cross-platform C++.

Pros (compared to C++)

Almost all cross-platform programming languages I know
are garbage-collected.

It means less time spent on memory management
during development, which in turn means faster
time-to-market. On the other hand, I will argue that
for an FSM model (especially in gaming context,
where memory allocations are often discouraged as
too expensive), memory management is rudimentary
either way, so the difference will be negligible (that is,
provided that you have at least one seasoned C++
developer who knows how the things should be done
at lower levels, and provided that you are using
std::unique_ptr<>).

It means no pointers, and no bugs related to misuse
of pointers (and, Ritchie save us, pointer arithmetic).
Note that once again, we’re in the realm of having too much freedom
causing trouble (and once again, it is only a question of self-discipline to
avoid using them, as references do just fine 90% of the time, and
reference-like use of pointers will fill the rest).

As noted above, keeping your code cross-platform requires much less efforts

“

1

https://en.wikipedia.org/wiki/George_Orwell

Almost all
cross-platf orm
programming
languages I
know are
garbage-
collected

in Java/Python/… than in C++.

Learning curve. C++ learning curve is steep. It is not too bad if you’re staying
within limits of the FSM, but reading a book on C++ can easily be overwhelming
(especially books which start with discussing interesting-but-not-really-
important-and-rarely-used-things such as “how to overload operators” and
multiple inheritance).

Good C++ developers are few and far between, not to mention they’re very
expensive. For most of the languages above (except for Erlang) finding a good
developer is usually significantly easier.

Cons (compared to C++)

When speaking about deficiencies of the cross-platform
programming languages, several things come to mind (note
that while the list of cons is longer than that of pros, it doesn’t
mean that cross-platform languages are inherently worse; it is
just that these cons are not as well-known as cons, so I’m
spending more time elaborating on them):

Almost all cross-platform programming languages I know
are garbage-collected. This means that they tend to suffer
from two problems:

the first problem is memory bloat (if you have any
doubts that such a problem exists – take a look at
Eclipse or at OpenHAB). I tend to attribute this
apparent bloat to the following. While garbage-
collected languages eliminate so-called “syntactic
memory leaks” (pieces of memory which cannot possibly be used), they
cannot possibly eliminate “semantic memory leaks” (pieces of memory
which can be used, but won’t be used, ever) [NoBugs2012]. And those
“semantic memory leaks” for garbage-collected languages tend to be
worse than for manually memory managed languages such as C++,
because of “we don’t need to care about memory leaks” mentality, and
because garbage collectors are obligated to stay on the absolutely safest
side, keeping in memory everything that has a slightest chance to be used
(i.e. everything reachable). Of course, memory bloat for garbage-collecting
languages can be managed (there is nothing difficult in explicitly
assigning null to a reference); however, whether after doing it they will
still provide that much speedup in development time over C++ – is not
obvious to me.

On the other hand, it should be noted that for
FSM-based development (which usually implies
states of rather limited size), the problem of
“semantic memory leaks” is usually not too bad
(based on the same reasoning why manual

“1

Semantic
Garbage
Semantic
garbage cannot

https://en.wikipedia.org/wiki/Garbage_%28computer_science%29#semantic_garbage

memory management is usually not that much of
a problem for FSM-based development), and
fixing them isn’t too difficult.

The second problem is garbage collector’s infamous
“stop the world” (mis)feature. In short – to perform
garbage collection, most of GCs out there need to
“stop the world” (i.e. to stop all the threads(!) within the
same VM) for some time. For most of the
applications, it is not a problem (as delays even of a
hundred milliseconds are so short that your
application won’t really notice them). However, if
we’re speaking about a fast-paced game such as an
MMOFPS, these delays are known to cause lots of
trouble. Even worse, when you run into such things, it is usually too late to
rewrite your whole code, which leads to really ugly workarounds such as
“let’s not run garbage collector at all for a while” (then, if your game
event, such as match, is long enough, you can easily eat all the server RAM
and even more). While it doesn’t mean that GC languages cannot possibly
work with MMOFPS, I’d suggest to be very cautious in this regard, and to
research how big “stop-the-world” pauses are for the GC used by your
target VM (also note that it is about VM, and not about language, so, say,
the same C# may exhibit very different behaviour under CLR and Mono).

