
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
IDL: Encodings, Mappings, and Backward Compatibility
posted February 15, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VII(d) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

As we’ve discussed those high-level protocols we need, I mentioned Interface
Definition Language (IDL) quite a few times. Now it is time to take a closer look at
it.

Motivation for having IDL is simple. While manual marshalling is possible, it is a
damn error-prone (you need to keep it in sync at least at two different places – to
marshal and to unmarshal), not to mention too inconvenient and too limiting for
further optimizations. In fact, the benefits of IDL for communication were realized
at least 30 years ago, which has lead to development of ASN.1 in 1984 (and in 1993 –
to DCE RPC).

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

How ever, f or
most game and
game-like
communications
I still pref er to
have my ow n
IDL.

These days in game engines, quite often a (kinda) IDL is a part
of the language/engine itself; examples include
[RPC]/[Command]/[SyncVar] tags in Unity 5, or
UFUNCTION(Server)/UFUNCTION(Client) declarations in
Unreal Engine 4. However, for most game and game-like
communications I still prefer to have my own IDL. The reason
for it is two-fold: first, standalone IDL is inherently better
suited for cross-language use, and second, none of in-
language IDLs I know are flexible enough to provide reasonably
efficient compression for games; in particular, per-field
Encodings specifications described below are not possible

 and even if Encodings (along the lines described below) are
implemented as a part of your programming language, they
would make it way too cumbersome to read and maintain

IDL Development Flow
With a standalone IDL (i.e. IDL which is not a part of your programming language),
development flow (almost?) universally goes as follows:

you write your interface specification in your IDL

“
1

1

/wp-content/uploads/BB_part079_BookChapter007d_v2g.png

Modif ying
generated code
usually
qualif ies as a
Really Bad Idea

IDL does NOT contain any implementation, just function/structure
declarations

you compile this IDL (using IDL compiler) into stub functions/structures in
your programming language (or languages)

for callee – you implement callee-side stub functions in your programming
language

for caller – you call the caller-side stub functions (again in your programming
language). Note that programming language for the caller may differ from the
programming language for callee

One important rule to remember when using IDLs is that

Never Ever make manual modifications to the code
generated by IDL compiler.

Modifying generated code will prevent you from modifying the
IDL itself (ouch), and usually qualifies as a Really Bad Idea. If
you feel such a need to modify your generated code, it means
one of two things. Either your IDL declarations are not as you
want them (then you should modify your IDL and re-compile
it), or your IDL compiler doesn’t do what you want (then you
need to modify your IDL compiler).

Developing your own IDL compiler

Usually I prefer to develop my own IDL compiler. From my
experience, costs of such development (which are of the order
of several man-weeks provided that you’re not trying to be
overly generic) are more than covered with additional flexibility (and ability to
change things when you need) it brings to the project.

With your own IDL compiler:

whenever you feel the need to change marshalling to a more efficient one
(without any changes to the caller/callee code) – no problem, you can do it

whenever you need to introduce an IDL attribute to say that this specific
parameter (or struct member) should be compressed in a different manner
(again, without any changes to the code) – no problem, you can add it

whenever you want to add support for another programming language – no
problem, you can do it

“

2

you can easily have ways to specify the technique to extend interfaces (so that
extended interfaces stay 100% backwards-compatible with existing
calls/callees), and to have you IDL compiler check whether your two versions
of the IDL guarantee that the extended interface is 100% backwards-
compatible. While techniques to keep backward compatibility are known for
some of the IDLs out there (in particular, for ASN.1 and for Google Protocol
Buffers), the feature of comparing two versions of IDL for compatibility, is
missing from all the IDL compilers I know[[IF Y OU KNOW A N IDL COMPILER
W HICH HA S A N OPTION TO COMPA RE TW O V ERSIONS OF IDL FOR
BA CKW A RD COMPA TIBILITY – PLEA SE LET ME KNOW]]

Now to the queston “how to write your own IDL compiler”. Very briefly, the most
obvious and straightforward way is the following:

write down declarations you need (for example, as a BNF). To start with your
IDL, you usually need only two things:

declaring structures

declaring RPCs

in the future, you will probably want more than that (collections being
the most obvious example); on the other hand, you’ll easily see it when it
comes

then, you can re-write your BNF into YACC syntax

then, you should be able to write the code to generate
Abstract Syntax Tree (AST) within YACC/Lex (see the
discussion on YACC/Lex in Chapter VI).

