
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
MMOG Server-Side. Eternal Linux-vs-Windows Debate
posted January 4, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VI(c) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

Operating Systems
Please don’t expect to find anything new in this section, especially in the context of “which
OS is the best one out there”. It is merely a summary of well-known things as they apply to
MMOG server-side.

For the client-side, operating system is normally a big fat Business Requirement,
which means that we as developers don’t have much choice about it. If we need to
support Android, iOS and Windows on the client-side – we just need to shut up and
do it, plain and simple. With operating system for the server-side, situation is
usually different – as nobody on the business side of things really cares (or at least
SHOULD NOT care) about which OS is used to run our servers, it is more or less a
developer’s choice. What MAY (and actually SHOULD) interest business guys/gals
though, is time-to-market and the cost of running servers, more on it below.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

When it comes to server-side operating systems, there are actually only two
realistic choices: Windows and Linux (or “Linux and Windows”, depending on your
preferences, we’ll discuss this in a moment). While in theory you can run an OS X
server, or can dream about trying a 32-core SPARC M7 under Solaris, or (like
myself) be eager to get your hands on the latest greatest POWER8 box, in practice
all we’ll ever get (except, maybe, for stock exchange guys) is x64 box with either
Windows or Linux. And while there is nothing wrong about x64, it still often leaves
us feel a bit sad about all those existing-but-never-available opportunities.

Leaving sentimental feelings aside, we need to take a look at two real contenders:
Linux/BSD and Windows. Unfortunately, over the course of serveral last centuries
decades, any attempt to to take such a look has invariably lead to almost-religious
wars.

 For the purposes of our discussion, we’ll consider BSD as a flavour of Linux (which
is admittedly a sacrilege, but Linux programming and *BSD programming at our
application level are that similar, that with a few narrow exceptions such as
epoll/kqueue, we can pretty much ignore the difference until actual deployment).

New Generation Chooses Cross-Platform! W ell, at least it SHOULD…
One thing you should seriously consider before choosing one single OS as your
development target, is “whether you can make your program cross-platform

1

1

/wp-content/uploads/BB_part072_BookChapter006c_v1.png

instead”. In general, I strongly support cross-platfrom programs, even on the
server-side, for several reasons:

we don’t need to go into Linux-vs-Windows debate right here, making it a
deployment-time issue rather than development-time issue. Not only having
cross-platform code postpones the debate, but also it makes the debate much
less heated, as the cost of mistake at deployment-time is orders of magnitude
lower

cross-platform programs are, well, cross-platform, which gives you
deployment-time freedom

for example, if you find that for the purposes of your game the latest
greatest TCP stack from Linux (or Windows) works significantly better
(see “Other Technical Differences (kernel scheduler, TCP stack, etc)”
section below) – you can switch without that much hassle

moreover, you can have some servers on Windows and some on Linux at
the same time (optimizing different audiences according to different
parameters)

cross-platform programming helps to keep dependencies in check

cross-platform programs tend to have better structured codebases (I
attribute it to better discipline, so it is not inherent to cross-platform
programs, but a correlation)

cross-platform programming help to test your code better. It has been
observed that running a program which was considered perfectly error-free,
on a different platform, helps to reveal quite a few subtle bugs which have
never manifested themselves on original platform (but were sitting there, just
waiting for the right moment to kick in).

How to achieve a holy grail of cross-platform code, is a separate story, which we’ll
discuss in [[TODO]] section below. For now, let’s just make a note that going cross-
platform does not necessarily mean going JVM (Python, Erlang, pick your poison),
and that C++ can also be made perfectly cross-platform, so at least don’t write it
off on these grounds. On the other hand, let’s keep in mind that outside of
deterministic FSMs (and for pretty much any programming language), the best we
can possibly hope for, is “run once – test everywhere”, and “testing everywhere”
takes time . Which, in turn, makes convincing managers going cross-platform
route quite difficult (that is, unless you’re using Java/Python/…), so you may need
to choose your OS even if you would like to avoid it in the first place.

