
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
MMOG. RTT, Input Lag, and How to Mitigate Them
posted January 25, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VII(a) from the upcoming book
“Development&Deployment of Massively Multiplayer Online Games”,
which is currently being beta-tested. Beta-testing is intended to
improve the quality of the book, and provides free e-copy of the
“release” book to those who help with improving; for further details
see “Book Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of Contents.]]

Now we’re ready to discuss what the MMOs are all about –
protocols. However, don’t expect me to discuss much of the
lava-hot “UDP vs TCP” question here – we’re not there yet
(most of this question, alongside with the ways to mitigate their respective issues, will be
discussed in detail in Chapter [[TODO]]). For now we need to understand the principles
behind the MMO operation; mapping them to specific technologies is a related but different
story.

Data Flow Diagram, Take 1
Note that if your game is fast-paced (think MMOFPS or MMORPG), the approach described with regards
to Take 1 Diagram, won’t allow you to produce a game which doesn’t feel “sluggish” (it will work, but
won’t feel responsive). However, please keep reading, as we will discuss the problems with this simple
diagram, and ways to deal with them, later.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/wp-content/uploads/BB_part076_BookChapter007a_v3.png

To see what the MMOG protocols are about, let’s first draw a very simple data flow diagram
for a typical not-so-fast MMO. As it was discussed in Chapter III, our server needs to be
authoritative. As a result, the usual flow in a simplistic case will look more or less as follows:

Despite visual simplicity of this diagram, there are still a few things to be mentioned:

All the specific delay numbers on the right side are for example purposes only. Your
Mileage May Vary, and it may vary greatly. Still, the numbers do represent a rather
typical case.

It may seem that the client here is pretty “dumb”. And yes, it is; most of the logic in this
picture (except for rendering) resides on the server side. However, in most of the games
there are some user actions which cause client-only changes (and don’t cause any
changes to the server-side game world), they can and should be kept to the client. These
are mostly UI things (like “show/hide HUD”, and usually things such as “look up”), but for
certain games this logic can become rather elaborated. Oh, and don’t forget stuff such
as purchases etc.: if you keep them in-game (see Chapter [[TODO]] for details), it will
require quite a lot of dialogs with an associated client-side logic, and these (select an
item, info, etc. etc.) are also purely client-side until the player decides to go ahead with
the purchase.

/wp-content/uploads/Fig-VII-1.png

For f ast-
paced games,
there is one big
problem w ith
the f low show n
on this
diagram, and
the name of the
problem is
“latency” (a.k.a.
'input lag')

Last but certainly not least: for fast-paced games, there is one big
problem with the flow shown on this diagram, and the name of the
problem is “latency”. It is obvious that for this simplistic data flow,
the delay between player pressing a button, and her seeing results
of herself pressing the button (which is known as “input lag”), will be
at least so-called round-trip-time (RTT) between client and server
(which is shown as 100ms for Fig VII.1, see “RTT” section below for
more discussion regarding RTT). In practice, though, there is quite
a bit added to the RTT, and for our example on Fig VII.1, 100ms RTT
resulted in 227 overall delay. And if this delay (known as “input lag”,
which is admittedly a misnomer) exceeds typical human
expectations, the game starts to feel “laggy”, all the way down to
“outright unplayable” :-(. Let’s take a closer look at these all-
important input lags.

Input Lag: the Worst Nightmare of an MMO
developer
Note: if your game is slow- or medium-paced (including casino-like games such
as poker), you can safely skip this section.

As noted above, for MMOs a lot of concerns is about relation between two times: input lag,
and user expectations about it. Let’s consider both of them in detail.

Input Lag: User Expectations

First, let’s take a look at user expectations, and of course, user expectations are highly
subjective by definition. However, there are some common observations which can be
obtained in this regard. As a starting point, let’s quote Wikipedia [Wikipedia.InputLag]:

“Testing has found that overall “input lag” (from controller
input to display response) times of approximately 200 ms

are distracting to the user.”

Let’s take this magic number of 200ms as a starting point for our analysis (give or take, the
number is also confirmed in several other sources[[TODO: add links]], and is also consistent
with human reaction time [LippsEtAl], so it is not just Wikipedia taking it out of blue).

On the other hand, let’s note that strictly speaking, it is not exactly 200ms, and it certainly
varies between different genres. Still, even for the most time-critical games the number
below 100-150ms is usually considered “good enough”, and for any real-time interaction the
lag of 300ms will be felt easily by lots of your players (though whether it will feel “bad” is a
different story). To be more specific, for the remaining part of this Chapter let’s consider two
sample games: one being a simple OurRPG with input lag tolerance of 300 ms (let’s assume it
doesn’t have fights and is more about social interactions, which makes it less critical to
delays), and another game being OurFPS with input lag tolerance of 150ms.