As soon as you have your AST, you can easily generate
whatever-stubs-you-want.

 see section “Publishable State: Delivery, Updates, Interest
Management, and Compression” above for discussion of
different compression types

IDL + Encoding + Mapping
Now, let’s take a look at the features which we want our IDL to
have. First of all, we want our IDL to specify protocol that goes
over the network. Second, we want to have our IDL compiler to
generate code in our programming language, so we can use
those generated functions and structures in our code, with
marshalling for them already generated.

AST
In computer
science, an
abstract syntax
tree (AST), or
just syntax tree,
is a tree
representation
of the abstract
syntactic
structure of
source code
w ritten in a
programming
language.

— Wikipedia —

2

https://en.wikipedia.org/wiki/Abstract_syntax_tree

When looking at existing IDLs, we’ll see that there is usually one single IDL which
defines both these things. However, for a complicated distributed system such as
an MMO, I suggest to have it separated into three separate files to have a clean
separation of concerns, which simplifies things in the long run.

The first file is the IDL itself. This is the only file which is strictly required. Other
two files (Encoding and Mapping) should be optional on per-struct-or-function
basis, with IDL compiler using reasonable defaults if they’re not specified. The idea
here is to specify only IDL to start working, but to have an ability to specify better-
than-default encodings and mappings when/if they become necessary. We’ll see an
example of it a bit later.

The second file (“Encoding”) is a set of additional declarations
for the IDL, which allows to define Encodings (and
IDL+Encodings effectively define over-the-wire protocol). In
some sense, IDL itself is similar to ASN.1 language as such, and
IDL encodings are similar to ASN.1 “Encoding Rules”. IDL
defines what we’re going to communicate, and Encodings
define how we’re going to communicate this data. On the other
hand, unlike ASN.1 “Encoding Rules”, our Encodings are more
flexible and allow to specify per-field encoding if necessary.

Among other things, having Encoding separate from IDL
allows to have different encodings for the same IDL; this may
be handy when, for example, the same structure is sent both to
the client and between the servers (as optimal encodings may
differ for Server-to-Client and Server-to-Server
communications; the former is usually all about bandwidth,
but for the latter CPU costs may play more significant role, as
intra-datacenter bandwidth usually comes for free until
you’re overloading the Ethernet port, which is not that easy
these days).

The third file (“Mapping”) is another set of additional
declarations, which define what kind of code we want to generate to use for our
programming language. The thing here is that the same IDL data can be “mapped”
into different data types; moreover, there is no one single “best mapping”, so it all
depends on your needs at the point where you’re going to use it (we’ll see examples
of it below). Changing “Mapping” does NOT change the protocol, so it can be safely
changed without affecting anybody else.

In the extreme case, “Mapping” file can be a file in your target programming
language.

ASN.1
Abstract Syntax

Notation One
(ASN.1) is a

standard and
notation that

describes rules
and structures

f or
representing,

encoding,
transmitting,
and decoding

data in
telecommunications

and computer
netw orking.
— Wikipedia —

https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

Example: IDL
While all that theoretical discussion about IDL, Encodings, and Mappings is
interesting, let’s bring it a bit down to earth.

Let’s consider a rather simple IDL example. Note that this is just an example
structure in the very example IDL; syntax of your IDL may vary very significantly
(and in fact, as argued in “Developing your own IDL compiler” section above, you
generally SHOULD develop your own IDL compiler – that is, at least until somebody
makes an effort and does a good job in this regard for you):

This IDL declares what we’re going to communicate – a structure with current state
of our Character.

 yes, I remember that I’ve advised to separate inventory from frequently-updated
data in “Publishable State” section, but for the purposes of this example, let’s keep
them together

Example: Mapping
Now let’s see how we want to map our IDL to our programming language. Let’s
note that mappings of the same IDL MAY differ for different communication
parties (such as Client and Server). For example, mapping for our data above MAY
look as follows for the Client:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

