
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter VI(a). Server-Side MMO Architecture. Naïve,
Web-Based, and Classical Deployment Architectures
posted December 21, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VI(a) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

After drawing all that nice client-side QnFSM-based diagrams, we need to
describe our server architecture. The very first thing we need to do is to start
thinking in terms of “how we’re going to deploy our servers, when our game is
ready?” Yes, I really mean it – architecture starts not in terms of classes, and for
the server-side – not even in terms of processes or FSMs, it starts with the highest-
level meaningful diagram we can draw, and for the server-side this is a deployment
diagram with servers being its main building blocks. If deploying to cloud, these
may be virtual servers, but a concept of “server” which is a “more or less self-
contained box running our server-side software”, still remains very central to the
server-side software. If not thinking about clear separation between the pieces of
your software, you can easily end up with a server-side architecture that looks
nicely while you program it, but falls apart on the third day after deployment,
exactly when you’re starting to think that your game is a big success.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

Deployment Architectures, Take 1
In this Chapter we’ll discuss only “basic” deployment architectures. These
architectures are “basic” in a sense that they’re usually sufficient to deploy your
game and run it for several months, but as your game grows, further improvements
may become necessary. Fortunately, these improvements can be done later,
when/if the problems with basic deployment architecture arise; these
improvements will be discussed in Chapter [[TODO]].

Also note that for your very first deployment, you may have much less
physical/virtual boxes than shown on the diagram, by combining quite a few of
them together. On the other hand, you should be able to increase the number of
your servers quickly, so you need to have the software able to work in basic
deployment architecture from the very beginning. This is important, as demand for
increase in number of servers can develop very soon if you’re successful. We’ll
discuss your very first deployment in Chapter [[TODO]].

First, let’s start with an architecture you shouldn’t do.

Don’t Do It: Naïve Game Deployment Architectures
Quite often, when faced with development their very first multi-player game,
developers start with something like the following Fig VI.1:

/wp-content/uploads/BB_part070_BookChapter006a_v1.png

It is dead simple: there is a server, and there is a database to store persistent state.
And later on, as one single Game World server proves to be insufficient, it naturally
evolves into something like the diagram on Fig VI.2:

with each of Game World servers having its own database.

My word of advice about such naïve deployment architectures:

DON’T DO THIS!

Such a naïve approach won’t work well for a vast majority of games. The problem
here (usually ranging from near-fatal to absolutely-fatal depending on specifics of
your game) is that this architecture doesn’t allow for interaction between players
coming from different servers. In particular, such an architecture becomes
absolutely deadly if your game allows some way for a player to choose who he’s
playing with (or if you have some kind of merit-based tournament system), in other
words – if you’re not allowed to arbitrary separate your players (and in most cases
you will need some kind of interaction at least because of the social network
integration, see Chapter II for further discussion in this regard).

For the naïve architecture shown on Fig VI.2, any interaction
between separate players coming from separate databases,
leads to huge mortgage-crisis-size problems. Inter-DB
interaction, while possible (and we’ll discuss it in Chapter
[[TODO]]) won’t work well around these lines and between
completely independent databases. You’re going to have lots
and lots of problems, ranging from delays due to improperly
implemented inter-DB transactions (apparently this is not

CSR
Customer

service
representatives

interact w ith
customers to

/wp-content/uploads/Fig-VIv2-1.png
/wp-content/uploads/Fig-VIv2-2.png
https://en.wikipedia.org/wiki/Customer_service_advisor

that easy), to your CSRs going crazy because of two different
users having the same ID in different databases. Moreover, if
you start like this, you will even have trouble merging the
databases later (the very first problem you will face will be
about collisions in user names between different DBs, with
much more to follow).

To summarize relevant discussion from Chapter II and from
present Chapter:

A. Y ou WILL need inter-player interaction between
arbitrary players. If not now, then later. B. Hence,
you SHOULD NOT use “naïve” architecture shown

above.

Fortunately, there are relatively simple and practical architectures which allow to
avoid problems typical for naïve approaches shown above.

Web-Based Game Deployment Architecture
If your game satisfies two conditions:

first, it is reeeeallyyyy sloooow-paaaaaced (in other words, it is not an
MMOFPS and even not a poker game) and/or “asynchronous” (as defined in
Chapter I, i.e. it doesn’t need players to be present simultaneously),

and second, it has little interaction between players (think farming-like games
with only occasional inter-player interaction),

then you might be able to get away with Web-Based server-side architecture,
shown on Fig VI.3:

provide
answ ers to

inquiries
involving a

company's
product or

services.
— Wikipedia —

/wp-content/uploads/Fig-VIv2-32.png

One Big

W eb-Based Deployment Architecture: How It W orks

The whole thing looks alongside the lines of a heavily-loaded web app – with lots of
caching, both at front-end (to cache pages), and at a back-end. However, there are
also significant differences (special thanks to Robert Zubek for sharing his
experiences in this regard, [Zubek2016]).

