
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
MMOG. Point-to-Point Communications and non-
blocking RPCs
posted February 8, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VII(c) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

After we’ve discussed Publishable State, the next thing we’ll need for our MMO is
Point-to-Point communications. While Publishable State is mostly about servers
communicating with clients, Point-to-Point communications can happen either
between client and server, or between two servers. These two types of Point-to-
Point communications have quite a bit in common, but there are also substantial
differences.

Note that differences between TCP and UDP are still beyond the scope until
Chapter [[TODO]]; for now we’re speaking of what we need, and not about how to
implement it.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

RPCs
Regardless of the nature of Point-to-Point communications (whether it’s being
between client and server, or between two servers), they share certain common
properties.

In particular, it is common for games to implement point-to-point
communications as non-blocking Remote Procedure Calls (RPCs). While this is not
required (and you can use simple message exchange instead – with either hand-
written or IDL-based marshalling), non-blocking RPCs tend to speed up
development significantly.

It should be noted, however, that while non-blocking
RPC are perfectly viable for games, you Really

SHOULD keep away from blocking RPC (as in DCE
RPC/COM/CORBA)

The reason for it is the following. With games, you SHOULD use event-driven/FSM
programming (if I didn’t manage to convince you about it in Chapter V, just trust
most of game developers out there, and take a note of most of them using FSMs at
least to some extent; in particular, classical game loop and simulation loop are
FSMs). And with event-driven FSMs, any blocking operation (especially the one
which involves waiting for remote entity) is a Big No-No.

/wp-content/uploads/BB_part078_BookChapter007c_v1.png

Implementing Non-Blocking RPCs
To implement non-blocking RPCs, you need a way to specify
signatures of your remotely-callable functions; such
specification defines the interface (and often protocol, though
see more on encodings in [[TODO!]] section below) between
RPC caller and RPC callee. Sometimes (like in Unity), it is done
by adding certain attributes ([RPC]/[ClientRpc]/[Command]
method attributes in Unity) to existing functions/methods.

However, usually I prefer to have my own explicit IDL (with an
IDL compiler) instead. The reason for this preference for a
separate IDL is that whenever we specify RPC signatures right
in the code, it means that having them in the code-written-in-
a-different-language, we’ll need at least to specify them once
again in the second language (what makes code maintenance
extremely error-prone).

We’ll discuss implementation of your own IDL in the [[TODO]]
section, but for the purposes of our current discussion it
doesn’t really matter whether we’re using intra-language RPC
specifications (like in Unity), or our own external IDL (as we’ll
discuss below).

 in theory, you could use one language as an IDL for another one, but I haven’t seen
such things (yet?)

Specifics of Non-blocking RPCs
Non-blocking RPCs have some peculiarities, both for implementing them, and for
using them. In general, there are two cases for non-blocking RPCs.

The first case is a non-blocking RPC, which returns void (and can’t throw any
exceptions). For such void RPCs, everything is simple – caller just marshals RPC
parameters, and sends a message to the callee, and the callee unmarshals it and
executes RPC call, that’s about it. From all the points of view (except for pure
syntax), calling such an RPC is the same as sending a message (with all the
differences being of purely syntactic nature).

A typical example of such an RPC (as defined in an IDL) is something along the
following lines:

STRUCT Input {
 bool left;

IDL
An interf ace
description
language or
interf ace
def inition
language (IDL),
is a
specif ication
language used
to describe a
sof tw are
component's
application
programming
interf ace (API).

— Wikipedia —

1

1

https://en.wikipedia.org/wiki/Interface_description_language

Non-void
RPCs are

signif icantly
more

complicated to
implement, and

most of the
popular game

engines out
there do NOT
support them

 bool top;
 bool right;
 bool bottom;
 bool shift;
 bool ctrl;
};

void move_me(Input in);

Non-void RPCs

The second (and much more complicated) case for RPCs is an RPC which either
returns a value, or is allowed to throw an exception (or both). An example IDL for
such a non-void RPC is the one from Chapter VI:

int dbGetAccountBalance(int user_id);

These non-void RPCs are significantly more complicated to
implement, and most of the popular game engines out there
do NOT support them (see Chapter [[TODO]] for more
information about Unity/Photon and Unreal Engine).

The main issue with implementing non-void RPCs is for the
caller to specify what to do when the function returns (or
throws an exception). There are many ways of doing it, they
were discussed in Chapter VI, section “Asynchronous
Processing for Finite State Machines/Actors: from plain event
processing to Futures (with OO and Lambda Call Pyramids in
between)” (with FSMFutures being my personal favorite at the
moment). On the other hand, while implementing them is
difficult, once they are available, they do simplify development
significantly, so you will want to use them if your engine
supports them.