As a mitigating measure, it is possible to reduce the time of
“stopping the world” effect (at the cost of some performance loss);
see, for example, “Concurrent Mark-and-Sweep” and “G1” garbage
collectors for JVM, and <gcConcurrent>/SustainedLowLatency for
CLR; they run a large portion of GC processing without “stopping
the world” (so only a small part of GC loop needs to be run in the
“stop the world” mode). From what I know, these GCs (at the cost of
minor overall performance penalty) bring pauses down to single-ms
range even for large heaps, which makes it “good enough” even for
MMOFPS; as usual, YMMV, batteries not included. For Mono, there is
a supposedly similar GC flag concurrent-sweep, though I have no
information how small the “stop-the-world” pauses are when Mono
GC runs with this flag.

As another mitigation technique (which, at least in theory, may also
work as a compliment to concurrent collectors), it is possible to
reduce “stop the world” time by splitting your system into separate
VMs (such as JVM or CLR VM) and each VM will run a separate GC.
This tends to help because the smaller your “world” is, the less time
garbage collector will need to run, so the less time “stop the world”
will take. The technique actually flies extremely good with FSMs (as
FSMs, at least our FSMs and Erlang/Akka Actors, are share-nothing,
they can be easily put into separate VMs). In the extreme case, you
may even end up with running one VM for each of “game world”

be
automatically
collected in
general, and
thus cause
memory leaks
even in
garbage-
collected
languages.

— Wikipedia —

2

FSMs. There is a price of it, however, and it is related to the
overhead brought by each of VMs; where the optimum for your game
(balancing overhead vs latencies) – you’ll need to find out yourself.

The third GC-related problem is related to
asynchronous I/O (in our context – socket I/O).
Intensive server-side asynchronous I/O tends to
cause problems with GC at least under CLR, as to
pass the buffer to an asynchronous Win32 API, it
needs to be “pinned” (i.e. cannot be relocated, what
reflects pretty badly on CLR’s copying GC), and
having too many pinned buffers may cause CLR’s GC
to stall, up to the point of being deadlocked. While
there is a workaround for it, via
SocketAsyncEventArgs (or you can always go into an
unmanaged mode, accessing Win32 APIs directly and
losing being cross-platform pretty much as we’ve
discussed it for C++ in [[TODO!]] section above), this
is a complication one needs to be aware about in a
highly-loaded network-oriented environments. Also I
have no idea whether the workaround would work as
intended under Mono.

Unless your target platform has a JIT compiler for
bytecode of your language, you’re most likely looking at 10x+ performance
penalty

Fortunately, all the languages mentioned above do have JIT , with only one
unfortunate exception (leaving discussion about Lua/LuaJIT aside until
“Scripting Languages” section). Erlang, while working on BEAMJIT, still
seems to have it only as a proof-of-concept .

Even when compared with JIT-enabled cross-platform
language, C++ performance can be made at least somewhat
better 99% of the time. On the other hand, 95% of the time
you won’t bother with such optimizations. Possible
exceptions include heavy AI and/or heavy physics
simulations (especially if they go well with SSE).

 Rust being the only exception
 I know that Microsoft prefers to call it “Execution Engine”, but

it still looks like a VM, swims like a VM, and even quacks like a
VM
 As for Python, while CPython as such doesn’t have JIT , other

Python implementations, such as native PyPy and JVM-based
Jython, do have JITs.

JIT
Just-In-Time
(JIT)
compilation,
also know n as
dynamic
translation, is
compilation
done during
execution of a
program – at
run time –
rather than
prior to
execution

— Wikipedia —

3

SSE
Streaming SIMD
Extensions (SSE)
is an SIMD
(Single
Instruction
Multiple Data)
instruction set
extension to the
x86
architecture

— Wikipedia —

1

2

3

https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

On the server
side (unlike
client-side)

protection f rom
bot w riters is

not an issue (as
server-side

code is never
exposed to

players)

Personal Preferences and FSMs

Out of the aforementioned cross-platform programming languages, I am especially
fond of Erlang’s actors (and it also reportedly has a good record for development
of large-scale distributed systems, though an overhead due to apparent lack of JIT
is significant). Java and Python are not bad either (within their own applicability
limits). I have never been a big fan of C#, in particular because it traditionally has
the blurriest line between cross-platform APIs and platform-specific stuff (which is
not really surprising as such policy makes perfect business sense for Microsoft), but
if you’re planning your servers as Windows-only – it will certainly do, and if you’re
going to go Linux – Mono MIGHT work for your too (though in the latter case it is
not that obvious).

