
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter VI(b). Server-Side Architecture. Front-End
Servers and Client-Side Random Load Balancing
posted December 28, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VI(b) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

Enter Front-End Servers

[Enter Juliet] Hamlet: Thou art as sweet as the sum of the sum of Romeo and his horse and
his black cat! Speak thy mind! [Exit Juliet]

— a sample program in Shakespeare Programming Language —

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
https://en.wikipedia.org/wiki/Shakespeare_Programming_Language

Our Classical Deployment Architecture (especially if you do use FSMs) is not bad,
and it will work, but there is still quite a bit of room for improvement for most of
the games out there. More specifically, we can add another row of servers in front
of the Game Servers, as shown on Fig VI.8:

/wp-content/uploads/BB_part071_BookChapter006b_v2.png

In addition,
usually these
Front-End
servers store a
copy of

As you see, compared to the Classical Deployment Architecture (see Fig VI.4 above)
we’ve just added a row of Front-End Servers in front of our Game Servers. These
additional Front-End Servers are intended to deal with all the communication stuff
when it comes from the clients. All those pesky “whether the player is connected or
not” questions (including keep-alive handing where applicable, see Chapter
[[TODO]] for details on keep-alives), all that client-to-server encryption (if
applicable), with all those keys etc., all those rather more-or-less strange reliable-
UDP protocols (again, if applicable), and of course, routing messages between the
clients and different Game Servers – all the communication with clients is handled
here.

In addition, usually these Front-End servers store a copy of
relevant Game Worlds when it is necessary, and are acting as
“concentrators” for the game world updates; i.e. even if a
Game Server has 100’000 people watching some game (like
final of some tournament or something), it will need to send
updates only to a few Front-End servers, and Front-End
servers will take care of data distribution to all the 100’000
people. This ability comes really handy when you have some
kind of Big Final game, with thousands of people willing to
watch it (and you don’t really need to make it a video
broadcast, which is not-so-convenient for existing players and
damn expensive, but you can do it right within your client).

“

/wp-content/uploads/Fig-VIv2-8.png

you can use

relevant Game
Worlds w hen it
is necessary,
and are acting
as
“concentrators”
f or the game
w orld updates

More on it below, and implementation of this “concentrator”
paradigm is discussed in more detail in Chapter [[TODO]].

We’ll discuss the implementation of our Front-End servers a
bit later, but for now let’s note that most importantly,

Front-End Servers MUST be easily
replaceable without significant

inconveniences to players

That is, if any of Front-End Servers fails for whatever reason – the most a player
should see, is a disconnect for a few seconds. While still disruptive, it is very much
better than scenarios such as “the whole game world went down and we need to
restore it from backup”. In other words, whenever Front-End server crashes for
whatever reason, all the clients who were connected there, need to detect the crash
(or even worse, “black hole”) and automagically reconnect to some other Front-
End server; in this case all the player can see, is a momentarily disconnect (which is
also a nuisance, but is much better than to see your game hang).

Front-End Servers: Benefits

Whenever we’re adding another layer of complexity, there is always a question “Do
we really need it?” From what I’ve seen, having easily replaceable Front-End
Servers in front of your Game Servers is very valuable and provides quite a few
benefits. More specifically:

Front-End Servers take some load off your Game Servers, while being easily
replaceable

it means that you can have less Game Servers
this, combined with the observation that Front-End Servers are
easily replaceable, means that you improve reliability of your site as
a whole; instances when some of your Game World Servers go down,
will occur more rarely (!)

having a copy of relevant game world(s) on your Front-End Servers,
takes even more load off your Game Servers, and makes Game Server
load independent on the number of observers

you can use really cheap boxes for your Front-End
Servers; strictly speaking, you don’t even need ECC and
RAID for them (and you certainly do need them for your
Game Servers). As noted above, Front-End Servers are
easily replaceable, so if one goes down – its load is
automagically redistributed among the others (see
Chapter [[TODO]] for further details). If you’re going to “

really cheap
boxes f or your
Front-End
Servers

deploy into the cloud – you may want to consider cheaper
offers for your front-end servers (even if they’re coming
from different CSP).