Whenever your engine doesn’t support
non-void-RPCs, you’ll usually need to make

another RPC call in the opposite direction when
you’re done

In this case, our last example will need to be rewritten along the following lines:

//Game World Server to DB Server:
void dbGetAccountBalance(FSMID where_to_reply, int user_id);

//DB Server to Game World Server:

“

In other
w ords, you can
w rite your code
'as if ' all-your-
code-w ithin-
the-same-FSM
executed w ithin
the same thread

void gameWorldGotAccountBalance(int user_id, int balance);

or in more general manner:

//Game World Server to DB Server:
void dbGetAccountBalance(FSMID where_to_reply, int request_id, int user_id);

//DB Server to Game World Server:
void gameWorldGotAccountBalance(int request_id, int balance);

While this will work, it is quite cumbersome and inconvenient (substantially worse
than even Take 2 from Chapter VI).[[TODO! add these RPC to Chapter VI as “Take
1a”]]

Same-thread operation

Another thing to understand about non-blocking RPCs is that
due to non-blocking nature, other things can happen within
the same FSM while the RPC is executed. This can be seen as
either blessing (as it allows for essentially parallel execution
while staying away from any thread synchronization), or a
curse (as it complicates understanding), but needs to be kept
in mind at all the times you are dealing with non-blocking
RPCs. One positive thing to note in this regard is that for most
sane implementations, and regardless of using any of the ways
to report back described in Chapter VI, you don’t need to care
about thread synchronization (as all the
callbacks/lambdas/futures will be called in the context of the
same thread). In other words, you can write your code “as if”
all-your-code-within-the-same-FSM executed within the same
thread (and whether it will be actually the same thread or not,
is not that important); from a bit different perspective, you
can think of all the callbacks “as if” they’re essentially the same as co-routines (but
using a different syntax).

Client-to-Server and Server-to-Client Point-to-Point
communications
Now, as we’ve discussed the similarities between point-to-point communications,
we need to describe differences. And arguably the most important difference
between Client-to-Server and Server-to-Server communications, is related to
disconnects. As a rule of thumb, for Server-to-Server communications the
disconnects are extremely rare, and all the disconnects are transient (that is,
unless your whole site is down). It means that we can expect that they are restored
really quickly, which in turn means that we can try to hide temporary loss of
connectivity from application layer. On the other hand, for Client-to-Server (and

“

How ever, as
soon as w e

realize that
packets can be
lost, handling

inputs becomes
a bit dif f erent.

Server-to-Client) communications, this “restored really quickly” observation
doesn’t stand, and dealing with disconnects becomes an important part of
application logic.

Let’s speak about Client-to-Server and Server-to-Client communications first.

Inputs
One thing which you’ll inevitably need to transfer from client to server, is player
inputs. For a non-simulation game (think blackjack, stock exchange, or social
game), everything is simple: you’ve got an input – you’re sending it to the server
right away.

For simulation games, however, it is not that trivial. Traditionally, simulation-
based games usually operate in terms of “simulation ticks”, and usually single-
player games are just polling the state of keyboard/mouse/controller on each tick.
As a result, when moving from a single-player simulation game to the network one,
it is rather common to mimic this behaviour just by client sending state of
(keyboard+mouse+controller) to the server on each tick (which becomes a “network
tick”). An alternative (also pretty common) approach would send only changes to
this (keyboard+mouse+controller) state; this can be done either as soon as the state
is changed, or again on “tick”.

As long as there are no disconnects (nor packet loss), there is
no that much difference between these approaches. However,
as soon as we realize that packets can be lost, handling inputs
becomes a bit different.

If we’re transferring state of player’s input devices on each
tick, then in case of lost packet PC will effectively stop on the
server-side; moreover, at the same time, if we implement
Client-Side Prediction, it will be running on the client side.

On the other hand, if we’re transferring only changes to
keyboard/mouse/controller state, then in case of packets
being lost, our PC will keep running for some time (until we
detect disconnect) even if player has already released the
button; this may potentially lead to PC running off the cliff

even if the player’s actions didn’t cause it (just by disconnect happened at an
unfortunate time).

A kind of “hybrid” approach is possible if we’re using client-to-server
acknowledgment packets (which will arise in a pretty much any game world state
publishing schema, see Chapter [[TODO]] for further discussion) to distinguish
between “player is still keeping the button pressed” and “we have no idea, as the

“ 2

For example,
you have a
Good-Bad-Ugly-
style shootout,
and compensate
f or the lag, then
the Bad guy,
w hile having
w orse reaction,
could
compensate f or
it by sending
“shoot” input
packet w ith an
input
timestamp
w hich is 50ms
earlier than the

packet got lost” situations. In other words, if an acknowledgment arrived, but
without any information about the keyboard state change – then we know for sure
what is going on on the client side, if there is no acknowledgment – then
something is wrong, so our server can stop PC before he runs off the cliff.