Eternal W indows-vs-Linux Debate

I have no
choice other
than to brace
myself and be
prepared to all
the punches
f rom both
Window s and
Linux f ans

I realize that for the analysis below, I will be hit hard by zealots from
both sides. On the other hand, as choosing server-side OS is an
important part of the overall MMO exercise, I need to provide at least
some observations in this regard, so I have no choice other than to
brace myself and be prepared to all the punches from both Windows
and Linux fans (with an occasional hit by BSD/Solaris proponents).

Now, we can forget about the boring cross-platform stuff, and
to concentrate on the classical Linux-vs-Windows flame war.
BTW, most of the arguments routinely raised in such flame
wars, do have some merit behind them, with the tricky part
being to estimate applicability and impact of these arguments
within the specific context. Let’s take a closer look at some of
them (only in the context of the server-side specifically for
games):

Open-Source

The practical argument here goes along the lines of “if you ever have a problem,
you’ll be able to fix it” . However, being a game developer, I don’t think it is realistic
to expect that you’ll be able to fix anything in Linux kernel (or, Linus forbid, driver).
If you’ve done it before – of course, being able to fix things in kernel becomes an
all-important argument, but otherwise – don’t hold your breath over it.

Stability/Reliability

There are a lot of horror stories about Windows being unstable/unreliable,
including (in)famous migration of London Stock Exchange from Windows to Linux
in 2009. [http://www.itwire.com/opinion-and-analysis/the-linux-
distillery/28359-london-stock-exchange-gets-the-facts-and-dumps-windows-
for-linux] My personal experience, however, doesn’t support this observation. In
short – from what I’ve seen, if all you’re using from Windows, is Windows kernel
(without any fancy COM components or .NET) – Windows has been observed work
perfectly fine (more on disabling unnecessary software in Chapter [[TODO]]). Add
anything large on top of a bare Windows kernel – and if you’re not careful enough,
you’re entering much riskier waters, to put it mildly. Pretty much the same goes for
Linux, but as Linux doesn’t try to cover everything-under-the-sun as a part of
operating system, you can usually choose which software to use, more freely. Still,
from my experience, if you’re careful enough, it is more or less a tie between Linux
and post-9x Windows in the stability realm.

Security

“

http://www.itwire.com/opinion-and-analysis/the-linux-distillery/28359-london-stock-exchange-gets-the-facts-and-dumps-windows-for-linux

Personally, I
w ould agree
that Linux is

somew hat more
secure (that is,

if you're
exercising at

least basic
caution and are

not running
your w eb

server under
root account).

Another quite popular argument is that Linux is more secure
than Windows (what Microsoft vehemently objects, mostly on
the basis of the number of reported bugs, which is a very
convenient metrics for a closed-source company). Personally,
I would agree that Linux is somewhat more secure (that is, if
you’re exercising at least basic caution and are not running
your web server under root account).

I tend to attribute it to the fact that Linux in general is more
modular than Windows, so disabling unnecessary parts is
easier (and it is these unnecessary parts that cause most
trouble). While this is partially offset by an atrocious *nix
permission system (with suid bit abuses being responsible of a
substantial chunk of successful real-world attacks), being
highly modular still helps even in this department. Also SE
Linux, despite all the shortcomings, does provide an
additional layer of protection.

On the other hand, it is clear that you do need a highly
qualified and security-aware admin to run any operating
system securely. Just one very recent real-world breach
example involved default Amazon EC2 Linux image to run

Apache under root (and while SE Linux was running, SE policies didn’t prevent
attacker from taking the server over). In short: it wasn’t a problem of Linux as
such, but a problem of Linux being misconfigured. However, it leads us to an all-
important bottom line:

Each server is only as secure as its admin

If you have highly qualified admins, then I’d probably prefer Linux from security
perspective, but in practice security advantage over Windows will likely to be
negligible (that is, if you’re using only “bare” Windows kernel, while disabling
everything else, see above).

 if you don’t understand why running your services under root account is a
problem – wait until Chapter [[TODO]], we’ll briefly discuss it there

Fast Netw ork Packet Processing

If your game is a very latency-sensitive, all chances are that you’ll need to use UDP
(see Chapter [[TODO]] for further discussion). And when you’re using UDP, you may
easily run into your recvmsg() thread (or even recvmmsg() thread) becoming a
bottleneck. One of the ways to deal with it in a cross-platform way, is to try

“

2

2

multiple threads calling recvmsg() on the very same (non-blocking) socket, which
has been reported to work pretty good (which has been briefly described in “UDP-
related FSMs” section above). However, if this doesn’t help, you’re pretty much out
of cross-platform options. It means using rather obscure and little-known
platform-specific APIs, which may include the following.