PUBLISHABLE_STRUCT Character {
 UINT16 character_id;
 NUMERIC[-10000,10000] x;//for our example IDL compiler, notation [a,b] means
 // “from a to b inclusive”
 //our Game World has size of 20000x20000m
 NUMERIC[-10000,10000] y;
 NUMERIC[-100.,100.] z;//Z coordinate is just +- 100m
 NUMERIC[-10.,10.] vx;
 NUMERIC[-10.,10.] vy;
 NUMERIC[-10.,10.] vz;
 NUMERIC[0,360) angle;//where our Character is facing
 //notation [a,b) means “from a inclusive to b exclusive”
 enum Animation {Standing=0,Walking=1, Running=2} anim;
 INT[0,120) animation_frame;//120 is 2 seconds of animation at 60fps

 SEQUENCE<Item> inventory;//Item is another PUBLISHABLE_STRUCT
 // defined elsewhere
};

3

3

In this case, IDL-generated C++ struct may look as follows:

On the other hand, for our Server, we might want to have inventory implemented as a
special class Inventory, optimized for fast handling of specific server-side use
cases. In this case, we MAY want to define our Server Mapping as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

MAPPING(“CPP”,“Client”) PUBLISHABLE_STRUCT Character {
 UINT16 character_id;//can be omitted, as default mapping
 // for UINT16 is UINT16
 double x;//all 'double' declarations can be omitted too
 double y;
 double z;
 double vx;
 double vy;
 double vz;
 float angle;//this is the only Encoding specification in this fragment
 // which makes any difference compared to defaults
 // if we want angle to be double, we can omit it too
 enum Animation {Standing=0,Walking=1, Running=2} anim;
 //can be omitted too
 UINT8 animation_frame;//can be omitted, as
 // UINT8 is a default mapping for INT[0,120)

 vector<Item> inventory;//can be also omitted,
 // as default mapping for SEQUENCE<Item>
 // is vector<Item>
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

struct Character {
 UINT16 character_id;
 double x;
 double y;
 double z;
 double vx;
 double vy;
 double vz;
 float angle;
 enum Animation {Standing=0,Walking=1, Running=2} anim;
 UINT8 animation_frame;
 vector<Item> inventory;

 void idl_serialize(int serialization_type,OurOutStream& os);
 //implementation is generated separately
 void idl_deserialize(int serialization_type,OurInStream& is);
 //implementation is generated separately
};

As we see, even when we’re using the same programming language for both Client-
Side and Server-Side, we MAY need different Mappings for different sides; in case
of different programming languages such situations will become more frequent.
One classical (though rarely occurring in practice) example is that
SEQUENCE<Item> can be mapped either to vector<Item> or to list<Item>,
depending on the specifics of your code; as specifics can be different on the
different sides of communication – you may need to specify Mapping.

Also, as we can see, there is another case for non-default Mappings, which is
related to making IDL-generated code to use custom classes (in our example –
MyInventory) for generated structs (which generally helps to make our generated
struct Character more easily usable).

Mapping to Existing Classes
One thing which is commonly missing from existing IDL compilers is an ability to
“map” an IDL into existing classes. This can be handled in the following way:

you do have your IDL and your IDL compiler

you make your IDL compiler parse your class definition in your target
language (this is going to be the most difficult part)

you do specify a correspondence between IDL fields and class fields

your IDL generates serialization/deserialization functions for your class
generally, such functions won’t be class members, but rather will be free-
standing serialization functions (within their own class if necessary),
taking class as a parameter

in languages such as C++, you’ll need to specify these
serialization/deserialization functions as friends of the class (or to
provide equivalent macro)

1
2
3
4
5
6
7
8
9

10
11
12
13

MAPPING(“CPP”,“Server”) PUBLISHABLE_STRUCT Character {
 // here we're omitting all the default mappings
 float angle;
 class MyInventory inventory;
 //class MyInventory will be used as a type for generated
 // Character.inventory
 //To enable serialization/deserialization,
 // MyInventory MUST implement the following member functions:
 // size_t idl_serialize_collection_get_size(),
 // const Item& idl_serialize_collection_get_item(size_t idx),
 // void idl_deserialize_collection_reserve_size(size_t),
 // void idl_deserialize_collection_add_item(const Item&)
};

I w ant Y OU to
read page 2!