“

These 150-
300ms of input
lag tolerance is
just a f act of lif e
(closely related
to human
psychology/physiology/etc.)
so that w e
cannot really
do much about
it.

Let’s also note that these 150-300ms of input lag tolerance is just a fact of
life (closely related to human psychology/physiology/etc.) so that we
cannot really do much about it.

Input Lag: How Much W e Have Left for MMO

The very first problem we have is that there are several things eating out
of this 200ms allocation (even without our MMO code kicking in). This is
lag introduced by game controller, lag introduced by rendering engine
(that depends on many things, including such things as the size of
render-ahead queue), and display lag (mostly introduced by LCD
monitors).

Typical mouse lag is 3-6ms [TomsHardware.GraphicsCardsMyths], less
for gaming mice. For our purposes, let’s account for any game controller
lag as 5ms.

Typical rendering engine lags vary between 50ms and 150ms. 50ms (=3
frames at 60fps), is rather tricky to obtain, and is not that common, but
still possible. More common number (for 60fps games) is 67ms (4 frames
at 60fps), and 100-133ms are not uncommon either [Leadbetter2009].

Typical display lag (not to be confused with pixel response time, which is much lower and is
heavily advertised, but it is not the one that usually kills the game) starts from 10ms, has a
median of a kind around 40ms, and goes all the way to 100ms [DisplayLag.Display-Database].

It means that out of the original 150-300ms we originally had, we need to subtract a number
from 60ms to 255ms. Which means that in quite a few cases the game is already lagging even
before an MMO and network lag has kicked in .

To be a bit more specific, let’s note that we cannot really control such things as mouse lag
and display lag; we also cannot realistically say “hey guys, get the Absolutely Best Monitor”, so
at least we should aim for a median player with a median monitor. Which means that we
should assume that out of our 150-300 ms, we need to subtract around 45ms (5ms or so for
game controller/mouse, and 40 for a median monitor).

Now let’s take a look at the lag, introduced by a rendering engine. Here, we CAN make a
difference. Moreover, I am arguing that

for MMOs, rendering latencies are even more important
than for single-player games

The point here is that for a single-player game, if we’d manage to get overall input lag say,
below 100ms, it won’t get that much of an improvement for the player (as long as it is fair to
all the players), as this number is below typical human ability to notice things. However, for an
MMO, where we’re much closer to the magic 150-300ms because of RTTs, effects of the
reduced latency will be significantly more pronounced. In other words, the difference
between 100ms and 50ms for a single-player game won’t feel the same as the difference
between 200ms and 150ms for an MMO.

“

For the purposes of our example calculation, let’s assume we’ve managed to get a rendering
engine with a pretty good 67ms latency. This (combined with 45ms mentioned above) means
that we’ve already eaten 112ms out of our 150-300ms initial allocation. And even if everything
else will work lightning fast, we need to have RTT<40ms for OurFPS, and RTT<180ms for
OurRPG.

 in practice, it is even worse, see further discussion in “Accounting for Packet Losses and
Jitter” section below

Input Lag: Taking a Bit Back

One trick which MAY be used to get a bit of “input lag” back is by introducing client-side
animations. If, immediately after the button press, client starts some animation (or makes
some sound, etc.), while at the same time sending the request to the server side – from end-
user perspective the length of this animation is “subtracted” from the “input lag”. For
example, if in a shooter game you’ll add a 50ms trigger pulling animation (while sending the
shot right after the button press) – from player’s perspective, the “Input Lag” will start 45ms
later, so we’ll get these 45ms back. Adding tracers to the shoots is known to create a feeling
that bullets travel with limited speed, buying another 3 or so frames (50 ms) back (however,
tracers are more controversial at least at close distances).

While capabilities of such tricks are limited, when dealing with the Input Lag, every bit counts,
so you should consider if they are possible for your game.

[[TODO? – add another diagram to illustrate it and/or add it to further diagrams?]]

RTT

Now let’s take a look at that RTT monster, which is the worst nightmare for quite a few of
MMO developers out there. RTT (=”Round-Trip Time”) depends greatly on the player’s ISP
(and especially on the “last mile”), but even in a very ideal case, there are hard limits on “how
low you can go with regards to RTT”. Very roughly, for RTT and, depending on the player’s
location, you can expect ballpark numbers shown in Table VII.1 (this is assuming the very best
ISPs etc.; getting worse is easy, getting significantly better is usually not exactly realistic):

Player Connection RTT (not accounting for “last mile”)

On the same-city “ring” or “Internet

Exchange” as server (see

[Wikipedia.InternetExchanges], but keep in

mind that going out of the same city will

increase RTT)

~10-20 ms

Inter-city, cities separated by distance D

At the very least, 2*D/ c (c being speed of

light within optical fiber, roughly c /1.5,

or ~2e8 m/s). Practically, add around 20-

1

1

2

fib fib

vacuum

50ms depending on the country.