[[TODO!: Linux netmap/DPDK, Windows RIO]]

[[TODO!: Interrupt balancing: Linux RSS/RPS/RFS]]

Other Technical Differences (kernel scheduler, TCP stack, etc)

There are quite a few debates out there related to comparisons between Linux and
Windows kernel schedulers and network stacks. In short – at least for games, the
differences between them are negligible. A tiny bit more detailed analysis follows.

Regarding kernel/thread schedulers – note that for the game you certainly want to
keep your CPU utilization low (even for social games having CPU utilization at
100% is certainly not a good idea), and thread queue – as short as possible. It
means that there should always be a free CPU in the system, which is ready to
process incoming packet. It means that the scheduler (almost) always doesn’t
really have a choice which thread to schedule – all threads which are not waiting,
will run, as there are (almost) always sufficient CPUs to run them. In practice, I
don’t know of any significant differences between Windows and Linux schedulers
when applied to games; moreover, the difference was non-observable in practice
even in the days of Linux O(n) scheduler.

One closely related topic is related to so-called NUMA
scheduling. The thing here is the following. In production,
you’re very likely to use 2-socket x64 servers, which are NUMA
for the last 10 years or so. And for NUMA, it is very important
performance-wise to keep your threads’ physical memory on
the same socket (NUMA node) where your thread is running
(otherwise memory accesses will need to go across the
QPI/Hypertransport, which is slow compared to local
memory accesses). The topic of keeping NUMA locality when
scheduling, is still very much in active development (see, for
example, [Corbet2013]), and does have a potential to bring
significant benefits for applications (due to removal of
unnecessary round-trips via QPI/Hypertransport). However,
the last time I’ve seen (at least somewhat appropriate)
comparison, I wasn’t able to notice the difference between
Windows and Linux in this regard (which might or might not
be because of FSM-oriented architecture, which tends to
exhibit very good memory locality and may be easier to handle

3

4

NUMA
Non-unif orm

memory access
(NUMA) is a

computer
memory design

used in
multiprocessing,

w here the
memory access

time depends
on the memory

location
relative to the

processor.
— Wikipedia —

5

https://en.wikipedia.org/wiki/Non-uniform_memory_access

by NUMA schedulers). In short – jury is still out on Windows-
vs-Linux NUMA scheduling, it may or may not affect your game (though IMHO the
differences are not going to be drastic, at least not for long). Good description of
NUMA on Linux can be found in [Lameter2013]. A bit more on practical suggestions
related to manipulating NUMA-related things from application level will be
mentioned in Chapter [[TODO]].

As for the TCP stack: all the TCP stacks out there start with the same RFC793 (yes,
that’s 1981 and still not obsolete); of course, there are several dozens RFCs on top
of the basics described there, and sets of these RFCs and their defaults vary, but
deep inside it is still pretty much the same thing (and even first several layers on
top of it, such as Nagle’s algorithm or SACK, are pretty much the same). Most of the
differences between TCP stacks discussed out there, are actually about using
different defaults/settings for TCP stack, which result in different throughput
under different conditions (especially TCP performance over long fat pipes can be
significantly different); however, these things, while interesting and important for
video- and file-services, are not directly applicable to games, where average
packet size is around 40-80 bytes (that’s including 20 bytes of IP header). When it
comes to latencies, network stack doesn’t affect UDP latencies much, and TCP
latencies will depend on lots of things, including TCP stack on the client side (not
to mention that if you’re into single-digit millisecond latencies, using TCP is
probably not the best idea). One thing which may affect those games working over
TCP, is a choice of TCP congestion algorithm (with Windows Server 2008+ using
NewReno, and recent Linux reportedly using CUBIC); however, as of now, I don’t
have any information which demonstrates any advantage of any of them TCP-
latency-wise (that is, with usual mixed-bag of clients, consisting of PCs and mobile
phones); on the other hand, it is an area where development is still very much
ongoing, so further changes are likely. Also note that as we cannot control client
and there are tons of different clients with different TCP settings out there, any
theoretical analysis becomes extremely complicated; the best we can do – is to try
both in a real-world environment (the one with thousands of clients) and see
whether there are any differences. Which makes yet another reason to have your
code cross-platform.