they allow your client to have a single connection point to
the whole site; benefits of this approach include better
control over player’s “last mile” so that priorities between different data
streams can be controlled, eliminating difficult-to-analyze “partial
connections”, and hiding more implementation details of your site from the
hostile world outside; more on single client connection in Chapter [[TODO]]

they allow for trivial client-side load balancing (no hardware load balancers
needed, etc. etc.), more discussion on the load balancing below in “On Client-
Side Load Balancing and Law of Big Numbers” section below

having a copy of relevant game world(s) on your Front-End Servers allows to
have virtually unlimited number of observers who want to watch some of the
games being played on your site (such as a Big Final or something) Best of all,
this will happen without affecting game server’s performance (!). Moreover, usually
you won’t need to organize anything for your Big Final, the system (if built
properly) can take care of it itself, in (roughly) the following manner:

whenever somebody comes to watch a certain game, his client requests
this game from the Front End Server

if Front End Server doesn’t have a copy of the requested game, it
requests it from the relevant Game Server, alongside with updates to the
game world state

from this point on, Front End Server will keep an “in-sync” copy of the
game world, providing it (with updates) to all the clients which have
requested it

it means that from this point on, even if you have 100’000 observers
watching some game on this Game Server, all the additional load is
handled by your Front-End Servers, without affecting your Game Server

for further details, see Chapter [[TODO]].

Front-End Servers allow for better security later on (acting essentially as a
kind of DMZ, see Chapter [[TODO]] for details).

 keep in mind that you still need top-notch connectivity
 and as Big Finals are a good way to attract attention, this does provide you an

edge over your competitors, etc. etc.

Front-End Servers: Latencies and Inter-Player Latency Differences

“
1

2

1

2

Y ou can have
processing time

of your Front
End server

application-
layer of the

order of single-
digit

microseconds.

As for the negative side of having Front End Servers, I can
think only of two such drawbacks. The first one is additional
latency introduced by your Front End Server. More
specifically, we’re speaking about the time which is necessary
for the packet incoming from a client at application layer, to
get processed by your Front End Server, to go into TCP stack
on Front End Server side, to get out of TCP stack on Game
Server side, and to reach application layer in your Game
Server (plus the time necessary to go in the opposite
direction).

Let’s take a look at this additional latency. From my
experience, if you’re using a reasonably good communication
layer library, you can have processing time of your Front End
server application-layer of the order of single-digit
microseconds. Then, we have an end-to-end TCP connection
from your Front End Server to your Game Server; latencies of

such a connection (over 10GB Ethernet) have been measured at around 8 µs
[Larsen2007]. Adding these two delays together and multiplying it by two to get
RTT, would mean that we’re still staying well below 100 µs. However, there are
some further considerations (such as switch delays, differences between different
operating systems, differences between games, etc.) which make me uncomfortable
to say that you will have no problem achieving 100 µs delay (i.e. either you may, or
you may not). On the other hand, I am ready to say that if you’re careful enough with
your implementation, reducing the delay introduced by Front-End Servers, down
to 1ms is achievable in all but most weird cases.

To summarize:

if additional latency of around 1 millisecond is ok for you – don’t worry about
additional latencies and go for Front-End Servers; this certainly covers all
genres with the only potential exception being MMOFPS

if additional latency you can live with, is well below 1 millisecond (which is
difficult for me to imagine as it is still over an order of magnitude less that
1/60 sec frame update time, but in MMOFPS world pretty much anything can
happen) – think about it a bit more and try to find out (ideally –
experimentally) what kind of latency you can achieve in practice; if your
experiments show that latencies are indeed unacceptable, you MIGHT need to
drop those Front-End Servers because of the latency they’re introducing

YMMV, no warranties of any kind, batteries not included

The second (IMHO more theoretical, but as usual, YMMV) potential issue with
having Front-End Servers would arise if some of your Front-End Servers are
overloaded (or they’re running using significantly different hardware), so those

“ 3

4

5

If /w hen such
inter-player
latency
becomes a real
problem, you
MAY need to
implement
some kind of
af f inity f or
players of
certain Game
Worlds to
certain Front-
End servers

players connected to less-loaded Front-End Servers, will have lower latencies, and
therefore will have an advantage.