The question “which web server to use” is not that important here. On the other
hand, there exists an interesting and not-so-well-known web server, which took an
extra mile to improve communications in game-like environments. I’m speaking
about [Lightstreamer]. I didn’t try it myself, so I cannot vouch for it, but what
they’re doing with regards to improving interactivity over TCP, is really
interesting. We’ll discuss some of their tricks in Chapter [{TODO]].

Peculiarities in Web-Based Game architectures are mostly about the way caching is
built. First, on Fig VI.3 both front-end caching and back-end caching is used.
Front-end caching is your usual page caching (like nginx in reverse-proxy mode, or
even a CDN), though there is a caveat. As your current-game-data changes very
frequently, you normally don’t want to cache it, so you need to take an effort and
clearly separate your static assets (.SWFs, CSS, JS, etc. etc.) which can (and should)
be cached, and dynamic pages (or AJAX) with current game state data which
changes too frequently to bother about caching it (and which will likely go directly
from your web servers) [Zubek2010].

At the back-end, the situation is significantly more
complicated. According to [Zubek2016], for games you will
often want not only to use your back-end cache as a cache to
reduce number of DB reads, but also will want to make it a
write-back cache (!), to reduce the number of DB writes. Such a
write-back cache can be implemented either manually over
memcached (with web servers writing to memcached only, and
a separate daemon writing ‘dirty’ pages from memcached to
DB), or a product such as Redis or Couchbase (formerly
Membase) can be used [Zubek2016].

Taming DB Load: W rite-Back Caches and In-Memory
States

One Big Advantage of having write-back
cache (and of the in-memory state of
Classical deployment architecture
described below) is related to the huge
reduction in number of DB updates. For
example, if we’d need to save each and
every click on the simulated farm with

CAS
Compare-And-
Sw ap is an
atomic
instruction
used in
multithreading
to achieve
synchronization.
It compares the
contents of a
memory
location to a
given value
and, only if
they are the
same, modif ies
the contents of“

https://en.wikipedia.org/wiki/Compare-and-swap

Advantage of
having w rite-

back cache (and
of the in-

memory state of
Classical

deployment
architecture

described
below) is

related to the
huge reduction

in number of
DB updates.

25M daily users (each coming twice a day
and doing 50 modifying-farm-state clicks
each time in a 5-minute session), we could
easily end up with 2.5 billion DB
transactions/day (which is infeasible, or
at least non-affordable). On the other
hand, if we’re keeping write-back cache,
we can write the cache into DB only once per 10 minutes, we’d
reduce the number of DB transactions 50-fold, bringing it to
much more manageable 50 million/day.

For faster-paced games (usually implemented as a Classical
Architecture described below, but facing the same challenge
of DB being overloaded), the problem surfaces even earlier.
For example, to write each and every movement of every
character in an MMORPG, we’d have a flow of updates of the
order of 10 DB-transactions/sec/player (i.e. for 10’000

simultaneous players we’d have 100’000 DB transactions/second, or around 10
billion DB transactions/day, once again making it infeasible, or at the very least
non-affordable). On the other hand, with in-memory states stored in-memory-only
(and saving to DB only major events such as changing zones, or obtaining level) –
we can reduce the number of DB transactions by 3-4 orders of magnitude, bringing
it down to much more manageable 1M-10M transactions/day.

As an additional benefit, such write-back caches (as long as you control write times
yourself) and in-memory states also tend to play well with handling server failures.
In short: for multi-player games, if you disrupt a multi-player “game event” (such
as match, hand, or fight) for more than a few seconds, you won’t be able to continue
it anyway because you won’t be able to get all of your players back; therefore, you’ll
need to roll your “game event” back, and in-memory states provide a very natural
way of doing it. See “Failure Modes & Effects” section below for detailed discussion
of failure modes under Classical Game Architecture.