Trans-US (NY to SF)
At the very least (limited by c) ~42 ms; in

practice – at least 80 ms.

Trans-atlantic (NY to London)
At the very least (limited by c) ~56 ms

[Grigorik2013]; in practice – at least 80 ms.

Trans-pacific (LA to Tokyo)
At the very least (limited by c) ~90 ms, in

practice – at least 120ms.

A Really Long One (NY to Sydney)
At the very least (limited by c) ~160 ms

[Grigorik2013]; in practice – at least 200 ms.

In addition, you need to account for player’s “last mile” as described in Table VII.2:

A dditional “last-mile” RTT

Added by player’s “last mile”:

cable

[Grigorik2013] reports ~25ms, my own experience for games

is about 15-20ms

Added by player’s “last mile”:

DSL

[Grigorik2013] reports ~45ms, my own experience for games

is more like 20-30ms

Added by player’s Wi-Fi ~2-5 ms

Added by player’s concurrent

download
Anywhere from 0 to 300-500ms

Several things to keep in mind in this regard:

If your server is sitting with a good ISP (which it should), it will be pretty close to the
backbone latency-wise. This means that in most of “good” cases, real player’s latency will
be one number from Table VII.1, plus one or more numbers from Table VII.2 (and
server’s “last mile” latency can be written off as negligible); it is still necessary to
double-check it (for example, by pinging from another server).

The numbers above are for hardware servers sitting within datacenters. Virtualized
servers within the cloud tend to have higher RTTs (see Chapter [[TODO]] for further
discussion), with occasional delays (when your cloud neighbour suddenly started to eat
more CPU/bandwidth/…) easily going into multiple-hundreds-of-ms range . BTW,
you can get cloud without virtualization (which will eliminate these additional delays),
more on it in Chapter [[TODO]].

fib

fib

fib

fib

3

3

No, better
bandw idth
doesn't
necessarily
mean better
latency

Within the
same (large)

LAN-based games (with wired LAN having RTTs below 1 ms) cannot be really compared
to MMOs latency-wise. If your MMO needs comparable-to-LAN RTT latency to be
playable – sorry, it won’t happen (but see below about the client-side prediction which
may be able to alleviate the problem in many cases, though at the cost of significant
complications)

No, CDN won’t work for games (at least not those traditional CDNs which are used to
improve latencies for web sites)

And while we’re at it, three things that you’ll certainly need to tell to your players with regards
to RTT/latency:

no, better bandwidth doesn’t necessarily mean better latency (this
will be necessary to tell answering questions such as “how comes
that as soon as I’ve got better 30Mbit/s connection, your servers
started to lag on me?”)

it is easy to show whatever-number-we-want in the client as a
“current latency” number, but comparisons of the numbers
reported by different games are perfectly pointless (this actually is
a Big Fat Argument to avoid showing the numbers at all, though
publishing the number is still a Business Decision).

When saying “it was much better yesterday”, are you sure that
nobody in your household is running a huge download?

 this monster is quietly hiding behind the curtain of LAN until you start to test with real-
world RTTs
 the difference can be attributed to downloads which tend to cause longer RTTs; also

gamers tend to invest in better connectivity

Back to Input Lag

Ok, from Table VII.1 and Table VII.2 we can see that in the very best case (when both your
server and client are connected to the very same intra-city ring/exchange, everything is top-
notch, last mile is a non-overloaded cable, no concurrent downloads running in the vicinity of
the client while playing, etc. etc.) – we’re looking at 35-45ms RTT. When we compare it to our
remaining 40-180ms, we can say “Great! We can have our cake and eat it too, even for
OurFPS!” And it might indeed work (though it won’t be that bright, see complications in
“Accounting for Losses and Jitter” subsection below). On the negative side, it means having a
server on each and every city exchange, and losing (or at least penalizing) lots of players who
don’t have this kind of connectivity .