On the other hand, I need to note that with some self-discipline, FSMs described in
Chapter V (and which are strictly equivalent to Erlang’s actors/processes), can be
easily implemented in any of these languages (and in C++ too).

Scripting Languages

We went through C++ and cross-platform languages, but we’re not done yet.

As it was mentioned in Chapter V, for game development, there
is a common practice to use scripting languages for game
logic. People writing in scripting languages include, but are
not limited to, are game designers. Moreover, on the server
side (unlike client-side) protection from bot writers is not an
issue (as server-side code is never exposed to players), so it
means that scripting languages become more feasible for the
server-side. Therefore, it seems to make perfect sense to allow
using some kind of scripting language on the server too.

Two most common scripting languages, used in games, are
Lua and JavaScript. I won’t go into comparison of these two
languages, but will just note that both will do their job when it
comes to game scripting. Just one thing worth mentioning in
this regard is that there is an internal conflict within Lua
(between main Lua team and Mike Pall/LuaJIT , who actively
dislikes changes in Lua 5.3, so LuaJIT doesn’t seem likely to
support Lua 5.3+, ever(!)); this kind of internal conflicts can be
really devastating for the language in the medium- and long-

run, which makes it an argument against Lua .

The most common concern about allowing scripting on the server side is related to
performance. However, with LuaJIT (with limitations mentioned above, and I don’t
really like them) and V8 JavaScript (which also has it’s own JIT), this is much less of a
concern than for non-JIT-ted script engines.

“

From the
50'000-f eet
point of view ,
90% of the
dif f erences
betw een
modern
mainstream
programming
languages (as
they're
normally used -
or better to say,
SHOULD be used
- at application-
level) are minor
or superf icial.

On Languages as Such

I know that I will be hit hard (once again) for not going into a
lengthy discussion about pros and cons of different
programming languages (those which I mentioned above and
those which I failed to mention). However, my strong position is
that from the 50’000-feet point of view, 90% of the differences
between modern mainstream programming languages (as
they’re normally used – or better to say, SHOULD be used – at
application-level) are minor or superficial. This is also
confirmed by Line-to-Line conversion exercise discussed in
“Line-to-Line conversions: ‘1.5 code bases'” section below.

Another observation which helps in this regard, is that there is a
tendency for modern programming languages to converge as
the time goes. For example, C++11 code is much closer to Python
code than C++03, and Java 5+ (with generics) is much closer to
C++ than Java 4- (the one without generics). Programming
languages borrow certain constructs and practices (usually
best ones, but it is not guaranteed) from each other, bringing
them closer as the time goes.

Still, there are two things which tend to be quite different
between the programming languages. The first and more
obvious one, is, of course, the difference between manual and
automated memory management. Still, with more-or-less
modern C++ (with widespread use of containers and
std::unique_ptr<>), the difference is not that drastic.

The second thing which MIGHT be quite different between the languages, is related
to support for lambdas (which, as we’ve discussed in “Take 3. Lambda
Continuations to the Rescue! Callback Pyramid” and “Take 4. Futures” subsections
above, is important). For example, lambdas in Python
[StackOverflow.PythonLambdaLoop] and C# [StackOverflow.C#LambdaLoop] have
rather strange peculiarities with regards to lambdas within loop (or maybe it’s C++
peculiarity that it behaves as intuitively expected?). However, in most cases, some
strict equivalent between the languages still exists.

One further word of caution is related to co-routines. While co-routines/fibers do
simplify development (this stands to some extent even when we compare them to
futures), they have significant practical drawbacks related to lack of “stack
snapshot” (which is necessary to implement quite a few FSM goodies, including
realistic production post-mortem, see Chapter V for details [[TODO! add section on
coroutines and “stack snapshot” to Chapter V]]). Also, their support is still much less
universal than that of lambdas.