A word of caution for stock exchanges. If your game is a stock exchange, you
generally do need to save everything in DB (to ensure strict correctness even in
case of Game Server loss), so in-memory-only states are not an option, and DB
savings do not apply. However, even for stock exchanges at least Classical Game
architecture described below has been observed to work very well despite DB
transaction numbers being rather large; on the other hand, for stock exchanges
transaction numbers are usually not that high as for MMORPG, and price of the
hardware is generally less of a problem than for other types of games.

W rite-Back Caches: Locking

As always, having a write-back cache has some very serious implications, and will

that memory
location to a
given new
value.

— Wikipedia —

“

cause lots of problems whenever two of your players try to interact with the same
cached object. To deal with it, there are three main approaches: “optimistic
locking”, “pessimistic locking”, and transactions. Let’s consider them one by one.

Optimistic Locking. This one is directly based on memcached’s CAS operation.
The idea of using CAS for optimistic locking goes along the following lines. To
process some incoming request, Web Server does the following:

reads whole “game world” state as a single blob from memcached, alongside
with “cas token”. “cas token” is a thing which is actually a “version number” for
this object.

we’re optimists! so Web Server is processing incoming request ignoring
possibility that some other Web Server also got the same “game world” and is
working on it

Web Server is NOT allowed to send any kind of reply back to user (yet)

Web Server issues cas operation with both new-value-of-“game-world”-blob,
and the same “cas token” which it has received

if “cas token” is still valid (i.e. nobody has written to the blob before
current Web Server has read it), memcached writes new value, and
returns ok.

Then our Web Server may send reply back to whoever-requested-it

if, however, there was a second Web Server which has managed to write
after we’ve read our blob – memcached will return a special error

in this case, our Web Server MUST discard all the prepared replies

in addition, it MAY read new value of “game world” state (with new
“cas token”), and try to re-apply incoming request to it

this is perfectly valid: it is just “as if” incoming request has
came a little bit later (which can always happen)

Optimistic locking is simple, is lock-less (which is important, see below why), and
has only one significant drawback for our purposes. That is, while it works fine as
long as collision probability (i.e. two Web Servers working on the same “game
world” at the same time) is low, but as soon as probability grows (beyond, say 10%)
– you will start getting a significant performance hit (for processing the same
message twice, three times, and so on and so forth). For slow-paced asynchronous
games it is very unlikely to become a problem, and therefore by default I’d
recommend optimistic locking for web-based games, but you still need to
understand limitations of the technology before using it.

 a supposedly equivalent optimistic locking for Redis is described in [Redis.CAS]

1

1

Pessimistic Locking. This is pretty much a classical multi-threaded mutex-based
locking, applied to our “how to handle two concurrent actions from two different
Web Servers over the same “game world” problem.

In this case, game state (usually stored as a whole in a blob) is protected by a sorta-
mutex (so that two web servers cannot access it concurrently). Such a mutex can
be implemented, for example, over something like memcached’s CAS operation
[Zubek2010]. For pessimistic locking, Web Server acts as follows:

obtains lock on mutex, associated with our “game world” (we’re pessimists
, so we need to be 100% sure before processing, that we’re not processing in
vain).

if mutex cannot be obtained – Web Server MAY try again after waiting a
bit

reads “game world” state blob

processes it

writes “game world” state blob

releases lock on mutex

This is a classical mutex-based schema and it is very robust when applied to
classical multi-thread synchronization. However, when applying it to web servers
and memcached, there is a pretty bad caveat . The problem here is related to
“how to detect hanged/crashed web server – or process – which didn’t remove the
lock” question, as such a lock will effectively prevent all future legitimate
interactions with the locked game world (which reminds me of the nasty problems
from the early-90ish pre-SQL FoxPro-like file-lock-based databases).

For practical purposes, such a problem can be resolved via timeouts, effectively
breaking the lock on mutex (so that if original mutex owner of the broken mutex
comes later, he just gets an error). However, allowing to break mutex locks on
timeouts, in turn, has significant further implications, which are not typical for
usual mutex-based inter-thread synchronizations:

first, if we’re breaking mutex on timeout – there is a problem of choosing the
timeout. Have it too low, and we can end up with fake timeouts, and having it
too high will cause frustrated users

second, it implies that we’re working EXACTLY according to the pattern
above. In particular:

having more than one memcached object per “game world” is not
allowed

“partially correct” writes of “game state” are not allowed either, even if
they’re intended to be replaced “very soon” under the same lock

In practice, these issues are rarely causing too much problems when using
memcached for mutex-based pessimistic locking. On the other hand, as for
memcached we’d need to simulate mutex over CAS, I still suggest optimistic
locking (just because it is simpler and causes less memcached interactions).