Overall, there is no one universal answer to these questions, so you’ll basically need
to pick one schema, try it, and see if it works and feels fine for your purposes in
case of pretty bad connections.

 that is, beyond capabilities of input buffer [[TODO!: add input buffer to Fig
VII.2/VII.3]]
 and if keyboard state change has happened, it can and SHOULD be combined with

the acknowledgment IP packet to save on bandwidth, but this is a bit different
story, discussed in Chapter [[TODO]]

Input Timestamping

One issue which is often associated with inputs, is client-side
input timestamp (in practice, usually it will be a tick-stamp).
This is indeed necessary to facilitate things such as Lag
Compensation described in “Lag Compensation” subsection
above. On the other hand, as soon as server starts to trust this
timestamp, this trust (just as about any kind of trust out there)
can be abused. For example, if within your game you have a
Good-Bad-Ugly-style shootout, and compensate for the lag,
then the Bad guy, while having worse reaction, could
compensate for it by sending “shoot” input packet with an
input timestamp which is 50ms earlier than the real time,
essentially gaining an unfair advantage for these 50ms. In
general, such cheating (regardless of way of implementing it)
is a fundamental problem of any kind of lag compensation, so
you should be really sure how to handle various abuse
scenarios before you introduce it.

 no, measuring pings instead of relying on input timestamps
doesn’t prevent the cheat, it just makes the cheat a bit more
complicated

“Macroscopic” Client Actions

In addition to sending bare input to server, client usually
needs to implement some actions which go beyond it.

3

2

3

“

4

4

real time,
essentially
gaining an
unf air
advantage f or
these 50ms.

Examples of such “macroscopic” actions include such
sequences of inputs as:

player looking at object (usually processed purely on
client-side)

client showing HUD saying that “Open” operation is
available because object under the cursor is container
(again, processed purely on the client-side)

client pressing “Action” button (which means “Open” in this context)

client showing container inventory (obtained via an RPC call, or taken from
Publishable State)

player choosing what to take out

only then client invoking a Client-to-Server RPC such as
take_from_container(item_id, container_id)

For such RPC calls as take_from_container(), disconnect during the call can be
simply ignored in most cases (so that player will need to press a button again
when/if the connection is restored)

Another set of “macroscopic” actions (usually having even longer chains of events
before RPC call is issued) is related to dialog-based client-side interactions such
as in-game purchases. In these cases, all the interactions (except, maybe, for some
requests for information from the server) usually stay on the client-side until the
player decides to proceed with the purchase; when this happens, Client-to-Server
RPC call containing all the information necessary to proceed with the purchase, is
issued.

For such RPC calls, handling of disconnect during an RPC call is not that obvious. If
you want to be player-friendly (and usually you should be), you need to consider
two scenarios. The first one is when the disconnect is transient, and client is able to
reconnect soon; then, you need a mechanism to detect whether your RPC call has
reached the server, to get the result if it did, and to re-issue the call if it didn’t; this
would allow to make disconnect look really transient for the player, and to show
the result of the purchase as if the disconnect has never occurred. To implement it,
you’ll need to implement both re-sending of RPC call on the client side, and dealing
with duplicates on the server-side, in a manner similar to the one described in
“Server-to-Server” Communications section below.

The second
scenario occurs
w hen the RPC
call is
interrupted by
disconnect
bef ore
obtaining the
reply, and
disconnect
takes that long
that client gets
closed (or
server gets
restarted).

The second scenario occurs when the RPC call is interrupted
by disconnect before obtaining the reply, and disconnect takes
that long that client gets closed (or server gets restarted). In
this case, the only things we can practically do for the player,
are not directly related to the communication protocols (but
they still need to be done). Two most common features that
help to make player not that unhappy in this second scenario,
are (a) to send her an e-mail if the “purchase” RPC call has
reached the server (it doesn’t help to vent frustration if the call
didn’t reach the server), and (b) to provide her with a way to
see the list of all her purchases from the client when she’s back
online (which we need to do anyway if we want to be player-
friendly).