On the one hand, I didn’t see situations where it makes any
practical difference in real-world deployments (i.e. as I’ve seen
it, if some of the Front-End Servers are overloaded, it means
that most of the other ones are already at 90%+ of capacity,
which you should avoid anyway; see [[TODO!]] section for
further discussion of load balancing). On the other hand,
YMMV and in theory you might get hit by such an effect (though
I certainly don’t see it coming into play for anything but
MMOFPS).

If such inter-player latency differences become the case (and
only when/if it becomes a real problem), you MAY need to
implement some kind of affinity for players of certain Game
Worlds to certain Front-End servers (more on affinity in “On
Affinity” section below). However, keep in mind that large-
scale affinity tends to remove most of the benefits provided by
Front-End Servers, so if you feel that you’re going to
implement affinity for each-and-every-game – you’ll probably
be better without Front-End Servers (implementing affinity
only for a small percentage of your games, such as “high profile
tournaments” will cause less trouble, see “On Affinity” section
below for further discussion).

 yes, I’m arguing for TCP connections for inter-server communications in most
cases, see “On Inter-Server Communication” section above. On the other hand, UDP
is also possible if you really really prefer it.
 note that this might become a non-trivial exercise, see further discussion in

Chapter [[TODO]]. On the other hand, I’ve done it myself.
 in theory, you may also want to experiment with something like Infiniband, which

BTW would fit nicely in overall QnFSM architecture with communications neatly
isolated from the rest of the code, but most likely it won’t be worth the trouble

Client-Side Random Balancing and Law of Big Numbers

As soon as you have several Front-End servers where your clients are coming, you
have a question “how to ensure that all the Front-End Servers are loaded equally”,
i.e. a typical load balancing question. Load balancing in general is quite a big topic
at least over last 20 years. Three most common techniques out there are the
following: DNS Round-Robin, Client-Side Random Balancing, and Server-Side
(usually hardware-based) Load Balancers. With the industry producing those
hardware boxes behind the last one, there is no wonder that it becomes more and

“

3

4

5

one of these
returned IPs

can get cached
by a Big Fat DNS

server, and
then get

distributed to
many

thousands of
clients

more popular at least in the enterprise world. Still, let’s take a closer look at these
load balancing solutions.

DNS Round-Robin

DNS round-robin is based on a traditional DNS requests.
Whenever a client requests address frontend.yoursite.com to
be resolved into IP address, a DNS request is sent (this stands
with or without DNS round-robin) to your (or “your DNS
provider’s”) DNS server. If DNS server is configured for DNS
round-robin, it returns different IP addresses to different DNS
requests, in a round-robin fashion hence the name.

DNS Round-Robin, when applied to balancing browsers across
different web servers, has two major disadvantages. First of
all, there is a problem with caching DNS servers along the path
of the request (which is a very standard part of DNS handling).
That is, even if your server is faithfully returning all your IPs in
a round robin fashion, one of these returned IPs can get
cached by a Big Fat DNS server (think Comcast or AT&T), and
then get distributed to many thousands of clients; in this case
distribution of your clients across your servers will be skewed
towards that “lucky” IP which got cached by the Big Fat DNS
server . The second problem with using DNS round-robin

for web servers, if that if one of your servers is down, usual web browser won’t try
another server on the list, so usually in web server realm round-robin DNS doesn’t
provide server fault tolerance.

Fortunately, as we DO have a client, we can solve both these problems very easily.
Moreover, these techniques will also work for your browser-based games (that is,
after you’ve got your JS loaded and it started execution).

 strictly speaking, it is a little bit more complicated than that, as DNS packets
contain a list of servers, but as virtually everybody out there ignores all the entries
in returned packet except for the very first one, it is more or less equivalent to
returning only one IP per request – that is, unless you have your own client which
can do the choice itself, see “Client-Side Balancing”

Client-Side Random Balancing

“ 6

6

Client simply
takes random
item f rom the IP
list, and tries
connecting to
this randomly
chosen IP.