Transactions. Classical DB transactions are useful, but dealing with concurrent
transactions is really messy. All those transaction isolation levels (with
interpretations subtly different across different databases), locks, and deadlocks
are not a thing which you really want to think about.

Fortunately, Redis transactions are completely unlike classical DB transactions and
are coming without all this burden. In fact, Redis transaction is merely a sequence
of operations which are executed atomically. It means no locking, and an ability to
split your “game world” state into several parts to deal with traffic. On the other
hand, I’d rather suggest to stay away from this additional complexity as long as
possible, using Redis transactions only as means of optimistic locking as described
in [Redis.CAS]. Another way of utilizing capabilities of Redis transactions is briefly
mentioned in “Web-Based Deployment Architecture: FSMs” section below.

W eb-Based Deployment Architecture: FSMs

You may ask: how finite state machines (FSMs) can possibly be related to the web-
based stuff? They seem to be different as night and day, don’t they?

Actually, they’re not. Let’s take a look at both optimistic and pessimistic locking
above. Both are taking the whole state, generating new state out of it, and storing
this new state. But this is exactly what our FSM::process_event() function from
Chapter V does! In other words, even for web-based architecture, we can (and
IMHO SHOULD) write processing in an event-driven manner, taking state and
processing inputs, producing state and issuing replies as a result.

As soon as we’ve done it this way, the question
“Should we use optimistic locking or pessimistic

one”, becomes a deployment implementation detail

In other words, if we have an FSM-based (a.k.a. event-driven) game code, we can
change the wrapping infrastructure code around it, and switch it from optimistic
locking to pessimistic one (or vice versa). All this without changing a single line
within any of FSMs!

Moreover, if using FSMs, we can even change from
Web-Based Architecture to Classical one and vice

versa without changing FSM code

If by any chance reading the whole “game world” state from cache becomes a
problem (which it shouldn’t, but you never know), it MIGHT still be solved via FSMs
together with Redis-style transactions mentioned above. Infrastructure code (the
one outside of FSM) may, for example, load only a part of the “game world” state
depending on type of input request (while locking all the other parts of the state to
avoid synchronization problems), and also MAY implement some kind on-demand
exception-based state loading along the lines of on-demand input loading
discussed in [[TODO]] section below.

W eb-Based Deployment Architecture: Merits

Unlike the naïve approach above, Web-Based systems may work. Their obvious
advantage (especially if you have a bunch of experienced web developers on your
team) is that it uses familiar and readily-available technologies. Other benefits are
also available, such as:

easy-to-find developers

simplicity and being relatively obvious (that is, until you need to deal with
locks, see above)

web servers are stateless (except for caching, see below), so failure analysis is
trivial: if one of your web servers goes down, it can be simply replaced

can be easily used both for the games with downloadable client and for
browser-based ones

Web-Based Architecture (as well as any other one), of course, also has downsides,
though they may or may not matter depending on your game:

there is no way out of web-based architecture; once you’re in – switching to
any other one will be impossible. Might be not that important for you, but
keep it in mind.

it is pretty much HTTP-only (with an option to use Websockets); migration to
plain TCP/UDP is generally not feasible.

as everything will work via operations on the whole game state, different parts
of your game will tend to be tightly coupled. Not a big problem if your game is
trivial, but may start to bite as complexity grows.

as the number of interactions between players and game world grows, Web-
Based Architecture becomes less and less efficient (as distributed-mutex-
locked accesses to retrieve whole game state from the back-end cache and
write it back as a whole, don’t scale well). Even medium-paced “synchronous”
games such as casino multi-players, are usually not good candidates for Web-
Based Architecture.

you need to remember to keep all the accesses to game objects synchronized;

if you miss one – it will work for a while, but will cause very strange-looking
bugs under heavier load.

you’ll need to spend A LOT of time meditating over your caching strategy. As
the number of player grows, you’re very likely to need a LOT of caching, so
start designing your caching strategies ASAP. See above about peculiarities of
caching when applied to games (especially on write-back part and mutexes),
and make your own research.

as the load grows, you will be forced to spend time on finding a good and
really-working-for-you solution for that nasty web-server-never-releases-
mutex problem mentioned above. While not that hopeless as ensuring
consistency within pre-SQL DBF-like file-lock-based databases, expect quite
a chunk of trouble until you get it right.