Within the same (large) country, the best-possible RTT goes up to
around 80-100ms. Which means that with a simple diagram on Fig VII.1
we MIGHT be able to handle OurRPG, but not OurFPS (though again, see
complications below). Country-specific servers are very common, and
are not that difficult to implement and maintain, but they still restrict
flexibility of your players (and also can have adverse effects on “player
critical mass” [[TODO! add discussion on “critical mass” to Chapter I]].
Single-continent servers (with RTTs in the range of 100-120ms) are close

“

2

3

“

country, the
best-possible

RTT goes up to
around 80-

100ms.

cousins of country-specific ones, and are also frequently used for fast-
paced games.

Purely geographically, for US the best server location for a time-critical
game would be somewhere in Arkansas . More realistically (and taking
into account real-world cables), if trying to cover whole US with one
single server, I’d seriously consider placing it at a Dallas or Chicago

datacenter, it would limit the maximum RTT while making the games a bit more fair.

If you want a world-wide game, then maximum-possible RTT goes up to 220ms. Worse than
that, there is also significant difference for different players. While simple data flow shown on
Fig VII.1 might still fly for a relatively slow-paced world-wide RPG (think Sims), but MMOFPS
and other combat-related things are usually out of question.

Data Flow Diagram, Take 2: Fast-Paced Games Specifics
Note: if your game is slow- or medium-paced (including casino-like games such as poker), you can safely
skip this section.

Note 2: if your game is fast-paced (think MMOFPS or MMORPG), the approach described with regards to
Take 2 Diagram, still isn’t likely to produce a game which doesn’t feel “laggy”. However, please keep
reading, as we will discuss the remaining problems, and the ways to deal with them, in Take 3.

Ok, our calculations above seem to show that we can get away with a simplistic diagram from
Fig. VII.1 even for some of fast-paced fps-based games.

Well, actually, we cannot, at least not yet: there is one more important network-related
complication which we need to take into account. This is related to mechanics of the Internet
(and to some extent – to the mechanics of simulation-based games).

Internet is Packet-Based, and Packets can be Lost

First of all, let’s talk about mechanics of the Internet (only those which we need to deal with at
the moment). I’m not going to go into any details or discussions here, let’s just take it as an
axiom that

when the data is transmitted across the Internet, it always
travels within packets,

and each of these packets can be delayed or lost

This stands regardless of exact protocol being used (i.e. whether we’re working on top of
TCP, UDP, or something really exotic such as GRE). In addition, let’s take as another axiom
that

each of these packets has some overhead

“

For TCP the
overhead is 40+
bytes per
packet, f or UDP
– it is usually 28
bytes per packet
(that's not
accounting f or
Ethernet
headers).

For TCP the overhead is 40+ bytes per packet, for UDP – it is usually 28
bytes per packet (that’s not accounting for Ethernet headers, which add
their own overhead). For our current purposes, exact numbers don’t
matter too much, let’s just note that for small updates they’re
substantial.

Now let’s see how these observations affect our game data flow.

Cutting Overhead

The first factor we need to deal with, is that for a fast-paced game
sending out a world update in response to each and every input is not
feasible. This (at least in part) is related to the per-packet overhead
we’ve mentioned above. If we need to send out an update that some PC
has started moving (which can be as small as 8 bytes), adding overhead of
28-40 bytes on top of it (which would make 350-500% overhead) doesn’t
look any good.

That’s at least one of the reasons why usually simulation is made within a pretty much
classical “game loop”, but with rendering replaced with sending out updates:

With this approach, we’re processing all the updates to the “game world” one “network tick”
at a time. Size of the “network tick” varies from one game to another one, but 50ms per tick
(i.e. 20 network ticks/second) is not an uncommon number (though YMMV may vary
significantly(!)).

Note that on the server-side (unlike for client-side game loop from Chapter V) the choice of
different handling for time steps is limited, and it is usually the variation above (the one
waiting for remainder of the time until the next “tick”) which is used on the server-side.
Moreover, usually it is written in ad-hoc-FSM (a.k.a. event-driven) style, more or less along
the following lines:

“

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

while(true) {
 TIMESTAMP begin = current_time();
 process_input();
 update();
 //update() normally includes all the world simulation,
 // including NPC movements, etc.
 post_updates_to_clients();
 //here, we're effectively combining all the world updates
 // which occurred during current 'network tick'
 // into as few packets as possible,
 // effectively cutting overhead
 TIMESTAMP elapsed = current_time()-begin;
 if(elapsed<NETWORK_TICK)
 sleep(NETWORK_TICK-elapsed);
}

If w e w ill
stay w ithin the
simple schema

show n on Fig.
VII.1 – then each

lost packet w ill
mean visible

(and
unpleasant)

ef f ects: on
player's screen

everything w ill
stop f or a

moment, and
then “jump” to

the correct
position w hen

the next packet
arrives.