“4

5

 it doesn’t really stand for Erlang, and I am not 100% sure whether it stands for
Lua, as I don’t have practical experience with it, but
C++/C#/Java/Python/Javascript as-you-use-them-for-application-level-
programming are all pretty much the same, saving for relatively limited amount of
oddities and peculiarities
 For C++, you can use fibers, but IIRC Java as such doesn’t support them, and

Python 2 which is still used quite a lot, doesn’t have coroutines

W hich Language is the Best? Or On Horses for Courses

Right above, we’ve described quite a few options for server-
side programming languages. The Big Question is, as usual, the
following: which one to choose?

My two cents points in this regard are the following. First,
there is no such thing as “the best language for everything”.
What we need is a language-best-for-some-specific-task. And
here there are quite a few different scenarios, from “just a
scripting language for game designers to work with” (where
C++ and even Java are pretty much out of question), to “time-
critical simulation code”, with “something for integration with
enterprise web apps” in between. As a very wild guess, you
might want to use Lua or JavaScript for the first one, C++ for
the second one, and Java/C# for the third one (been there,

seen that). Doing everything in one single language, while possible, in many cases
will be suboptimal.

My second point in this regard is that with FSMs, it is easy to combine FSMs written
in different languages, in any way you want. Personally, I’ve made such things myself
for three languages: C++, Java, and JavaScript. It went along the following lines:

Originally, the whole thing (both outside-FSMs infrastructure code and intra-
FSM code) was written in C++. Great performance, full control, no problems
with GC, everybody was really happy, etc. etc. But finding good C++ developers
isn’t easy .

As a result, at some point, it was decided to make an analytics portal and to
develop it in Java.

As pure DB access wasn’t sufficient (as they needed real-time updates, and DB
triggers didn’t look optimal at all) Java guys asked for a way to get the data
from C++ system.

4

5

horses for
courses

An allusion to
the f act that a

racehorse
perf orms best

on a racecourse
to w hich it is

specif ically
suited.

— Wiktionary —

https://en.wiktionary.org/wiki/horses_for_courses

Here w ent a
line-to-line
translation
project of
outside-FSM
inf rastructure
code into Java
(to f acilitate
w riting FSMs in
Java)

Ok, here went a line-to-line translation project of outside-
FSM infrastructure code into Java (to facilitate writing
FSMs in Java), see “Line-to-Line Translations: “1.5 code
bases”” section below for further details

This outside-FSM infrastructure Java code was
compatible at message format level with C++ code, which
means that from C++ FSM standpoint, Java-based FSM was
indistinguishable from a C++-based one, and vice versa.

So, C++ and Java FSMs could interact easily (after agreeing
on interfaces, for more details see Chapter [[TODO]]),
without no problems whatsoever. In particular, Java FSMs
were able to “subscribe” to the data “published” by C++
FSMs, and get all the updates in real-time (most of the
data necessary was already published by C++ FSMs, so Java
FSM subscribing to the data they needed, was mostly
possible without changing C++ code).

In a different project (and similar situation), a JavaScript FSM
was produced to allow server-side scripting (in addition to existing C++ FSMs). In
this case, C++ outside-of-FSM code was re-used, which called process_event()
(written in JavaScript) from within. The same approach can be (more or less easily)
extended to all the other programming languages of interest, see “Supporting
Different Environments” section below for further discussion.

In any case, all the paradigms of our FSMs were transparently maintained for all the
FSMs across all the supported languages. This included more or less the following
things:

process_event() as a single access point to our FSM, see Chapter V
current_time was passed to process_event() either as an explicit
parameter, or via TLS and current_time() call (see Chapter V for details)

timer actions (in those projects, it was timer messages, but now I suggest
same-thread futures instead, see “Take 4. Futures” subsection above)

communication interfaces (see Chapter [[TODO]]), including:
support for non-blocking RPCs (it was OO-style same-thread callbacks,
but now I suggest same-thread futures instead, see “Take 4. Futures”
subsection above)

support for state synchronization interfaces (see Chapter [[TODO]])) with
same-thread callbacks

all the recording/replay goodies described in Chapter V

 we could try to go JNI route instead, but we preferred pure Java and didn’t regret

“
6

6

With cross-
language FSMs
w e can use the
very best
language/compiler
pair f or each
specif ic job –
w hether it is
Lua/LuaJIT, or
JavaScript/V8,
or Python/PyPy,
or
Java/HotSpotVM,
or C++/LLVM

this decision

Supporting ANY language/compiler/JIT: Is It W orth the Trouble?