Still,

if your game is rather slow/asynchronous and inter-
player interactions are simple and rather far

between, Web-Based Architecture may be the way to
go

While Classical Architecture described below (especially with Front-End Servers
added, see [[TODO]] section) can also be used for slow-paced games,
implementing it yourself just for this purpose is a Really Big Headache and might
be easily not worth the trouble if you can get away with Web-Based one. On the
other hand,

even for medium-paced synchronous multi-player
games (such as casino-like multi-player games) Web-

Based Architecture is usually not a good candidate

(see above).

Classical Game Deployment Architecture
Fig VI.4 shows a classical game deployment diagram.

In this deployment architecture, clients are connected to Game Servers directly,
and Game Servers are connected to a single DB Server, which hosts system-wide
persistent state. Each of Game Servers MIGHT (or might not) have it own database
(or other persistent storage) depending on the needs of your specific game;
however, usually Game Servers store only in-memory states with all the persistent
storage going into a single DB residing on DB Server.

Game Servers

Game Servers are traditionally divided according to their functionality, and while
you can combine different types of functionality on the same box, there are often
good reasons to avoid combining too many different things together.

Different types of Game Servers (more strictly – different types of functionality
hosted on Game Servers) should be mapped to the entities on your
Entities&Relationships Diagram described in Chapter II. You should do this
mapping for your specific game yourself. However, as an example, let’s take a look
at a few of typical Game Servers (while as always, YMMV, these are likely to be
present for quite a few games):

Game W orld Serv ers. Your game worlds are running on Game World Servers,
plain and simple. Note that “Game World” here doesn’t necessarily mean a “3D

/wp-content/uploads/Fig-VIv2-41.png

Payment
Server and

Usually,
when a player
launches her
client app, the
client by
default
connects to
one of
Matchmaking
Servers.

game world with simulated physics etc.” . Taking a page from a casino-like games
book, “Game World” can be a casino table; going even further into realm of stock
exchanges, “Game World” may be a stock exchange floor. Surprisingly, from an
architecture point of view, all these seemingly different things are very similar. All
of them represent a certain state (we usually name it “game world”) which is
affected by player’s actions in real time, and changes to this state are shown to all
the players.

Matchmaking Serv ers. Usually, when a player launches her
client app, the client by default connects to one of
Matchmaking Servers. In general, matchmaking servers are
responsible for redirecting players to one of your multiple
game worlds. In practice, they can be pretty much anything:
from lobbies where players can join teams or select game
worlds, to completely automated matchmaking. Usually it is
matchmaking servers that are responsible for creating new
game worlds, and placing them on the servers (and sometimes
even creating new servers in cloud environments).

Tournament Serv ers. Not always, but quite often your game
will include certain types of “tournaments”, which can be
defined as game-related entities that have their own life span
and may create multiple Game World instances during this life
span. Technically, these are usually reminiscent of
Matchmaking Servers (they need to communicate with players,
they need to create Game Worlds, they tend to use about the
same generic protocol synchronization mechanics, see
Chapter [[TODO]] for details), but of course, Tournament
Servers need to implement tournament rules of the specific tournament etc. etc.

Payment Serv er and Social Gatew ay Serv er. These are necessary to provide
interaction of your game with the real world. While these server might look an
“optional thing nobody should care about”, they’re usually playing an all-important
role in increasing popularity of your game and monetization, so you’d better to
account for them from the very beginning.

The very nature of Payment Servers and Social Gateway
Server is to be “gateways to the real world”, so they’re usually
exactly what is written on the tin: gateways. It means that their
primary function is usually to get some kind of input from the
player and/or other Game Servers, write something to DB (via
DB Server), and make some request according to some-
external-protocol (defined by payment provider or by social
network). On the other hand, implementing them when you
need to support multiple payment/social providers (each

2

“

“

Social Gatew ay
Server are

necessary to
provide

interaction of
your game w ith
the real w orld.

with their own peculiarities, you can count on it) – is a
challenge; also they tend to change a lot due to requirements
coming from business and marketing, changes in provider’s
APIs, need to support new providers etc. And of course, at
least for payment servers, there are questions of distributed
transactions between your DB and payment-provider DB, with
all the associated issues of recovery from “unknown-state”
transactions, and semi-manul reconciliation of reports at the
end of month. As a result, these two seemingly irrelevant-to-

gameplay servers tend to have their own teams after deployment; more details on
payment servers will be discussed in Chapter [[TODO]].