To improve on DNS round-robin, a very simple idea can be
used. We won’t rotate anything on the server side; instead, we
will distribute exactly the same list of servers to all the clients.
This list may be hardcoded into your clients (and that’s what
I’ve used personally with big success), or the list can be
distributed via DNS as a simple list of IPs for desired name
(and retrieved on client via getaddrinfo() or equivalent). Which
way to prefer – doesn’t matter to us now, but we’ll discuss
relevant issues in Chapter [[TODO]].

As soon as the client gets the list of IPs, everything is very
simple. Client simply takes random item from the IP list, and
tries connecting to this randomly chosen IP. If connection
attempt is unsuccessful (or connection is lost, etc.) – client
gets another random item from the list and tries connecting
again.

One note of caution – while you don’t really need a cryptographic-quality random
generator to choose the IP from the list, you DO want to avoid situations when your
random number generator (the one used for this purpose) is essentially just some
function of coarse-grained time. One Really Bad example would be something like

In such a case, if you get mass disconnect (and as a result all your players will
attempt to reconnect at about the same time), your IP distribution will likely get
skewed due to too few differences between the clients trying to get their IP
addresses; if all the clients attempt to connect within 5 seconds, with such a bad
myrand() function you’ll get at most 5 different IPs (less if you’re unlucky). Other
than such extremely bad cases, pretty much any RNG should be fine for this
purpose. Even a trivial linear congruential generator, seeded with time(0) at the
moment when the program was launched (and NOT at the moment of request, as in
example above), should do in practice, though adding some kind of milliseconds or
some other randomly looking or client-specific data to the mix is advisable “just in
case”.

Client-Side Random Balancing: a Law of Large Numbers,
and comparison w ith DNS Round-Robin

Unlike DNS round-robin (which in theory provides “ideal”
balancing), client-side random balancing relies on the
statistical Law of Large Numbers to achieve flat distribution
of clients between the servers. What the law basically says is

“

1
2
3
4

int myrand() {//DON'T DO THIS!
 srand(time(0));
 return rand();
}

Law of
Large

Numbers
According to

the law, the

https://en.wikipedia.org/wiki/Law_of_large_numbers

that for independent measurements, the more experiments
you’re performing – the more flat distribution you’ll get.
[[TODO!: add stuff about binomial distribution, and an
example]]

In practice, despite being “non-ideal” in theory, client-side
random balancing achieves much more flat distribution than
DNS round-robin. The reason for it is two-fold. First, as soon
as the number of clients is large (hundreds and up), client-
side random balancing becomes sufficiently flat for practical
purposes (and if your system is provisioned for thousands of
players, and only a few have came yet – the distribution won’t
be too flat, but the inequality involved won’t be able to hurt,
and the balance will improve as the number grows). On the
positive side, however, client-side random balancing doesn’t
suffer from DNS caching issue described above. Even if you’re
using DNS to distribute IP lists (and this list gets cached) –
with client-side balancing all the IP lists circulating in the system
are identical by design, so caching (unlike with DNS round-
robin) doesn’t change client distribution at all.

To summarize: personally, I would be very cautious to use DNS Round-Robin for
production load balancing. On the other hand, I’ve seen Client-Side Random
Balancing to work extremely well for a game which grew from a few hundreds of
simultaneous players into hundreds of thousands; it worked without any problems
whatsoever, providing almost-perfect balancing all the time. That is, if the average
load across the board was 50%, you could find some servers at 48% and some at
52%, but not more than that.