Continued on Page 2... Further topics
include IDL Encodings (including Delta
Compression, rounding, etc.) and IDL

Backward Compatibility

Example: Encoding
We’ve already discussed IDL and Mapping (and can now use our generated stubs
and specify how we want them to look). Now let’s see what Encoding is about. First,
let’s see what will happen if we use “naive” encoding for our C++ struct Character,
and will transfer it as a C struct (except for inventory field, which we’ll delta-
compress to avoid transferring too much of it). In this case, we’ll get about
60bytes/Character/network-tick (with 6 doubles responsible for 48 bytes out of
it).

Now let’s consider the following Encoding:

Here we’re heavily relying on the properties of
MYENCODING1, which is used to marshal our struct. For the

“

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

ENCODING(MYENCODING1) PUBLISHABLE_STRUCT Character {
 VLQ character_id;
 DELTA {
 FIXED_POINT(0.01) x;//for rendering purposes, we need our coordinates
 //only with precision of 1cm
 //validity range is already defined in IDL
 //NB: given the range and precision,
 // 'x' has 20'000'000 possible values,
 // so it can be encoded with 21 bits
 FIXED_POINT(0.01) y;
 FIXED_POINT(0.01) z;
 FIXED_POINT(0.01) vx;
 FIXED_POINT(0.01) vy;
 FIXED_POINT(0.01) vz;
 }
 DELTA FIXED_POINT(0.01) angle;//given the range specified in IDL,
 // FIXED_POINT(0.01) can be encoded
 // with 16 bits
 DELTA BIT(2) Animation;//can be omitted, as 2-bit is default
 // for 3-value enum in MYENCODING1
 DELTA VLQ animation_frame;
 DELTA SEQUENCE<Item> inventory;
};

VLQ
A variable-

http://ithare.com/idl-encodings-mappings-and-backward-compatibility/2/
https://en.wikipedia.org/wiki/Variable-length_quantity

example above, let’s assume that MYENCODING1 is a quite
simple bit-oriented encoding which supports delta-
compression (using 1 bit from bit stream to specify whether
the field has been changed), and also supports VLQ-style
encoding; also let’s assume that it is allowed to use rounding
for FIXED_POINT fields.

As soon as we take these assumptions, specification of our
example Encoding above should become rather obvious; one
thing which needs to be clarified in this regard, is that DELTA
{} implies that we’re saying that the whole block of data within
brackets is likely to change together, so that our encoding will
be using only a single bit to indicate that the whole block
didn’t change.

Now let’s compare this encoding (which BTW is not the best possible one) to our
original naive encoding. Statistically, even if Character is moving, we’re looking at
about 20 bytes/Character/network-tick, which is 3x better than naive encoding.

Even more importantly, this change in encoding can
be done completely separately from all the

application code(!) – merely by changing Encoding
declaration

It means that we can develop our code without caring about specific encodings,
and then, even at closed beta stages, find out an optimal encoding and get that 3x
improvement by changing only Encoding declaration.

Such separation between the code and Encodings is in fact very useful; in
particular, it allows to use lots of optimizations which are too cumbersome to think
of when you’re developing application-level code.

To continue our example and as a further optimization, we can add dead
reckoning, and it can be as simple as rewriting Encoding above into

length quantity
(VLQ) is a

universal code
that uses an

arbitrary
number of

binary octets
(eight-bit bytes)
to represent an

arbitrarily
large integer.

— Wikipedia —

How much
can be gained
by each of such
specialized
encodings – still
depends on the
game, but if you
can try-and-test
a dozen of
dif f erent
encodings
w ithin a f ew
hours – it w ill
usually allow
you to learn

When manipulating encodings is this simple, then
experimenting with encodings to find out a reasonably optimal
one becomes a breeze. How much can be gained by each of
such specialized encodings – still depends on the game, but if
you can try-and-test a dozen of different encodings within a
few hours – it will usually allow you to learn quite a few things
about your traffic (and to optimize things both visually and
traffic-wise too).

Backward Compatibility
One very important (and almost-universally-ignored) feature
of IDLs is backward compatibility. When our game becomes
successful, features are added all the time. And adding a
feature often implies a protocol change. With Continuous
Deployment it happens many times a day.