When it comes to IPC (which you need to implement inter-FSMs interactions), both
systems are very much the same. We’ll discuss it in more detail in Chapter [[TODO]],
but the rule of thumb is always the same: if you want it to be really fast – use shared
memory, all the other mechanisms are inherently slower. Fortunately, shared
memory is available on both Windows and Linux. If you don’t care too much about
achieving topmost available speed on the same machine – all common other
methods (such as pipes and sockets) are readily available on both these platforms;
and for our purposes, you won’t need more than that. Fancy stuff such as
completion ports and APC, may in theory provide some difference, but in practice
for FSM-based architectures, it wasn’t observed to provide any advantage (see also
Chapter [[TODO]] for details). In short – IPC-wise, you will have quite a difficulty to
find significant difference between Linux and Windows.6

As for file systems – for your Front-End Servers and Game Servers they don’t really
matter. Amount of file I/O on Front-End Servers and Game Servers should be kept
negligible, mostly reading executables and configuration files; under these
conditions all the differences between JFS, ZFS, ext4, and NTFS, won’t play any
significant role.

To summarize – technically (and from games perspective) both Windows and Linux
kernel (and network stack) are doing really good job and (drivers aside) you’re
quite unlikely to observe significant differences because of these things. While you
may see the some difference, if migrating from Windows to Linux or vice versa on
the same hardware, experiences when migrating different server boxes will most
likely be different, and I tend to attribute them (mostly) not to OS’s as such, but
rather to drivers, whose quality varies greatly. One potential exception is TCP
congestion algorithm (that is, for TCP-based games), but its effects on games are
yet to be seen.

 in practice, it is more complicated, as depending on the hardware, interrupt
coming from NIC can be processed only on a dedicated CPU, which complicates
things. However, this is normally not an OS restriction, but a hardware restriction,
so there isn’t much which can be done about it
 I also don’t know of attempts to use different Linux schedulers for games, but

based on reasoning above, I have my doubts whether they will make any difference
 I’m speaking about classical NUMA, with a node per socket
 ok, local sockets tend to be a tad slower on Windows than on Linux, but if you’re

really after speed, you still need to use shared memory, so it becomes pretty much
a moot issue

C++ Compilers

If speaking about C++, a question of compiler becomes quite important. If you’re
going Windows route, your obvious choice would be MSVC, and for Linux it is
probably GCC or LLVM/CLang. When comparing MSVC to GCC, GCC (especially
GCC 4.8 and up) tends to produce better-quality code, which may amount (in
practice) to as much as 5-10% overall performance difference. This can be
accounted for as 5-10% increase in number of servers you need to run your game;
alternatively, you may try using MinGW (which is essentially GCC for Windows, I
didn’t try it myself, and can provide no warranties of any kind in this regard).

If comparing LLVM/CLang to GCC, in practice the difference (as of beginning of
2016) is pretty much negligible.

 individual functions can be much faster, but on average and taking into account
such things as context switches and associated very severe cache misses (both

3

4

5

6

7

7

With zero
price of f ree
distros, there is
absolutely no
w ay f or
Window s to
beat them price-
w ise, and even
matching it
looks very
unlikely in
f oreseeable
f uture.

being inevitable on game servers), it is not that much as it may seem from “pure
calculation” benchmarks

Is it Enough to Decide?

All the arguments above are repeated ad infinitum on the Internet, and as you see, I
personally tend to favor Linux, but honestly, I don’t really see that these arguments
are sufficient to make a decision for our game servers (except, maybe, in some rare
cases for interrupt-related stuff, see “Fast Network Packet Processing” section
above). In practice, the real deal is usually about the following two reasons.