As for the second disadvantage mentioned above for DNS Round-Robin as applied
to web browsers (which was inability of most of the browsers to provide fault
tolerance in case when one of the servers crashes) – this evaporates as soon as we
have the whole list on the client-side, can detect failure, and can select another
item from the list.

 this, of course, stands only when you have run your servers identically for
sufficient time; if one of the servers has just entered service, it will take some hours
until it reaches the same load level than the others. If really necessary, this effect
can be mitigated, though mitigation is rather ugly and I’ve never seen it necessary
in practice

Serv er-Side Load Balancers

An approach which is very different from both round-robin DNS and client-side

average of the
results

obtained from
a large

number of
trials should

be close to the
expected

value, and
will tend to

become closer
as more trials

are
performed.
— Wikipedia —

7

7

These
additional
balancing
capabilities are
usually
completely
unnecessary
f or games
(w here Law of
Large Numbers
tends to stand
very f irmly)

random balancing, is to use server-side load balancers. Load balancer is usually an
additional box, sitting in front of your servers, and doing, as advertised, load
balancing.

Server-side load balancers do have significantly more
balancing capabilities with regards to scenarios when
different clients cause very different loads (so that server-side
balancers can work even if the Law of Large Numbers doesn’t
work anymore). However, on the one hand, these additional
balancing capabilities are usually completely unnecessary for
games (where Law of Large Numbers tends to stand very
firmly), and on the other hand, such load balancer boxes tend
to be damn expensive (double that if you want redundancy, and
you certainly want it), they do not allow inter-datacenter
balancing and fault tolerance (by design), and they introduce
additional not-so-well-controlled latencies.

Oh, and BTW – when speaking about redundancy and the cost
of their boxes, quite a few hardware manufacturers will tell you
“hey, you can use our balancer in active/active configuration,
so you won’t waste anything!”. Well, while you can indeed use
many server-side load balancers in active/active
configuration, you still MUST have at least one redundant box
to handle the load if one of those boxes fails. In other words, if
all you have is two boxes in active/active configuration, when
both are working, overall load on each of them MUST be well below 50%, there is no
way around it if you want redundancy.

As a result of all the considerations above, for game load-balancing purposes I have
never seen any practical uses for server-side load balancer boxes (as always, YMMV
and batteries are not included). Even if you’re using Web-Based Deployment
Architecture (in the way described above), you should be able to stay away from
them (though YMMV even more).

 most of load balancers are designed to balance web sites where anything below
100ms is pretty much nothing, so at the very least make sure to discuss and
measure the latency (under your kind of load!) before buying such a box

Balancing Summary

From my experience, client-side random balancing (aimed towards front-end
servers) worked really good, and I’ve never seen any reasons to use something
different. Round-robin DNS is almost universally inferior to client-side balancing,
and hardware-based server-side balancers are too complicated and expensive,

“
8

8

usually without any real reason to use them in gaming environment. As note above,
one exception when you MAY need server-side balancers, is if you’re using Web-
Based Deployment Architecture.

One last word about load balancing: it is possible to use more
than one of the methods listed here (and it might even work for
you); however, implications of such combined use of more than
one method of load balancing, are way too convoluted to
discuss them in this book.

Front-End Servers as a CDN

It is possible to use Front-End Servers as a kind of CDN (or
even use them to build your own CDN). Even if you’re running
all your Game Servers from one single datacenter, for certain
kinds of games it might be a good idea to have your Front-End
Servers sitting in different datacenters (and acting as
different “entry points” to your clients), as shown on Fig VI.9:

The idea here is pretty much like the one behind classical CDN: to reduce latencies

CDN
A content
delivery
netw ork or
content
distribution
netw ork (CDN)
is a globally
distributed
netw ork of
proxy servers
deployed in
multiple data
centers

— Wikipedia —

https://en.wikipedia.org/wiki/Content_delivery_network
/wp-content/uploads/Fig-VIv2-91.png

CDN-like
arrangements
of Front-End
Servers MAY
save some of
your players a
f ew
milliseconds in

for end-users. On the other hand, we need to note that

unlike classical CDN, the content with our game-
sorta-CDN is not static, so gain in latencies is

possible only because of better peering, with gains
usually being in single-digit milliseconds

There is still a different reason to use such deployment architectures – in case if
you want to protect yourself from Internet connectivity in your primary datacenter
going down (provided that “Some Connectivity” survives); in practice, if you have a
decent datacenter, it should never happen. More precisely – your datacenter WILL
occasionally experience transient faults of around 1.5-2 minutes long (typical BGP
convergence time), so if you’re looking for excuses to use this nice diagram on Fig
VI.9 and your client can detect the fault and redirect to a different datacenter
significantly faster than that, it MAY make some difference to your players.