The next obvious question on this way is the following:

Are such cross-language things worth the trouble of
implementing them?

Well, of course, YMMV, but from my experience the answer is

Absolutely!

In such an FSM-based multi-language development paradigm you’re no longer tied
to one programming language. You may say “hey, this is what CLI/Mono (as well as
non-Java compilers into JVM bytecode) are about!” Right, but with CLI/CLR you’re
still tied to one type of VM (ok, two if we’re Windows-only).

And with FSM-based cross-language approach, we’re not
restricted to one single VM, or to the availability of specific
compilers which compile into that single VM. With cross-
language FSMs we can use the very best language/compiler
pair for each specific job – whether it is Lua/LuaJIT , or
JavaScript/V8, or Python/PyPy, or Java/HotSpotVM, or
C++/LLVM (note that none of these popular and very-well
performing combinations is possible under CLI/CLR).

I rest my case.

Supporting Different Environments

The next question (assuming that I’ve managed to sell you the
idea of using cross-language FSMs) is “how to implement
them?”

From my experience, there are two possible approaches. The
first one is to have a C++ outside-of-FSM code, and then to
integrate C++ into each of the engines you need. Usually, it is
not that difficult. For example, you can have C++ threaded
communication code running under JNI and calling your Java
MyFSM.process_event() fram there. Or under CLI, it is possible
to have unmanaged code doing pretty much the same thing. Or with LuaJIT/V8, it is
easy to have C++ app calling appropriate script engine.

“

The second approach is related to line-to-line translations.

Line-to-Line Translations: “1.5 code bases”

Originally, I’ve written a nice 1500-word piece about line-to-line translations, but
then realized that it doesn’t really warrant that many words in the context of this
book. Still, as it was promised in Chapter V, here comes a brief overview of this not-
that-well-known technique.

Let’s assume that you already have a working piece of code in C++, and want to port
in into Java (it will work pretty much the same for other languages too, like C++-to-
ActionScript for the client side, but let’s use C++-to-Java for the purposes of our
example).

The aim of line-to-line conversion is not only to port the code, but also to keep
roughly 1-to-1 correspondence between the original code and the translated code;
as we will discuss below, this correspondence is very important for further
maintenance of the port (and code maintenance is the thing which haunts all the
multiple code bases in the real world).

The idea behind is the following. When you have sufficiently straightforward and
platform-independent code in any modern OO programming language, the essence
of the code can be translated to a different OO programming language in a very
straightforward manner. For example, if your C++ code is implementing Dijkstra’s
pathfinding algorithm as follows, :7

…then, when you need to rewrite this code into, for example, Java, you can simply
take your (supposedly working) C++ code, and to write its Java equivalent along the
following lines:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

pair<map<const Vertex*,int>, map<const Vertex*,const Vertex*>>
 dijkstra(const Graph& g, const Vertex* source) {
 set<const Vertex*> Q;
 map<const Vertex*,int> dist;
 map<const Vertex*,const Vertex*> prev;

 for(const Vertex* v: g.vertexes()) {
 dist[v] = INT_MAX;
 prev[v] = NULL;
 Q.insert(v);
 }

 dist[source] = 0;

 while(Q.size()>0) {
 //find u from Q with minimum dist[u]
 const Vertex* u = NULL;
 int distU = INT_MAX;
 for(const Vertex* it : Q) {
 int distIt = dist[it];
 if(distIt < distU) {
 u = it;
 distU = distIt;
 }
 }
 //u found
 assert(u!=NULL);

 Q.erase(u);

 for(const Vertex* v : g.neighborsOf(u)) {
 int alt = dist[u] + g.length(u,v);
 if(alt < dist[v]) {
 dist[v] = alt;
 prev[v] = u;
 }
 }
 }
 return pair<map<const Vertex*,int>,map<const Vertex*,const Vertex*>>(dist,prev);
}