Free as in “Free Beer”

If your estimates show that you may need dozens and
hundreds of servers – then the price of the license starts to
hurt in a really bad way. And don’t listen to those who say “Hey,
RedHat license is about the same price as the Windows one, so
it doesn’t really matter”; in a price-conscious environment,
you will likely use Debian, CentOS, or some other perfectly free
distro, and will stay away from paying anything for Linux
(except, maybe, for your DB server). And guess what – with zero
price of free distros, there is absolutely no way for Windows to
beat them price-wise, and even matching it looks very unlikely
in foreseeable future.

TCO w ars

At some point around 10 years ago,
Microsoft has pushed an argument that
despite license costs, a long-term cost of
ownership (known as TCO) is lower for
Windows (mostly due to higher salaries of
Linux guys). This argument was one of the
cornerstones of Microsoft’s highly
controversial “Get the Facts” campaign. I
certainly and clearly don’t agree with Microsoft on TCO, and
am of a very firm opinion that at least for not-too-small
datacenter-hosted systems, pretty much regardless of how
you calculate it, costs of Linux boxes will be lower.
Fortunately, there are quite a few bits of research out there,
which confirm my experience a.k.a. gut feeling in this regard.
These start (surprisingly) from a Microsoft-sponsored(!) IDC
report back from 2002 [IDC]; while Microsoft has made a lot of
buzz about Windows TCO advantage found by this report, it
usually conveniently omitted that for web servers Linux TCO

“

TCO
Total cost of

ow nership
(TCO) is a

f inancial
estimate

intended to help
buyers and

ow ners
determine the

direct and
indirect costs of

a product or
system.

— Wikipedia —

https://en.wikipedia.org/wiki/Total_cost_of_ownership

For cheaper
servers, the
dif f erence
betw een
Window s and
Linux can eat as
much as 50% of
the server
rental price
(though f or
those servers

was found to be lower (and our game servers are much more similar to web servers
than to handling file or print jobs). Other studies supporting the same point of view
include a report by Cybersource [Cybersource] and an IBM-sponsored report by
RFG [RFG]. The latter one is especially interesting not only because it is exactly
about application servers, and not only because it found Linux being 40% less
expensive than Windows in the long run, but also because it has found that Linux
admins, while more expensive, on average are able to handle more servers than
their opposite numbers on the Windows side. To be honest, I need to mention that
there are other reports which do claim that Microsoft TCO has an advantage, but
also being honest, I need to say that I am not buying their arguments, agreeing with
PCWorld’s take on Linux-vs-Windows TCP for servers: “There’s no beating Linux’s
total cost of ownership, since the software is generally free… The overall TCO
simply can’t be beat.” [PCWorld]

To summarize the long text above:

Cost-wise, for game servers Linux is likely to
provide a Significant Advantage

The importance of this observation, however, depends heavily on the number of
servers you expect to run; if servers costs (not including traffic costs!) are going to
be negligible, the whole line of argument about the server costs becomes much less
important. More on it in “It is All about Money :-(” subsection below.

On ISPs and W indow s-v s-Linux Cost

If you by any chance think “hey, we will rent servers from ISP
anyway, so license costs won’t matter”, you’re deadly wrong.
Yes, you will most likely rent servers from ISPs (see Chapter
[[TODO]] for details), but ISPs (no real surprise here) need to
factor in the license price into their server rental price. As of
the beginning of 2016, kind of typical price difference between
CentOS two-socket “workhorse” server and the-same-
hardware server with Windows Standard, was roughly
between $35/month and $50/month. For cheaper servers, the
difference between Windows and Linux can eat as much as
50% of the server rental price (though for those servers which
are more or less optimal price-performance-wise observed
difference was closer to 20-30%). And with cloud providers, it
won’t get any better: an instance which costs $52/month with
Linux, went up to $77/month with Windows (that’s almost 50%
on top of Linux (!)).

Time To Market: Familiarity to your Dev elopers

“8

w hich are more
or less optimal
price-
perf ormance-
w ise observed
dif f erence w as
closer to 20-
30%).