Implementation-wise, there are several considerations for such CDN-like multi-
datacenter Front-End Server configurations:

you MUST have very good connectivity between your data centers (“some
connectivity” on Fig. VI.9). At the very least, you should have inter-ISP peering
explicitly set by both of your ISPs (to each other) to ensure the best data flow
for this critical path

strictly speaking, “some connectivity” does not necessarily need to be
Internet-based; you often can save additional few milliseconds by
getting something like “dedicated” Frame-Relay between your
datacenters, but this will likely cost you in the range of tens of thousands
per month .

traffic on “some connectivity” can be an order (or even
two) of magnitude lower than that going to the clients
due to Front-End Servers acting as “concentrators”

you SHOULD account for secondary datacenter to go
down (in particular, in case of inter-datacenter
connectivity going down). The simplest way to deal with it
is to have enough capacity in your primary datacenter
(both traffic-wise and CPU-wise) to handle all of your
clients, but this tends to be expensive. As an alternative,
shutting down some activities in case of such a failure
may be possible depending on specifics of your game.

Bottom line for CDN-like arrangements. CDN-like
arrangements of Front-End Servers may save some of your
players a few milliseconds in latency (that is, if you have a really

“

latency. From
my experience,
it w as hardly
w orth the
trouble

good connection between datacenters), which in turn may
allow to level the field a bit with regards to latency. From my
experience, it was hardly worth the trouble (because you
cannot really improve MUCH in terms of latency, as the
packets still need to go all the way to the Game Server and
back), but keep the possibility in mind. For example, it may
come handy in some really strange scenarios when you’re
legally required to keep your game servers in a strange location (hey casino guys!)
where you simply don’t have enough bandwidth to serve your clients directly.

Front-End Servers + Game Servers as a kinda-CDN

On the other hand, if you’re really concerned about latencies, it is usually much
better to bring your Game World Servers closer to players (while leaving DB Server
behind), as shown on Fig VI.10:

Here, we’re moving the most time-critical stuff (which is usually your Game World
Servers) towards the end-user, providing significantly better latencies to those
players who’re in the vicinity of corresponding datacenter. Maintaining such
infrastructure is quite a Big Headache, but is doable, so if you’re really concerned
about latencies – you may want to deploy in such a manner. A word of caution – if
going this way, you will end up with “regional servers”, which have their own share
of troubles (you’ll need to ensure that clients in the region go only to the relevant
Front-End Servers, security on inter-datacenter connections becomes quite an

/wp-content/uploads/Fig-VIv2-10.png

The things
w ill go

smoothly as
long as the

number of the
game w orlds

w hich use
af f inity is

small.

issue, etc., etc.); once again – it is doable, but go this way only if you really need it.

On Affinity

In some cases, you may decide that you need to have a kind of “affinity” so that
some specific players (usually those playing in a specific game world) are coming
to specific Front-End Servers.

Note when we’re speaking about our Front-End Servers,
“affinity” is quite different from classical affinity (usually
referred to as “persistence” or “stickiness”) used on load
balancers for web servers. In the web world
persistence/stickiness is about having the same client coming
to the same server (to deal with sessions and per-client
caches). For our Front-End Servers, however, affinity has a
very different motivation, and is usually about Front-End-
Server-to-game-world affinity (for players or for
players+observers) rather than client-to-server affinity (see
“Front-End Servers: Latencies and Inter-Player Latency
Differences” section above for one reason where you MIGHT
need such affinity).

Technically, implementing Front-End-Server-to-game-
world-affinity is not that difficult, but the real problems will
start after you deploy your affinity. In short – the things will go

smoothly as long as the number of the game worlds which use affinity is small. On
the other hand, as soon as you have a significant chunk of your players connected
using the affinity rules, you will find that achieving reasonable load balance
between different Front-End Servers becomes difficult . When there is no
affinity, the balance is near-perfect just because of the Law of Large Numbers; as
you’re introducing the affinity rules, you’re starting to skew this near-perfectly-flat
distribution, and the more players are affected by affinity, the more you’re
deviating from the ideal distribution, so managing those rules while achieving load
balance can become a Big Fat Challenge.