One of the things these servers should do, is isolating Game World Servers and
preferably Matchmaking Servers from the intimate details about specifics of the
payment providers and social networks. In other words, Game World Servers
shouldn’t generally know about such things as “a guy has made a post of Facebook,
so we need to give him bonus of 25% extra experience for 2 days”. Instead, this
functionality should be split in two: Social Gateway Server should say “this guy has
earned bonus X” (with explanation in DB why he’s got the bonus, for audit
purposes), and Game World Server should take “this guy has bonus X” statement
and translate it into 25% extra experience.

 restrictions may apply to which parts of the state are shown to which players. One
such example is a server-side fog-of-war, that we’ll discuss in Chapter [[TODO]]

Implementing Game Servers under QnFSM architecture

In theory, Game Servers can be implemented in whatever way you prefer. In
practice, however, I strongly suggest to have them implemented under Queues-
and-FSMs (QnFSM) model described in Chapter V. Among the other things, QnFSM
provides very clean separation between different modules, enables replay-based
debug and production post-mortem, allows for different deployment scenarios
without changing the FSM code (this one becomes quite important for the server
side), and completely avoids all those pesky inter-thread synchronization problems
at logical level; see Chapter V for further discussion of QnFSM benefits.

Fig VI.5 shows a diagram with an implementation of a generic Game Server under
QnFSM:

2

When a
Matchmaking
server needs
to create a
new game
world on
server X, it
sends a
request to the
Game Logic

If it looks complicated at the first glance – well, it should. First of all, the diagram
represents quite a generic case, and for your specific game (and at least at first
stages) you may not need all of that stuff, we’ll discuss it below. Second, but
certainly not unimportant, writing anywhere-close-to-scalable server is not easy.

Now let’s take a closer look at the diagram on Fig VI.5, going in an unusual
direction from right to left.

Game Logic and Game Logic Factory. On the rightmost side
of the diagram, there is the most interesting part – things,
closely related to your game logic. Specifics of those Game
Logic FSMs are different for different Game Servers you have,
and can vary from “Game World FSM” to “Payment Processing
FSM” with anything else you need in between. It is worth noting
that while for most Game Logic FSMs you won’t need any
communications with the outside world except for
sending/receiving messages (as shown on the diagram), for
gateway-style FSMs (such as Payment FSM or Social Gateway
FSM) you will need some kind of external API (most of the time
they go over outgoing HTTP, though I’ve seen quite strange
things, such as X.25); it doesn’t change the nature of those
gateway-style FSMs, so you still have all the FSM goodies (as
long as you “intercept” all the calls to that external API, see
Chapter V for details). [[TODO! – discussion on blocking-vs-
non-blocking APIs for gateway-style FSMs]]

Game Logic Factory is necessary to create new FSMs (and if

“

/wp-content/uploads/Fig-VIv2-51.png

Factory which
resides on
server X, and
Game Logic
Factory
creates game
world with
requested
parameters.

necessary, new threads) by an external request. For example,
when a Matchmaking server needs to create a new game world
on server X, it sends a request to the Game Logic Factory which
resides on server X, and Game Logic Factory creates game
world with requested parameters. Deployment-wise, usually
there is only one instance of the Game Logic Factory per
server, but technically there is no such strict requirement.

TCP Sockets and TCP A ccept. Going to the left of Game Logic
on Fig VI.5, we can see TCP-related stuff. Here the things are
relatively simple: we have classical accept() thread, that passes
the accepted sockets to Socket Threads (creating Socket
Threads when it becomes necessary).

The only really important thing to be noted here is that each Socket Thread should
normally handle more than one TCP socket; usually number of TCP sockets per
thread for a game server should be somewhere between 16 and 128 (or “somewhere
between 10 and 100” if you prefer decimal notation to hex). On Windows, if you’re
using WaitForMultipleObjects() , you’re likely to hit the wall at around 30 sockets
per thread (see further discussion in Chapter [[TODO]]), and this has been observed
to work perfectly fine. Having one thread (even worse – two, one for recv() and
another one for send()) per socket on the server-side is generally not advisable, as
threads have substantial associated overhead (both in terms of resources, and in
terms of context switches). In theory, multiple sockets per thread may cause
additional latencies and jitter, but in practice for a reasonably well written code
running on a non-overloaded server I wouldn’t expect additional latencies and
jitter of more than single-digit microseconds, which should be non-observable
even for the most fast-paced games.

 and accordingly, Socket FSM, unless you’re hosting multiple Socket FSMs per
Socket Thread, which is also possible
 which IMHO provides the best balance between performance and implementation

complexity (that is, if you need to run your servers on Windows), see Chapter
[[TODO]] for further details

UDP-related FSMs. UDP (shown on the left side of Fig VI.5) is quite a weird beast;
in some cases, you can use really simple things to get UDP working, but in some
other cases (especially when high performance is involved), you may need to resort
to quite heavy solutions to achieve scalability. The solution on Fig VI.5 is on the
simpler side, so you MIGHT need to get into more complicated things to achieve
performance/scalability (see below).