Accounting for Losses and Jitter

So far so good, but we still didn’t deal with those packet losses and sporadic delays (also
known as “jitter”).

If we won’t do anything (and will stay within the simple schema shown on
Fig. VII.1) – then each lost (or substantially delayed) packet will mean
visible (and unpleasant) effects on the player’s screen: everything will
stop for a moment, and then “jump” to the correct position when the
next packet arrives.

To deal with it we need to introduce a buffer on the client side, so that if
the packet traveling from server to the client is lost or delayed, we have
time to wait for it to arrive (or for its retransmitted copy, sent in case of
packet loss, to arrive). This is very much the same thing which is routinely
done for other jitter-critical stuff such as VoIP.

The delay we need to introduce with this buffer, depends on many
factors, but even with the most aggressive UDP-based algorithms (such
as the ones which re-send the whole state on each network tick, or the
one described at the very end of
[GafferOnGames.DeterministicLockstep], see Chapter [[TODO]] for
further discussion), the minimum we can do is having a buffer of one
network tick to account for one-lost-packet-in-a-row. In practice, the
buffer of around three “network ticks” is usually desirable (that’s for
really aggressive retransmit policies mentioned above).

If going TCP route, we’re speaking about retransmit delays of the order
of RTT, which will usually force us to have buffer delays of the order of
N*RTT (like 3*RTT) , which is substantially higher. These delays-in-
case-of-packet-loss are one of the Big Reasons why TCP is not popular
(to put it mildly) among the developers of fast-paced games. More on it
in Chapter [[TODO]].

One thing which should be noted in this regard, is that to some extent this buffer MAY be
somewhat reduced due to render-ahead buffering used by the rendering engine. It would be
incorrect, however, to say that you can simply subtract the time of render-ahead buffer by the
rendering engine (by default 3 frames=50ms for DirectX) from the time which we need to add
for RTT purposes. Overall, this is one of those things which you’ll need to find out for yourself.

Take 2 Diagram

These two considerations discussed above (one related to overhead and game loop, and

1
2
3
4
5
6
7
8
9

void MyFSM::process_event(TIMESTAMP current_time,
 const Event& event) {
 //'event' contains ALL the messages that came in
 // but are not processed yet
 process_input(event);
 update();
 post_updates_to_clients();
 post_timer_event_to_myself(SLEEP_UNTIL,current_time+NETWORK_TICK);
}

“

4

another related to client-side buffer) lead us to the diagram on Fig VII.2:

If we calculate all the delays on the way (using some not-too-unreasonable assumptions
mentioned on Fig VII.2), we can see that for RTT=100ms overall delay reaches really annoying
350-400ms (as always, YMMV). As “normal” latency tolerances (as discussed above) are within
150-300ms, this in turn means that for the majority of fast-paced simulation games out there,
implementing your system along the lines of this diagram will lead to really “laggy” player
experience .

One additional problem with this approach is that we effectively have our visual frame rate
equal to “network tick”; as “network ticks” are usually kept significantly lower than 60 per
second (in our examples it was 20 per second) – it means that we’ll be rendering at 20fps
instead of 60fps, which is certainly not the best thing visually.

It leads us to the next iteration of our flow diagram, which introduces substantial (and non-

/wp-content/uploads/Fig-VII-2.png

The next
thing w e can do,
is to go beyond
interpolation,
and to do some
extrapolation.

trivial) client-side processing.

Data Flow Diagram, Take 3: Client-Side Prediction and
Interpolation
Note: if your game is slow- or medium-paced (including casino-like games such as poker), you can safely
skip this section too.

So, we have these two annoying problems: one is lag, and another one is client-side frame
rate. To deal with them, we need to introduce some client-side processing. I won’t go into too
much details here; for further discussion please refer to the excellent series on the subject by
Gabriel Gambetta: [Gambetta]; while he approaches it from a bit different side, all the
techniques discussed are exactly the same.

Client-Side Interpolation

The first thing we can do, is related to the client-side update buffer (the one we have just
introduced for Take 2). To make sure that we don’t render at “network tick” rate (but
rendering at 60fps instead), we can (and should) interpolate the data between the “current
frame” (the last one within the update buffer), and “previous frame” in the update buffer. This
will make the movement smoother and we’ll get back our 60fps rendering rate. Such client-
side interpolation is quite a trivial thing and doesn’t lead to any substantial complications.
On the negative side, while it does make movement smoother, it doesn’t help to improve input
lag .

Client-Side Extrapolation a.k.a. Dead Reckoning

The next thing we can do, is to go beyond interpolation, and to do some
extrapolation. In other words, if we have not only object positions, but
also velocities (which can be either transferred as a part of the “World
Update” message or calculated on the client-side), then – in case if we
don’t have the next update yet because the packet got delayed – we can
extrapolate the object movement to see where it would move if nothing
unexpected happens.