Bottom line: avoid affinity as long as possible (and most likely you will be able to
get away without it).

Front-End Servers: Implementation

Now let’s discuss ways how our Front-End Servers can be implemented. As
mentioned above, the key property of our Front-End Servers is that they’re easily
replaceable in case of failure. To achieve this behavior,

you MUST ensure that there is NO original game-

“

world state on any of your Front-End Servers
In other words, Front-End Servers should have only
a replica of the original game-world state, with the

original game-world state kept by Game Servers

There is no need to worry too much about it if you’re using a generic
subscriber/publisher (or state replication) kind of stuff, but be extremely careful if
you’re introducing any custom logic to your Front-End Servers, because you may
lose the all-important “easily replaceable” property above. See Chapter [[TODO]]
for further discussion of this potential issue.

Front-End Serv ers: QnFSM Implementation

One implementation of the Front-End Server implemented under pure Queues-
and-FSMs architecture (see Chapter V for details on QnFSM, state machines, and
queues) is shown on Fig VI.10:

Here, we have TCP- and UDP-related threads similar to those described in
“Implementing Game Servers under QnFSM architecture” section above with
regards to Game Servers, and one or more of Routing&Data Threads (with at least
one Routing&Data FSM each), which are responsible for routing of all the packets,
and for caching the data (such as “game world” data). Let’s discuss these routing-
related FSMs in a bit more detail.

Routing&Data FSMs. Each of Routing&Data FSMs has its own data that it handles
(and updates if applicable). For example, one such Routing&Data FSM may contain

/wp-content/uploads/Fig-VIv2-11.png

It is possible
(and of ten
advisable) to
have more than
one
Routing&Data
FSM w ithin
single
Routing&Data
Thread

a state of one game world. Other Routing&Data FSMs may handle routing of the
point-to-point packets from players to (and from) one specific Game Server.
Further details of the data types handled by Routing&Data FSMs will be discussed
in Chapter [[TODO]], but generally there will be three different types of
Routing&Data FSMs:

generic connection handlers (to handle point-to-point communications
including player input and server-to-server connections)

generic publisher/subscriber handlers (to cache and handle generic but
structured data such as a list of available games, if players are allowed to
select the game)

specific game world handlers (to cache and handle game world data if the
required functionality doesn’t fit into generic handler). In many cases you’ll be
able to live without specific game world handlers, but if you want to
implement some kind of server-side filtering, like server-side fog-of-war to
avoid sending data to those players who shouldn’t see it (so no hack of the
client can possibly lift fog-of-war) – specific game world handlers become a
necessity.

It is possible (and often advisable) to have more than one
Routing&Data FSM within single Routing&Data Thread to
reduce unnecessary load due to an exceedingly high number of
threads (and unnecessary thread context switches). How to
combine those Routing&Data FSMs into specific threads –
depends on your game significantly, but usually generic
connection handlers are extremely fast and all of them can be
combined in one thread. As for generic publisher/subscriber
and specific game world handlers, their distribution into
different threads should take into account typical load and
allowed latencies. The rule of thumb is (as usual) the following:
the more FSMs per thread – the more latency and the less
thread-related overhead; unfortunately, the rest depends too
much on specifics of your game to discuss it here.

Routing&Data Factory Thread. Routing&Data Factory
Thread is responsible for creating Routing&Data Threads (and
Routing&Dara FSMs), according to requests coming from
TCP/UDP threads. A typical life cycle of Routing&Data FSM may look as follows:

One of TCP/UDP FSMs needs to route some message (or to provide
synchronization to some state), and realizes that it has no data on
Routing&Data FSM, which it needs to route the message to, in its own cache.

TCP/UDP FSM sends a request to Routing&Data Factory FSM

“

As a rule of
thumb, Front-
End Servers are
a Good Thing™.