And one of the requirements in this process is that the new
protocol always remains backward-compatible with the old
one. While for text-based protocols backward compatibility
can usually be achieved relatively easily, for binary protocols
(and games almost-universally use binary encodings due to the
traffic constraints, see “Publishable State: Delivery, Updates,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ENCODING(MYENCODING2) PUBLISHABLE_STRUCT Character {
 VLQ character_id;
 DELTA {
 DEAD_RECKONING(0.02) {//0.02 is maximum acceptable coordinate
 // deviation due to dead reckoning
 FIXED_POINT(0.01) x;
 FIXED_POINT(0.01) vx;
 }
 DEAD_RECKONING(0.02) {
 FIXED_POINT(0.01) y;
 FIXED_POINT(0.01) vy;
 }
 DEAD_RECKONING { //by default, maximum acceptable deviation
 // due to dead reckoning
 // is the same as for coordinate
 // (0.01 in this case)
 FIXED_POINT(0.01) z;
 FIXED_POINT(0.01) vz;
 }
 }//DELTA
 DELTA FIXED_POINT(0.01) angle;
 DELTA BIT(2) Animation;
 DELTA VLQ animation_frame;
 DELTA SEQUENCE<Item> inventory;
};

“

4

introduce a
concept of

quite a f ew
things about
your traf f ic
(and to optimize
things both
visually and
traf f ic-w ise
too).

Interest Management, and Compression” section above for
discussion) it is a much more difficult endeavour, and requires
certain features from the IDL.

What we need from an IDL compiler is a
mode when it tells whether one IDL

qualifies as a “backward-compatible
version” of another one

Ok, this feature would certainly be nice for code maintenance (and as a part of
build process), but are we sure that it is possible to implement such a feature? The
answer is “yes, it is possible”, and there are at least two ways how it can be
implemented. In any case, let’s observe that two most common changes of the
protocols are (a) adding a new field, and (b) extending an existing field. While
other protocol changes (such as removing a field) do happen in practice, it is
usually rare enough occurrence, so that we will ignore it for the purposes of our
discussion here.

The first way to allow adding fields is to have field names (or other kind of IDs)
transferred alongside with the fields themselves. This is the approach taken by
Google Protocol Buffers, where everything is always transferred as a key-value pair
(with keys depending on field IDs, which can be explicitly written to the Protocol
Buffer’s IDL). Therefore, to add a field, you just adding a field with a new field-ID,
that’s it. To be able to extend fields (and also to skip those optional-fields-you-
dont-know-about), you need to have size for each of the fields, and Google
Protocol Buffers have it too (usually implicitly, via field type). This approach works
good, but it has its cost: those 8-additional-bits-per-field (to contain the field
ID+type) are not free.

The second way to allow adding fields into encoded data is a bit more
complicated, but allows to deal with not-explicitly-separated (and therefore not
incurring those 8-bits-per-field cost) data streams, including bitstreams. To
add/extend fields to such non-discriminated streams, we may implement the
following approach:

introduce a concept of “fence” into our Encodings. There
can be “fences” within structs, and/or within RPC calls

one possible implementation for “fences” is
assuming an implicit “fence” after each field; while
this approach rules out certain encodings, it does
guarantee correctness

5

6

“

“f ence” into our
Encodings

between “fences”, IDL compiler is allowed to
reorder/combine fields as it wishes (though any
such combining/reordering MUST be strictly
deterministic).

across “fences”, no such reordering/combining is allowed

then, adding a field immediately after the “fence” is guaranteed to be
backward-compatible as soon as we define it with a default value

within a single protocol update, several fields can be added/extended
simultaneously only after one “fence”

to add another field in a separate protocol update, another “fence” will
be necessary

extending a field can be implemented as adding a (sub-)field, with a special
interpretation of this (sub-)field, as described in the example below

 such as XML-based
 that is, until we’re throwing everything away and rewriting the whole thing from

scratch
 Google Protocol Buffers use overhead of 8 bits per field; in theory, you may use

something different while using key-value encodings, but the end result won’t be
that much different

Let’s see how it may work if we want to extend the following Encoding:

Let’s assume that we want to extend our UINT16 character_id field into UINT32,
and to add another field UINT32 some_data. Then, after making appropriate