Let’s start explaining things here. One problem which you [almost?] universally will

3

4

3

4

Y ou MAY
f ind that your
UDP Handler
Thread becomes
a bottleneck,
causing
incoming
packets to drop

have when using UDP, is that you will need to know whether your player is
connected or not. And as soon as you have a concept of “UDP connection” (for
example, provided by your “reliable UDP” library), you have some kind of
connection state/context that needs to be stored somewhere. This is where those
“Connected UDP Threads” come in.

So, as soon as we have the concept of “player connected to our
server” (and we need this concept at least because players
need to be subscribed to the updates from our server), we
need those “Connected UDP Threads”. Not exactly the best
start from KISS point of view, but at least we know what we
need them for. As for the number of those threads – we should
limit the number of UDP connections per Connected UDP
Thread; as a starting point, we can use the same ballpark
numbers of UDP connections per thread as we were using for
TCP sockets per thread: that is, between 16-128 UDP
connections per thread.

UDP Handler Thread and FSM is a very simple thing – it
merely gets whatever-comes-in-from-recvfrom(), and passes

it to an appropriate Connected UDP Thread (as UDP Handler FSM also creates
those Connected UDP Threads, it is not a problem for it to have a map of incoming-
packet-IP/port-pairs to threads).

However, you MAY find that this simpler approach doesn’t
work for you (and your UDP Handler Thread becomes a
bottleneck, causing incoming packets to drop while your
server is not overloaded yet); in this case, you’ll need to use
platform-specific stuff such as recvmmsg(), or to use multiple
recvfrom()/sendto() threads. The latter multi-threaded
approach will in turn cause a question “where to store this
mapping of incoming-packet-IP/port-pairs to threads”. This
can be addressed either using shared state (which is a
deviation from pure FSM model, but in this particular case it
won’t cause too much trouble in practice), or via separate UDP
Factory Thread/FSM (with UDP Factory FSM storing the
mapping, and notifying recvfrom() threads about the mapping
on request, in a manner somewhat similar to the one used for
Routing Factory FSM described in [[TODO]] section below).

 see further discussion on recvmmsg() in Chapter [[TODO]]

W ebsocket-related FSMs and HTTP-related FSMs (not show n). If you need to

KISS
principle

KISS is an
acronym f or

'Keep it simple,
stupid' as a

design
principle noted
by the U.S. Navy

in 1960.
— Wikipedia —

“
5

5

https://en.wikipedia.org/wiki/KISS_principle

support Websocket clients (or, Stevens forbid, HTTP clients) in addition to, or
instead of TCP or UDP, this can be implemented quite easily. Basic Websocket
protocol is very simple (with basic HTTP being even simpler), so you can use pretty
much the same FSMs as for TCP, but implementing additional header parsing and
frame logic within your Websocket FSMs. If you think you need to support HTTP
protocol for a synchronous game – think again, as implementing interactive
communications over request-response HTTP is difficult (and tends to cause too
much server load), so Websockets are generally preferable over HTTP for
synchronous games and are providing about-the-same (though not identical)
benefits in terms of browser support and being firewall friendly; see further
discussion on these protocols in Chapter [[TODO]]. For asynchronous games, HTTP
(with simple polling) MAY be a reasonable choice.

CUDA /OpenCL/Phi FSM (not show n). If your Game Worlds require simulation
which is very computationally heavy, you may want to use your Game World servers
with CUDA (or OpenCL/Phi) hardware, and to add another FSM (not shown on Fig
VI.5) to communicate with CUDA/OpenCL/Phi GPGPU. A few things to note in this
regard:

We won’t discuss how to apply CUDA/OpenCL/Phi to your simulation; this is
your game and a question “how to use massively parallel computations for
your specific simulation” is utterly out of scope of the present book.

Obtaining strict determinism for CUDA/OpenCL FSMs is not trivial due to
potential inter-thread interactions which may, for example, change the order
of floating-point additions which may lead to rounding-related differences in
the last digit (with both results practically the same, but technically different).
However, for most of gaming purposes (except for replaying server-side
simulation forever-and-ever on all the clients), even this “almost-strict-
determinism” may be sufficient. For example, for “recovery via replay” feature
discussed in “Complete Recovery from Game World server failures: DIY Fault-
Tolerance in QnFSM World” section below, results during replay-since-last-
state-snapshot, while not guaranteed to be exactly the same, are not too likely
to result in macroscopic changes which are too visible to players.