The simplest form of such extrapolation can be done by simple
calculation of x1=x0+v0, but can also be more complicated, taking into
account, for example, acceleration. This is known as “dead reckoning”,
though the latter term is used in several similar, but slightly different
cases, so I’ll keep using the term “extrapolation” for the specific thing
described above.

The benefit of such extrapolation is that we can be more optimistic in our buffering, and not
to account for the worst-case, when 3 packets are lost (extrapolating instead in such rare
cases). In practice it often means (as usual, YMMV) that we can reduce the size of our buffer
down to one outstanding frame (so at each moment we have both “current frame” and
“previous frame”, but nothing else).

Running into the W all, and Server Reconciliation

“

What if w hen
w e're

extrapolating
NPC's

movement, he
runs into the

w all?

On the flip side, unlike interpolation, extrapolation causes significant
complications. The first set of complications is about internal
inconsistencies. What if when we’re extrapolating NPC’s movement, he
runs into the wall? If this can realistically happen within our
extrapolation, causing visible negative effects, we need to take it into
account when extrapolating, and detect when our extrapolated NPC
collides, and maybe even to start an appropriate animation. How far we
want to go on this way – depends (see also “Client-Side Prediction”
section below), but it MAY be necessary.

The second set of extrapolation-related issues is related to so-called
“server reconciliation”. It happens when the update comes from the
server, but our extrapolated position is different from server’s one. This
difference can happen even if we’ve faithfully replicated all the server-
side logic on the client side, just because we didn’t have enough

information at the point of our extrapolation. For example, if one of the other players has
pressed “jump” and this action has reached the server, on our client-side we won’t know
about it at least for another 100ms or so, and therefore our perfectly faithful extrapolation
will lead to different results than the server’s one. This is the point when we need to
“reconcile” our vision of the “game world” with the server-side vision. And as our server is
authoritative and is “always right”, it is not that much a reconciliation in a traditional sense,
but “we need to make client world look as we’re told”.

On the other hand, if we implement “server reconciliation” as a simple fix of coordinates
whenever we get the authoritative server message, then we’ll have a very unpleasant visual
“jump” of the object between “current” and “new” positions. To avoid this, one common
approach (instead of jumping your object to the received position) is to start new prediction
(based on new coordinates) while continuing to run “current” prediction (based on currently
displayed coordinates), and to display “blended” position for the “blending period” (with
“blended” position moving from “current” prediction to “new” prediction over the tick). For
example: displayed_position(dt) = current_predicted_position(dt) * (1-alpha(dt)) +
new_predicted_position(dt) * alpha(dt), where alpha(t) = dt/BLENDING_PERIOD, and 0 <=
dt < BLENDING_PERIOD.

[[TODO: other methods?]]

Client-Side Prediction

With client-side interpolation and client-side extrapolation, we can reduce latencies a bit; in
our example on Fig. VII.2 we should be able to get back around 50ms (and also get real frame
rate up to 60fps). However, even after these improvements it is likely that the game will feel
“sluggish” (in our example, we’ll have the overall input lag at 300+ms, which is still pretty bad,
especially for a fast-paced game).

To improve things further, it is common to use “Client-Side Prediction”.
The idea here is to start moving player’s own PC as soon as the player has
pressed the button, eliminating this “sluggish” feeling completely.
Indeed, within the client we do know what PC is doing – and can show it;
and if we’re careful enough, our prediction will be almost-the-same as the
server authoritative calculation, at least until the PC is hit by something

“

The idea here
is to start
moving player's
ow n PC as soon
as the player
has pressed the
button,
eliminating this
“sluggish”
f eeling
completely.

that has suddenly changed trajectory (or came out of nowhere) within
these 300ms or so.

On the negative side, Client-Side Prediction causes quite serious
discrepancies between “game world as seen by server” and “game world
as seen and shown by client”. In a sense, it is similar to the “reconciliation
problem” which we’ve discussed for “Client-Side Extrapolation”, but is
usually more severe than that (due to significantly larger time gap
between the extrapolation and reconciliation). One of the additional
things to be kept in mind here, is that keeping a list of “outstanding” (not
confirmed by server yet) input actions, and re-applying them after
receiving every authoritative update is usually necessary, otherwise quite
unpleasant visual effects can arise (see [Gambetta.Part2] for further
discussion of this phenomenon).

In addition, the problem of PC-running-into-the-wall (once again, in a manner similar to
client-side extrapolation, but with more severe effects due to larger time gap) usually needs
to be addressed.