Factory FSM creates Routing&Data Thread (with an appropriate
Routing&Data FSM)

Factory FSM reports ID of the Queue, where the messages towards
appropriate Routing&Data FSM should be sent, back to the requesting
TCP/UDP Thread

TCP/UDP FSM (the one mentioned above) sends the message to the
appropriate Queue (using ID rather than pointer to enable deterministic
“recording”/”replay”, see Chapter V for details).

Whenever the Routing&Data FSM is no longer necessary for its purposes,
TCP/UDP FSM reports it to the Factory FSM

if it was the last TCP/UDP FSM which needs this Routing&Data FSM,
Factory FSM may instruct appropriate Routing&Data Thread to destroy
the Routing&Data FSM

Routing&Data FSMs in Game Serv ers and Clients

I need to confess that personally I am positively in love these Routing&Data FSMs. I
love them so much that I usually have not only on Front-End Servers, but also on
Game Servers, and on Clients too; while they’re not strictly necessary there (and
are not shown on appropriate diagrams to avoid unnecessary clutter), they did
help me to simplify things quite a bit, making all the communications very uniform.
Still, it is pretty much your choice if you want to have Routing&Data stuff on your
Game Servers and/or Clients.

Front-End Servers Summary

To summarize the section on Front-End Servers:

As a rule of thumb, Front-End Servers are a Good
Thing™. In particular:

they take the load off your Game Servers
which often makes the system cheaper (as
Front-End Servers are cheap)

and also improves overall system reliability (as
Front-End Servers are easily replaceable)

they facilitate single client connection (which is
generally a good thing to have, see Chapter [[TODO]]
for further discussion)

they facilitate client-side load balancing

they allow to handle 100’000+ observers for your Big Event easily
(actually, the sky is the limit)

their drawbacks are pretty much limited to the additional latency, and
this additional latency is firmly in sub-millisecond range

“

« Chapter V I(a). Serv er-Side MMO A rchitecture. Naïv e, W eb-Ba…

 MMOG Serv er-Side. Eternal Linux-v s-W indow s Debate »

Client-side load balancing usually is the best one for games
one potential exception is Web-Based Deployment Architectures, where
you MAY need server-side balancers

large-scale affinity is to be avoided

CDN-like arrangements are possible, but not without caveats

Front-End Servers can (and IMHO SHOULD) be implemented in QnFSM
architecture, as described above

[[To Be Continued…
This concludes beta Chapter VI(b) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VI(c), “Modular
Architecture: Server-Side. Eternal Windows-vs-Linux
Debate.]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: deployment, game, multi-player, server

Copyright © 2014-2016 ITHare.com

[–] References
[Larsen2007] Steen Larsen, “Architectural Breakdown of End-to-End Latency in a
TCP/IP Network”

http://eecs.ceas.uc.edu/~paw/classes/ece975/sp2011/papers/larsen-07.pdf
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-via-server-side-mmo-architecture-naive-and-classical-deployment-architectures/
http://ithare.com/mmog-server-side-eternal-linux-vs-windows-debate/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/deployment/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/server/

	Chapter VI(b). Server-Side Architecture. Front-End Servers and Client-Side Random Load Balancing
	Enter Front-End Servers
	Front-End Servers: Benefits
	Front-End Servers: Latencies and Inter-Player Latency Differences
	Client-Side Random Balancing and Law of Big Numbers
	DNS Round-Robin
	Client-Side Random Balancing
	Law of Large Numbers According to the law, the average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed. — Wikipedia — Client-Side Random Balancing: a Law of Large Numbers, and comparison with DNS Round-Robin
	Server-Side Load Balancers
	Balancing Summary

	Front-End Servers as a CDN
	Front-End Servers + Game Servers as a kinda-CDN
	On Affinity
	Front-End Servers: Implementation
	Front-End Servers: QnFSM Implementation
	Routing&Data FSMs in Game Servers and Clients

	Front-End Servers Summary

	[[To Be Continued…
	[–]References
	Acknowledgement