[[TODO: place C++ and Java side by side in a book]]

As you can see, ported Java code visually looks very similar to C++ original;
moreover, we can easily see the one-to-one correspondence between the lines of
C++ code and Java code. When we have such C++ and Java code, we don’t really have
two separate code bases, as they’re too closely related to name them separate. I

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

public class Dijkstra {
 public static Pair<TreeMap<Vertex,Integer>,TreeMap<Vertex,Vertex>>
 dijkstra(Graph g, Vertex source) {
 TreeSet<Vertex> Q = new TreeSet<Vertex>();
 TreeMap<Vertex,Integer> dist = new TreeMap<Vertex,Integer>();
 TreeMap<Vertex,Vertex> prev = new TreeMap<Vertex,Vertex>();

 for(Vertex v: g.vertexes()) {
 dist.put(v, new Integer(Integer.MAX_VALUE));
 prev.put(v, null);
 Q.add(v);
 }

 dist.put(source, new Integer(0));

 while(Q.size()>0) {
 //find u from Q with minimum dist[i]
 Vertex u = null;
 int distU = Integer.MAX_VALUE;
 for(Vertex it: Q) {
 int distIt = dist.get(it).intValue();
 if(distIt<distU) {
 u = it;
 distU = distIt;
 }
 }
 //u found
 assert u!=null;//be careful to keep your Java asserts
 // consistent with your C++ asserts;
 //see Chapter [[TODO]] for further discussion
 // on asserts in C++

 Q.remove(u);

 for(Vertex v:g.neighborsOf(u)) {
 int alt = dist.get(u).intValue() + g.length(u,v);
 if(alt < dist.get(v).intValue()) {
 dist.put(v,new Integer(alt));
 prev.put(v,u);
 }
 }
 }
 return new Pair<TreeMap<Vertex,Integer>,TreeMap<Vertex,Vertex>>(dist,prev);
 }
}

prefer to name such “C++ and some-other-language” pairs as “1.5 code bases” (at
least it is clearly more than 1 code base, and certainly less than 2).

In practice, it means that for really platform-independent C++ code, in most cases
we can produce an equivalent code in a different programming language, but with
the same semantics and (hopefully ;-)) producing exactly the same result. Moreover,

it is usually possible to produce an equivalent code
which has one-to-one line-to-line correspondence

with the original.

This last observation is extremely important in practice, for the purposes of code
maintenance. As it is pretty well-known in the industry, having two code bases very
frequently leads to major problems because of code maintenance issues. In other
words, after having changed one code base, it is often a problem to make a strictly
equivalent change in another code base. However, with line-to-line conversion and
“1.5 code bases”, this maintenance process (while still not being a picnic!) becomes
significantly simplified: after we’ve had our code bases equivalent, and we’ve made a
single change in our first code base, then making an equivalent change becomes a
breeze: just look at source control differences for the first code base, and apply an
equivalent thing to the second code base. It is important to note that

in this apply-changes-to-second-code-base process,
there is usually no need to understand the essence of

the change which was made; most of the time, the
change can be applied based only on general

understanding of inter-language equivalence rules

Here in original 1500-word piece there were examples of modifying the C++ code –
getting differences from the source control – applying those differences to Java,
but within the scope of this book, it probably would be an overkill, so I’ve eventually
decided to skip it. [[TODO!: write a separate article about it with more examples]]

 based on [Wiki.Dijkstra]
 and I’ve seen several times myself as competitors successfully started second

client with a separate code base, and then second client started to lag behind in
development, up to the point of being unplayable, with subsequent abandoning of
the second client
 in fact, I’m pretty sure that, given restricted dialect of C++, which I am normally

using for platform-independent code, it is perfectly possible to build a C++-to-Java
(or C++-to-ActionScript) compiler at source level; however, parsing C++ (which is not
a LALR(1) grammar) is difficult, so I’ve never had enough time to undertake such an

8

9

7

8

9

Porting
20'000 lines of
code took 2
w eeks f or the
f irst 80%, and
tw o months f or
the remaining
20%, and
w orked happily
ever af ter

endeavor

Line-to-Line Translations: A re They Practical?