To make it even more complicated, inter-player interactions can be not as well-predictable
as we might want, so making irreversible decisions (like “the opponent is dead because I hit
him and his health dropped below zero”) purely on the client side is usually not the best idea
(what if he managed to drink a healing potion which you don’t know about yet as the server
didn’t tell you about it?). In such cases it is better to keep the opponent alive on the client
side for a few extra milliseconds, and to start the rugdoll animation only when the server does
say he’s really dead; otherwise visual effects like when he was starting to fall down, but then
sprang back to life, can be very annoying.

Take 3 Diagram

Adding these three client-side things gets us to the following Fig VII.3:

“

As we can see, processing of the authoritative data coming from server is still quite slow
(despite an about 50ms improvement due to reducing size of client-side buffer, which
became possible due to relying on client-side extrapolation when the server packet is
delayed). But the main improvement in perceived responsiveness for those-actions-initiated-
by-player (and it is these actions which cause the “laggish” feeling, as timing of the actions by
the others is not that obvious) comes from the Client-Side Prediction “shortcut”. Client-Side
Prediction is processed purely on the client-side, from receiving controller input, through
client-side prediction, and directly into rendering, without going to server at all, which (as
you might have expected) helps latency a damn lot. Of course, it is just a “prediction”, but if it
is 99% correct 99% of the time (and in the remaining cases the difference is not too bad) – it
is visually ok.

/wp-content/uploads/Fig-VII-3.png

The
remaining
problem is that
there is still a
signif icant (and
unavoidable)
lag betw een any
update-made-
by-server and
the moment
w hen our
player w ill see
it.

So, with Fig VII.3 (and especially with client-side prediction) we’ve
managed got quite an improvement at least for those actions initiated by
PC; at 112ms the game won’t feel too sluggish. But can we say that with
these numbers, everything is really good now? Well, sort of, but not
exactly. The remaining problem is that there is still a significant (and
unavoidable) lag between any update-made-by-server and the moment
when our player will see it. This (as [Gambetta.Part4] aptly puts it) is
similar to living in the world where speed of light is slow, so we see what’s
going on, with a perceivable delay.

In turn, for some Really Fast-Paced games (think shooters) it leads to
unpleasant scenarios when I’m as a player making a perfect shoot from a
laser weapon, but I’m missing because I’m actually aiming at the
position-of-the-other-player which I can see, and it is an inherently old
position of the player (behind by 200ms or so even compared to server’s
authoritative world, and even more compared to his own vision). And this
is the point where we’re getting into realm of controversy, known as Lag
Compensation.

Lag Compensation

The things we’ve discussed above, are very common, and are known to
work well. The next thing, known as Lag Compensation (see also [Gambetta.Part4]), is much
more controversial.

Lag Compensation is aimed to fix the problem outlined above, the one when I’m making a
perfect shot, and missing because I’m actually aiming at the old position of the other player.

The idea behind Lag Compensation is that the server (keeping an authoritative copy of
everything) can reconstruct the world at any moment, so when it receives your packet saying
you’re shooting with your timestamp (and all the other data such as angle at which you’re aiming
etc. etc.) , it can reconstruct the world at the moment of your shot (even according to your
representation), and make a judgement whether you hit or missed, based on that information.
This can be used to compensate for the delay, and therefore to make your “clean shots” much
better.

On the other hand (in addition to some other oddities described in [Gambetta.Part4]), Lag
Compensation is wide open to cheating . If I can send my timestamp, and server will
implicitly trust it – I am able to cheat the server, making the shot a bit later while pretending
it was made a bit earlier.

In other words, Lag Compensation can be used to
compensate not only for Network Lag, but also for Player

Lag (poor player reaction), as they’re pretty much
indistinguishable from the server point of view

While effects of cheating can be mitigated to a certain extent by putting a limit on “how much
client timestamp is allowed to differ from server timestamp”, it is still cheating (and as soon
as the potential for cheating is gone, so is any benefit from compensation).

“

That’s exactly why Lag Compensation is controversial, and I suggest to avoid it as long as
possible. If you cannot avoid it – good luck, but be prepared to cheaters starting to abuse
your game as soon as you’re popular enough.

On the other hand, three client-side techniques above (Client-Side Interpolation, Client-Side
Extrapolation, and Client-Side Prediction) do not make server trust the client, and are
therefore inherently impossible to this kind of abuse.

There Are So Many Options! W hich ones do I need?