If your game is computationally intensive, and you can support
only a thousand players per server (and therefore, if your game
is a success, you will need hundreds of servers to run your
game), costs become a very important factor, difficult to fight
with. In such cases, there is IMHO only one consideration that
can trump lower costs for Linux boxes. This one is time to
market for your game.

In other words, if you don’t have anybody on the team who has
ever developed anything for Linux, it is usually a good enough
reason to use Windows on the server-side (and yes, it will work, provided that
you’re careful enough). It is not that to exploit lower cost of Linux boxes you need
all of your developers to be Linux gurus (after all, you’re much better when you can
keep your FSMs “pure” anyway, and being “pure” pretty much implies being cross-
platform), but if the whole your team has zero Linux experience – it will probably
qualify as a valid reason to use Windows (that is, if you’ve already calculated the
associated price tag and are ok with it).

An additional (and quite similar) time-to-market-related pro-Windows argument
arises if your game is PC-only (or PC-and-Xbox-only). In this case, if you keep your
server under Windows, you can have the same code running on server and client
quite easily. While such logic has a grain of truth in it, personally I don’t really like
this line of reasoning. First of all, there isn’t that much code to share to start with
(it is mostly about the framework which runs FSMs, Communications- and Routing-
related FSMs, and client-side prediction if applicable). Second, your FSMs need to
be “pure” and cross-platform anyway (see above). Third, even the code outside of
FSMs can be made cross-platform without going into vendor-lock-in stuff rather
easily. And last but not least, having the same code run on different platforms,
while taking additional time, allows to test your code better, improving overall
code quality.

It is A ll about Money

At the end of the day, if your team consists primarily (but not exclusively) of
Windows developers, and your game is computationally intensive enough to
support only thousands (or even worse – hundreds) of players per server (and you
can count on income per player being very limited), you’re facing quite a difficult
decision.

Usually, under such circumstances time-to-market
considerations will override lower server costs, so it is all
about the balance of Windows-vs-Linux guys and gals on your
team. On the other hand, it is clearly a Business Decision which
needs to be made by Business People and is outside of scope
of this book. Our job as developers is just to warn business-
minded people that Windows servers are going to cost more

Usually,
under such
circumstances
time-to-market
considerations
w ill override
low er server
costs

than their Linux counterparts (and that server/cloud rental
difference can be as large as 50%, though likely to be more in
around 20-30%; note that these numbers do not include traffic,
which will be the same regardless of the platform); the rest is
not our decision anyway.

On the other hand, if your estimates show that you can handle a
hundred thousands players per server – it looks unlikely that
license costs will eat too much of your budget either way, so in
this case you may be able to use Linux or Windows, whichever-
platform-looks-better-for-you. The whole thing is all about
numbers, pure and simple.

Mixed Bags

In the context of the discussion above, a logical question arises: “Can we develop
our servers for Windows to get it faster, and migrate to Linux later to save costs?“
The answer is “yes, you can, but you need to be extremely vigilant to avoid
unnecessary dependencies”. In general, QnFSM model with deterministic FSMs
stimulates cross-platform development, so it might be not that difficult, but you
still should remember about your intention to migrate later (this, for example,
pretty much excludes using fancy-but-Windows-specific things such as completion
ports; not that you really need them anyway for FSM-based architecture, see
Chapter [[TODO]] for details).

It is also possible to run both Windows and Linux servers on the server-side not
just as a part of migration from one to another one, but because of different
reasons. Just to give an idea how it may happen: you may need to integrate with a
payment provider, that requires you to use DLL, available only on Windows. Ok,
you can have that-provider’s-FSM on a different server running under Windows,
while having everything else running under Linux. Been there, done that.