The code above is an interesting exercise, but of course, it is
merely an example, so you may still have questions whether this
exercise scales well to larger-scale pieces of code.

As noted above, I was personally involved in an exercise of
porting C++ into Java in a Line-to-Line manner. Porting 20’000
lines of code took 2 weeks for the first 80%, and two months for
the remaining 20%, and worked happily ever after (the code
was changed since the port, but quite rarely). I don’t know how
it would scale to a million of lines of code, or to a code which is
changed twice a day, or to a code which is not as
straightforward. Still, if you’re out of other options, line-to-line
source translations may happen to work for you.

Also note that performance-wise the converted code might be
not top-notch one (while concepts and ideas are generally very
similar between the languages, subtle performance-related
details don’t). In other words, with good conversion if your
algorithms were O(N) they generally should stay O(N), but you may easily face 20%
performance hit (potentially more in extreme and fringe cases) compared to the
best possible code in target language.

One further thing to keep in mind in this regard, is that porting from C++ to Java
(C#/…) is generally simpler than the other way around. In particular, this is
because while removing manual memory management is trivial, adding it can be
quite difficult and MAY require intimate knowledge of the program internals (which
goes against the idea of purely mechanistic conversion).

Inter-Language Equivalence Testing: FSM Replay Benefits

In quite a few cases, you may need to port a part of your code from one language to
another one. It may happen, for example, to optimize the time-critical FSM, or to
have “1.5 code bases” in a line-to-line conversion manner as described right above.
And with all such conversions, one of the biggest problems is the question “how we
can be sure that the code-in-new-language and the code-in-old-language are
strictly equivalent?”

Fortunately, for FSMs there is an easy way to test the code equivalence. The
procedure goes as follows:

“record” a big chunk of inputs and outputs for FSM-being-ported (and
running old code); “recording” can be done along the lines described in

“

As soon as
you've got lots
of boilerplate

code - you
MIGHT be able

to generate it
w ith your ow n
code generator

Chapter V, and may be done even in production.

“replay” it in lab on the new code. (as described in Chapter V)

if the results are exactly the same for old code and new code, on a sufficiently
large chunk of real-world data, it means very good chances that the code is
indeed equivalent (at least within the bounds which are of practical interest).
In practice, it has been noticed that for quite a big site, if there is no bug after
the first four hours after new code deployment, there won’t be any bug in “core
logic” at all. Pretty much the same applies to record/replay testing.

if there is a non-equivalence, it can be found very quickly by simply
running the same “replay” over both languages in debugger line by line,
and comparing corresponding variables.

On Code Generators and YACC/Lex (or Bison/Flex)
One thing which doesn’t strictly belong to server-side, but
which I need to mention somewhere, is YACC/Lex. As we’ll see
later, there are quite a few cases where having your own
source-code-generator is beneficial. Two most obvious
examples include Interface Definition Language (a.k.a. IDL,
discussed in Chapter [[TODO]]), and prepared-statements-
code-generator (discussed in Chapter [[TODO]]). Other game-
specific things (usually not really comping code, but dealing
with some declarative statements and converting them to
code) might also be helpful (in general, as soon as you’ve got
lots of boilerplate code – you MIGHT be able to generate it
with your own code generator). In the (rather extreme) case
you may even be able to write your own code generator to
support co-routines-with-stack-snaphot.

While these compilers not strictly required (and you’re able to
write all the code you need by hand), they will speed up your development a lot. Just
as one example: if you need a thousand of those prepared statements, writing them
by hand in C++ (or Java/pick-your-poison), while possible, is very tedious and
error-prone. The same goes for any kind of marshalling/IDL.

Whenever you have your code generator, it always works as follows:

You have a file in your own language (usually more of declarative nature than
of imperative nature).

“

In most cases,
the best w ay to
implement such
compilers is via
Y ACC/Lex (or
Bison/Flex,
w hich is pretty
much the same
thing).

Then, you run your code generator over it, obtaining kinda-source code in
your programming language.

This generated kinda-source code MUST NEV ER EV ER be modified
manually. Instead, either source-code-in-your-own-language needs to
be modified, or your code generator.