With all these options on the table, an obvious question is “hey, what exactly do I need for my
game?” Well, this is a Big Question, with no good answer until you try it for your specific game
(over real link and/or over latency simulator). Still, there are some observations which may
help to get a reasonable starting point:

if your game is slow-paced or medium-paced (i.e. actions are in terms of “seconds”) – all
chances are that you’ll be fine with the simplest dataflow (the one shown on Fig VII.1)

if your game is MMORPG or MMOFPS – you’ll likely need either the dataflow on Fig VII.2,
or the one on Fig VII.3

in this case, it is often better to start with the simpler one from Fig VII.2 and add
things (such as Client-Side Interpolation, Client-Side Extrapolation, Client-Side
Prediction) gradually, to see if you’ve already got the feel you want without going
into too much complications

if after adding all the “Client-Side *” stuff you still have issues – you may need to
consider Lag Compensation, but beware of cheaters!

for really serious development, you may need to go beyond these techniques
(and/or combine them in unusual ways), but these will probably be too game-
specific to discuss them here. In any case, what can be said for sure is that you
certainly need to know about the ones discussed in this Chapter, before trying to
invent something else .

[[To Be Continued…
This concludes beta Chapter VII(a) from the upcoming book
“Development and Deployment of Massively Multiplayer Games (from
social games to MMOFPS, with social games in between)”. Stay tuned for
beta Chapter VII(b), “Publishable State”]]

[–] References
[Wikipedia.InputLag] “Input Lag”, Wikipedia
[LippsEtAl] David B. Lipps, Andrzej T . Galecki, James A. Ashton-Miller, “On the Implications of
a Sex Difference in the Reaction Times of Sprinters at the Beijing Olympics”, PLOS ONE
[TomsHardware.GraphicsCardsMyths] Filippo L. Scognamiglio Pasini, “The Myths Of
Graphics Card Performance: Debunked”, tom's Hardware
[Leadbetter2009] Richard Leadbetter, “Console Gaming: The Lag Factor”
[DisplayLag.Display-Database] “Display Input Lag Database”
[Wikipedia.InternetExchanges] “List of Internet exchange points by size”
[Grigorik2013] Ilya Grigorik, “High Performance Browser Networking”, Chapter 1
[GafferOnGames.DeterministicLockstep] Glenn Fiedler, “Deterministic Lockstep”

https://en.wikipedia.org/wiki/Input_lag
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026141
http://www.tomshardware.com/reviews/graphics-card-myths,3694-4.html
http://www.eurogamer.net/articles/digitalfoundry-lag-factor-article
http://www.displaylag.com/display-database/
https://en.wikipedia.org/wiki/List_of_Internet_exchange_points_by_size
http://chimera.labs.oreilly.com/books/1230000000545/ch01.html
http://gafferongames.com/networked-physics/deterministic-lockstep/

« MMOG Serv er-Side. Programming Languages

 MMOG: W orld States and Reducing Traffic »

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: client, game, multi-player, network, protocol, server

Copyright © 2014-2016 ITHare.com

[Gambetta] Gabriel Gambetta, “Fast-Paced Multiplayer”
[Gambetta.Part2] Gabriel Gambetta, “Fast-Paced Multiplayer (Part II): Client-Side Prediction
and Server Reconciliation”
[Gambetta.Part4] GabrielGambetta, “Fast-Paced Multiplayer (Part IV): Headshot! (AKA Lag
Compensation)”

http://www.gabrielgambetta.com/fpm1.html
http://www.gabrielgambetta.com/fpm2.html
http://www.gabrielgambetta.com/fpm4.html
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/mmog-server-side-programming-languages/
http://ithare.com/mmog-world-states-and-reducing-traffic/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/network/
http://ithare.com/tag/protocol/
http://ithare.com/tag/server/

	MMOG. RTT, Input Lag, and How to Mitigate Them
	Data Flow Diagram, Take 1
	Input Lag: the Worst Nightmare of an MMO developer
	Input Lag: User Expectations
	Input Lag: How Much We Have Left for MMO
	Input Lag: Taking a Bit Back
	RTT
	Back to Input Lag

	Data Flow Diagram, Take 2: Fast-Paced Games Specifics
	Internet is Packet-Based, and Packets can be Lost
	Cutting Overhead
	Accounting for Losses and Jitter
	Take 2 Diagram

	Data Flow Diagram, Take 3: Client-Side Prediction and Interpolation
	Client-Side Interpolation
	Client-Side Extrapolation a.k.a. Dead Reckoning
	Running into the Wall, and Server Reconciliation
	Client-Side Prediction
	Take 3 Diagram
	Lag Compensation
	There Are So Many Options! Which ones do I need?

	[[To Be Continued…
	[–]References
	Acknowledgement