Server-to-Client

While server does send a lot of information to client (both as a
part of Publishable State, and as replies to Client-to-Server
RPC calls), it is not too common to call RPC from the server
side.[[TODO!: add note to Chapter VI/”Asynchronous” that it is
not too common to do it this way, and that it is usually client-
side-driven rather than server-side-driven]]

On the other hand, in some cases such RPC calls (especially
void RPC calls without the need to process reply on the server
side) are helpful. One such example is passing pocket cards to the client in a poker
game. This will allow to exclude pocket cards from Publishable State (which in
absence of Interest Management allows for rampant cheating, as was described in
“Interest Management: Traffic Optimization AND Preventing Cheating” section
above).

Server-to-Server Communications
As noted above, from the point of application layer Server-to-Server
communications can be made seamless (hiding disconnects, including those
resulting from FSM relocations, from application layer). However, this comes at the
cost of infrastructure level doing this work behind the scene. One fairly common
protocol which does achieve seamless handling of disconnects, implements two
related but distinct features.

First, as noted above, we’ll be usually dealing with “non-blocking RPC calls” anyway.
To support some kind of callback (whether being OO, lambda, or future), we’ll need
to keep a list of “outstanding RPC requests” (with their respective IDs) on the caller
side anyway. And as soon as we have this list of “outstanding RPC calls”, we have
sufficient information to re-send RPC request in case of lost packet/disconnect.

“

5

As soon as w e
have these tw o
parts of
processing – w e
can say that our
Server-to-
Server
communication
is tolerant to all
kinds of
transient inter-
server
disconnects.

On the other hand, this technique, while guaranteeing that we
will get at least one RPC request on the callee side for each RPC
call on the caller side, doesn’t guarantee that it will be the only
one. In other words, if implementing only the logic described
above, duplicate RPC calls on callee side can happen for a
single RPC call on the caller side. While making all the RPC
calls idempotent would solve this problem, in practice making
sure that each and every call is idempotent at the application
layer, is not exactly realistic.

That’s why a second part of processing (this time – on the
callee side) needs to be added. For example, we can make the
callee side keep the list of “recently-processed RPC
request_ids” (with associated replies), and if some request
with an ID from this list comes in – we should just to provide
the associated reply without calling anything on the callee
side. This scenario may legitimately happen if the connection
was lost-and-restored after the request was received, but
before the reply was acknowledged, but the handling
mentioned above, guarantees that everything is handled “as if”

disconnect has never happened.

As soon as we have these two parts of processing (in practice,
it will be a bit more complicated, as information on “which
replies can be dropped from the list” will need to be
communicated too, plus, most likely, we’ll need to implement
handshakes to distinguish between new connection and the
broken one) – we can say that our Server-to-Server
communication is tolerant to all kinds of transient inter-
server disconnects. This is necessary not only to deal with
inter-server disconnects at TCP level (which are extremely
rare in practice), but is also one of prerequisites to deal with
scenarios when we’re restoring/moving an FSM (see Chapter
VI, section “Failure Modes and Effects” for details).

An alternative (similar, but not identical) way of dealing with
such transient-disconnect issues, is to create two “guaranteed
delivery” message streams (going into opposite directions),
with each of the streams keeping its own list of
“unacknowledged messages”, and re-sending them on loss-
and-restore of underlying connection; on the receiving side, a
simple “last ID processed” is sufficient to filter out all the
duplicates.

Idempotence
Idempotence is
the property of

certain
operations in
mathematics

and computer
science, that

can be applied
multiple times

w ithout
changing the

result beyond
the initial

application.
— Wikipedia —

“

6

5

https://en.wikipedia.org/wiki/Idempotence

« MMOG: W orld States and Reducing Traffic

 as noted in Chapter VI, section “On Inter-Server Communications”, we’ll probably
use TCP for inter-server communications anyway, so such re-send will need to
happen only on TCP disconnect/reconnect
 that is, assuming that message IDs are guaranteed to be monotonous

[[To Be Continued…
This concludes beta Chapter VII(c) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VII(d), “IDL:
Encodings, Mappings, and Backward Compatibility”]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: client, game, multi-player, network, protocol, RPC, server

Copyright © 2014-2016 ITHare.com

5

6

/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/mmog-world-states-and-reducing-traffic/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/network/
http://ithare.com/tag/protocol/
http://ithare.com/tag/rpc/
http://ithare.com/tag/server/

	MMOG. Point-to-Point Communications and non-blocking RPCs
	RPCs
	Implementing Non-Blocking RPCs
	Specifics of Non-blocking RPCs
	Non-void RPCs
	Same-thread operation

	Client-to-Server and Server-to-Client Point-to-Point communications
	Inputs
	Input Timestamping
	“Macroscopic” Client Actions
	Server-to-Client

	Server-to-Server Communications
	[[To Be Continued…
	Acknowledgement