Then, you compile kinda-source with your usual language compiler (or
interpret it, whatever)

In most cases, the best way to implement such compilers is via
YACC/Lex (or Bison/Flex, which is pretty much the same thing).
As for these generators performance is not important,
alternatively to classical YACC/Lex/Bison/Flex you may want
to look at [PLY] (Python Yacc/Lex). The idea of all of them is
pretty much the same:

you’re writing “language grammar” (in .y file, which is
more or less reminiscent of BNF forms)

you’re specifying what exactly you want to do with it as
you’re parsing (within the same .y file)

you’re compiling this .y file and obtaining your C (or
Python, in case of PLY) code

you’re running this compiled code over your source file,
and (if you’ve done everything right) are obtaining an
abstract syntax tree (AST)

as you’ve got your AST, you can generate any code you need, out of it

For further information on C-language YACC, please refer to the classical tutorial
[Niemann]. One further trick I’m using a lot for such code generators, is the
following:

define YYSTYPE as a C++ class (which will be essentially your “AST node”);
usually YYSTYPE is int, but nothing prevents you from re-defining it

define member functions for your YYSTYPE so that you add other AST nodes
into current one. Don’t be afraid to make deep copies here – you won’t notice
performance differences anyway.

use code such as { $$.add($1,$2); } within your .y file (see tutorial mentioned
about on the meaning of these magical $$ and $1/$2).

when the whole hierarchy is processed, you’ll get your whole AST at the
(logically) topmost rule of your .y file.

Due to lots of copies, this approach is damn inefficient compared to traditional
compilers, but for vast majority of our gaming purposes parser performance

“

10

« A synchronous Processing for Finite State Machines/A ctors: …

 MMOG. RTT, Input Lag, and How to Mitigate Them »

won’t matter, saving you quite a bit of development time (and as it is run only on
your development/build machines, it won’t affect performance of your runtime
code at all).

 and was also reported to fail under some YACC implementations when trying to
compile hundreds of thousand of lines, but this problem is solvable

[[To Be Continued…
This concludes beta Chapter VI(e) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VII, “Modular
Architecture: Protocols.”]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: game, multi-player, programming language, server

Copyright © 2014-2016 ITHare.com

10

[–] References
[NoBugs2012] 'No Bugs' Hare, “Memory Leaks and Memory Leaks”
[StackOverflow.C#LambdaLoop] “Captured variable in a loop in C#”, StackOverflow
[StackOverflow.PythonLambdaLoop] “What do (lambda) function closures capture
in Python?”, StackOverflow
[Wiki.Dijkstra] “Dijkstra's algorithm”, Wikipedia
[PLY] David Beazley, http://www.dabeaz.com/ply/
[Niemann] Tom Niemann, “Lex & Yacc Tutorial”

/memory-leaks-and-memory-leaks/
http://stackoverflow.com/questions/271440/captured-variable-in-a-loop-in-c-sharp
http://stackoverflow.com/questions/2295290/what-do-lambda-function-closures-capture-in-python
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://www.dabeaz.com/ply/
http://epaperpress.com/lexandyacc/download/LexAndYaccTutorial.pdf
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/asynchronous-processing-for-finite-state-machines-actors-from-plain-events-to-futures-with-oo-and-lambda-call-pyramids-in-between/
http://ithare.com/mmog-rtt-input-lag-and-how-to-mitigate-them/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/programming-language/
http://ithare.com/tag/server/

	MMOG Server-Side. Programming Languages
	Going Cross-Platform
	Cross-platform C++
	Cross-platform Languages
	Pros (compared to C++)
	Cons (compared to C++)
	Personal Preferences and FSMs

	Scripting Languages
	On Languages as Such
	Which Language is the Best? Or On Horses for Courses
	Supporting ANY language/compiler/JIT: Is It Worth the Trouble?
	Supporting Different Environments
	Line-to-Line Translations: “1.5 code bases”
	Line-to-Line Translations: Are They Practical?

	Inter-Language Equivalence Testing: FSM Replay Benefits

	On Code Generators and YACC/Lex (or Bison/Flex)
	[[To Be Continued…
	[–]References
	Acknowledgement