 No “Essentials” edition was observed as a rental option, probably because of
license restrictions
 and while I hate such providers, throwing them away is not my decision to make

Linux-v s-W indow s: Time to Decide

To summarize my arguments above:

“

9

8

9

if you w ant to
use Linux
because you're
f amiliar w ith it
– you're f ine
regardless of
number of
servers you'll
need

DO f ight 3rd-
party
dependencies.
In spades.

if you want to use Linux because you’re familiar with it –
you’re fine regardless of number of servers you’ll need

if you want to use Windows because you’re familiar with it
– take a look at the number of servers you expect to be
using

the price of Windows license is far from negligible
(making up to 50% of the rental cost of the server,
though usually the price difference is more in 20-
30% range), so it can make a significant difference
for your ongoing costs after you launch the game

in this case, you may want to develop for Windows
first (to speed time-to-market), and to migrate to
Linux later

extreme vigilance to avoid being inadvertedly
locked-in is required (see Chapter IV for
details). On the other hand, FSMs tend to make
dependency fighting simpler.

if you’re in doubt – use Linux, it is safer that way

Things to Keep in Mind: W indow s

When developing for a specific platform, there are always platform-specific things
which you need to keep in mind. For Windows my own favorite list of DO’s and
DON’Ts goes as follows (note that this is a language-agnostic list, for C++-specific
stuff see Chapter [[TODO]]):

DO fight 3rd-party dependencies. Unnecessary dependencies tend to make
Windows less stable, less secure, the code less manageable, etc. Refer to
Chapter IV, “DIY vs Re-use: In Search of Balance” for details on “what to DIY
and what to re-use”.

DO fight 3rd-party dependencies. Re-use MUST NOT be taken lightly, and
extreme vigilance is required.

DO fight 3rd-party dependencies. In spades. While all the
developers are prone to taking some “nice” 3rd-party
component and to using it without telling anybody, from
my experience Windows developers are more likely to do
it than Linux ones.

DON’T use .NET-based stuff unless absolutely necessary.
.NET in production will cause you quite a lot of trouble. If
you want to use .NET as your own platform – well, at least
you (I hope) know why you’re using it, and will be able to
configure it to minimize the impact. If you’re
programming in not-a-.NET-language, running .NET

“

10

“

DON'T
program f or
one single
distribution.

unless absolutely necessary, is a recipe for several different disasters (ranging
from security problems to run-away 3rd-party not-really-necessary .NET
component eating all-the-available-resources).

Stay away from web services (that is, unless you’re into Web-Based
Architecture), at the very least for time-critical pieces. In general, any
technology that has a blocking RPC interface, should be avoided, as
blocking inter-process (and even worse, inter-server) calls don’t fit well
into our perfectly-non-blocking no-unnecessary-context-switching
highly-optimized FSMs, and will cause significant performance
degradation compared to them.

Stay away from COM. COM components have two pretty bad properties.
First, it is yet another technology based on blocking RPC calls (see above
about them). Second, if you’re using COM for your own components – it is
quite silly (ok, unless you’re using Visual Basic), and if you’re using it for 3rd-
party components – it is a 3rd-party dependency, you should fight as stated
above. Consider an offense of using DCOM as just an aggravated form of the
offense of using COM.

 ”safer” here can be interpreted in several different ways: from “a little bit safer
security-wise” to “safer in case if your profits are much lower than expected, so
price of the servers becomes more critical” .
 yes, I know lots of people consider COM long-dead; unfortunately, it is not

Things to Keep in Mind: Linux

Linux also has it’s fair share of DO’s and especially DON’Ts. My favourite ones are as
follows:

DO fight 3rd-party dependencies. While from my experience, the danger of
3rd-party dependencies is lower for Linux than for Windows, it still exists.

DON’T program for one single distribution. Your code
should be generic enough to allow jumping around
different distros; there is no reason to depend on
package manager or exact directory structure. If you
need these badly, move this kind of stuff into config files
(or into rarely-executed shell scripts), so your admins can
adjust directories if necessary.

As long as we’re speaking about Linux (not including
BSD), all you really need to use on your Game Server
is Linux kernel and glibc. Both will be very much the
same for all the distros (with the only difference
being kernel/glibc version).

If considering *BSD family, they are somewhat different, but as long as

11

10

11

“

DO consider
cross-platf orm
code even
outside FSMs.

you’re using POSIX APIs (and that covers 99% of what you’ll really want in
practice), the differences are negligible

DON’T use shell scripts for frequently-performed tasks. While an occasional
shell script to install your daemon is fine, invoking shell 1000 times a second is
rarely a good idea.