4

5

6

1
2
3
4
5
6
7
8
9

10
11
12
13
14

ENCODING(MYENCODINGA) PUBLISHABLE_STRUCT Character {
 UINT16 character_id;
 DELTA {
 FIXED_POINT(0.01) x;
 FIXED_POINT(0.01) y;
 FIXED_POINT(0.01) z;
 FIXED_POINT(0.01) vx;
 FIXED_POINT(0.01) vy;
 FIXED_POINT(0.01) vz;
 }
};
//MYENCODINGA is a stream-based encoding
// and simply serialized all the fields
// in the specified order

changes to the IDL, our extended-but-backward-compatible Encoding may look as
follows:

As we can see, for the two most common changes of the protocols, making a
compatible IDL is simple; moreover, making an IDL compiler to compare these two
IDLs to figure out that they’re backward-compatible – is trivial. Formally, IDL B
qualifies as a backward-compatible version of IDL A, if all of the following stands:

IDL B starts with full IDL A

after IDL A, in IDL B there is a FENCE declaration

after the FENCE declaration, all the declarations are either EXTEND
declarations, or new declarations with specified DEFAULT.

On Google Protocol Buffers
Google Protocol Buffers is one IDL which has recently got a lot of popularity. It is
binary, it is extensible, and it is reasonably efficient (or at least not unreasonably
inefficient). Overall, it is one of the best choices for a usual business app.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ENCODING(MYENCODINGA) PUBLISHABLE_STRUCT Character {
 UINT16 character_id;
 DELTA {
 FIXED_POINT(0.01) x;
 FIXED_POINT(0.01) y;
 FIXED_POINT(0.01) z;
 FIXED_POINT(0.01) vx;
 FIXED_POINT(0.01) vy;
 FIXED_POINT(0.01) vz;
 }
 //Up to this point, the stream is exactly the same
 // as for "old" encoding

 FENCE

 EXTEND character_id TO UINT32;
 //at this point in the stream, there will be additional 2 bytes placed
 // with high-bytes of character_id
 // if after-FENCE portion is not present – character_id
 // will use only lower-bytes from pre-FENCE portion

 UINT32 some_data DEFAULT=23;
 // if the marshalled data doesn't have after-FENCE portion,
 // application code will get 23
};

Theref ore,
w hile I agree
that Google
Protocol
Buf f ers are
good enough f or
most of the
business apps
out there, I
insist that f or
games you
usually need
something
better. MUCH
better.

« MMOG. Point-to-Point Communications and non-blocking RP…

However, when it comes to games, I still strongly prefer my
own IDL with my own IDL compiler. The main reason for it is
that in Google Protocol Buffers there is only one encoding, and
the one which is not exactly optimized for games. Delta
compression is not supported, there are no acceptable ranges
for values, no rounding, no dead reckoning, and no bit-
oriented encodings. Which means that if you use Google
Protocol Buffers to marshal your in-app data structures
directly, then compared to your own optimized IDL, it will cost
you in terms of traffic, and cost a lot.

Alternatively, you may implement yourself most of the
compression goodies mentioned above, and then to use
Google Protocol Buffers to transfer this compressed data, but
it will clutter your application-level code with this
compression stuff, and still won’t be able to match traffic-wise
some of the encodings possible with your own IDL (in
particular, bit-oriented streams and Huffman coding will be
still out of question).

Therefore, while I agree that Google Protocol Buffers are good
enough for most of the business apps out there, I insist that for
games you usually need something better. MUCH better.

 that is, unless you’re using Google Protocol Buffers just to transfer pre-
formatted bytes, which usually doesn’t make much sense

[[To Be Continued…
This concludes beta Chapter VII(d) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VIII, “Engine-Centric
Architecture: Unity 5, Unreal Engine 4, and Photon Server
from MMO point of view”]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

“

7

7

/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/mmog-point-to-point-communications-and-non-blocking-rpcs/

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: client, game, IDL, marshalling, multi-player, network, protocol, server

Copyright © 2014-2016 ITHare.com

http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/game/
http://ithare.com/tag/idl/
http://ithare.com/tag/marshalling/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/network/
http://ithare.com/tag/protocol/
http://ithare.com/tag/server/

	IDL: Encodings, Mappings, and Backward Compatibility
	IDL Development Flow
	Developing your own IDL compiler

	IDL + Encoding + Mapping
	Example: IDL
	Example: Mapping
	Mapping to Existing Classes
	Example: Encoding
	Backward Compatibility
	On Google Protocol Buffers
	[[To Be Continued…
	Acknowledgement