Pretty much the same goes for cron – DON’T try to get around cron’s 1-
minute restriction by playing tricks such as running 60 cron jobs every
minute, with the first job waiting for one second, the second one waiting
for another second, and so on.

DON’T think that threads are much faster than processes on Linux (at least
not that much as they are on Windows). And BTW, it is not that threads on
Linux are slow, it is that process creation (fork()) is fast. On the other hand,
you may still want to use threads if you’re after cross-platform development.

 the remaining 1% includes things such as epoll/kqueue

Things to Keep in Mind: A ll Platforms

In addition, there are a few things to remember about, which apply regardless of
the platform you’re developing for:

DON’T use platform-specific APIs within your FSMs (see
below about using them outside of FSMs). Leaving aside a
few narrow exceptions, your FSMs need to stay “pure”
(see Chapter V for discussion of the associated benefits),
and platform-specific APIs is #1 enemy of the code being
“pure”.

DO consider cross-platform code even outside FSMs. The
whole QnFSM can be written in a fully cross-platform
manner. Even if you find platform-specific
optimizations, it is better to have a purely cross-platform
version (at the very least, to have a baseline to compare
your optimizations against).

 been there, done that
 I’ve seen quite a few “platform-optimized” versions which were actually slower

than cross-platform ones, and even more platform-optimized stuff which was
exactly on par with the cross-platform one

[[To Be Continued…

12

12

“
13

14

13

14

« Chapter V I(b). Serv er-Side A rchitecture. Front-End Serv ers a…

 A synchronous Processing for Finite State Machines/A ctors:… »

This concludes beta Chapter VI(c) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VI(d), “Modular
Architecture: Server-Side. Programming Languages.]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: game, Linux, multi-player, server, Windows

Copyright © 2014-2016 ITHare.com

[–] References
[Corbet2013] Jonathan Corbet, “NUMA scheduling progress”
[Lameter2013] Christoph Lameter, “NUMA (Non-Uniform Memory Access): An
Overview”
[IDC] “Windows 2000 Versus Linux in Enterprise Computing”
[Cybersource] “Linux vs Windows. Total Cost of Ownership Comparison”
[RFG] “TCO for Application Servers: Comparing Linux with Windows and Solaris”
[PCWorld] Katherine Noyes, “Five Reasons Linux Beats Windows for Servers”

https://lwn.net/Articles/568870/
https://queue.acm.org/detail.cfm?id=2513149
https://www.cetic.be/IMG/pdf/TCO.pdf
https://static.lwn.net/images/pdf/cybersource-tco-study.pdf
http://www-03.ibm.com/linux/whitepapers/robertFrancesGroupLinuxTCOAnalysis05.pdf
http://www.pcworld.com/article/204423/why_linux_beats_windows_for_servers.html
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-vib-server-side-architecture-front-end-servers-and-client-side-random-load-balancing/
http://ithare.com/asynchronous-processing-for-finite-state-machines-actors-from-plain-events-to-futures-with-oo-and-lambda-call-pyramids-in-between/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/game/
http://ithare.com/tag/linux/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/server/
http://ithare.com/tag/windows/

	MMOG Server-Side. Eternal Linux-vs-Windows Debate
	Operating Systems
	New Generation Chooses Cross-Platform! Well, at least it SHOULD…
	Eternal Windows-vs-Linux Debate
	Open-Source
	Stability/Reliability
	Security
	Fast Network Packet Processing
	Other Technical Differences (kernel scheduler, TCP stack, etc)
	C++ Compilers
	Is it Enough to Decide?
	Free as in “Free Beer”
	TCO wars
	On ISPs and Windows-vs-Linux Cost
	Time To Market: Familiarity to your Developers
	It is All about Money
	Mixed Bags
	Linux-vs-Windows: Time to Decide
	Things to Keep in Mind: Windows
	Things to Keep in Mind: Linux
	Things to Keep in Mind: All Platforms

	[[To Be Continued…
	[–]References
	Acknowledgement