Normally, you’re not going to ship your game servers to your datacenter. Well,
if the life of your game depends on it, you might, but this is a huuuge headache
(see below, as well as Chapter [[TODO]] for further discussion)

 As soon as you agree that it is not your servers, but
leased ones or cloud ones (see also Chapter
[[TODO]]), it means that you’re completely
dependent on your server ISP/CSP on supporting
whatever you need.

Most likely, with 3rd-party ISP/CSP it will be Tesla or GRID GPU (both by
NVidia), so in this case you should be ok with CUDA rather than OpenCL.

The choice of such ISPs which can lease you GPUs, is limited, and they

CSP
Cloud Service
Provider

-

In short –
Titan X gets you
more or less
comparable
perf ormance
parameters
(except f or RAM
size and double-
precision
calculations) at
less than 30% of
the price of
Tesla K80.

tend to be on an expensive side :-(. As of the end of 2015, the best I was
able to find was Tesla K80 GPU (the one with 4992 cores) rented at
$500/month (up to two K80’s per server, with the server itself going at
$750/month). With cloud-based GPUs, things weren’t any better, and
started from around $350/month for a GRID K340 (the one with
4×384=1536 total cores). Ouch!

If you are going to co-locate your servers instead of
leasing them from ISP , you should still realize that
server-oriented NVidia Tesla GPUs (as well as AMD
FirePro S designated for servers) are damn expensive.
For example, as of the end of 2015, Tesla K80 costs
around $4000(!); at this price, you get 2xGK210 cores,
24GB RAM@5GHz, clock of 562/875MHz, and 4992 CUDA
cores. At the same time, desktop-class GeForce Titan X is
available for about $1100, has 2 of newer GM200 cores,
12GB RAM@7GHz, clock of 1002/1089MHz, and 3072 CUDA
cores. In short – Titan X gets you more or less
comparable performance parameters (except for RAM
size and double-precision calculations) at less than 30%
of the price of Tesla K80. It might look as a no-brainer to
use desktop-class GPUs, but there are several significant
things to keep in mind:

the numbers above are not directly comparable;
make sure to test your specific simulation with
different cards before making a decision. In
particular, differences due to RAM size a double-
precision maths can be very nasty depending on
specifics of your code

even if you’re assembling your servers yourself, you are still going to
place your servers into a 3rd-party datacenter; hosting stuff within your
office is not an option (see Chapter [[TODO]])

space in datacenters costs, and costs a lot. It means that tower
servers, even if allowed, are damn expensive. In turn, it usually
means that you need a “rack” server.

Usually, you cannot just push a desktop-class GPU card (especially
a card such as Titan X) into your usual 1U/2U “rack” server; even if
it fits physically, in most cases it won’t be able to run properly
because of overheating. Feel free to try, and maybe you will find the
card which runs ok, but don’t expect it to be the-latest-greatest
one; thermal conditions within “rack” servers are extremely tight,
and air flows are traditionally very different from the desktop
servers, so throwing in additional 250W or so with a desktop-
oriented air flow to a non-GPU-optimized server isn’t likely to work
for more than a few minutes.

“

6

If your game
cannot survive
w ithout server-
side GPGPU
simulations – it
can be done, but
be prepared to
pay a lot more
than you would
expect based on
desktop GPU
prices

IMHO, your best bet would be to buy rack servers which are specially
designated as “GPU-optimized”, and ideally – explicitly supporting those
GPUs that you’re going to use. Examples of rack-servers-supporting-
desktop-class-GPUs range from 1U server by Supermicro with up 4x
Titan X cards, to 4U boxes with up to 8x Titan X cards, and monsters
such as 12U multi-node “cluster” which includes total of 10×6-core Xeons
and 16x GTX 980, the whole thing going at humble $40K total, by
ExxactCorp. In any case, before investing a lot to buy dozens of specific
servers, make sure to load-test them, and load-test a lot to make sure that
they won’t overheat under many hours of heavy load and datacenter-
class thermal conditions (where you have 42 such 1U servers with one
lying right on top of each other, ouch!, see Chapter [[TODO]] for further
details).

To summarize: if your game cannot survive without server-
side GPGPU simulations – it can be done, but be prepared to
pay a lot more than you would expect based on desktop GPU prices,
and keep in mind that deploying CUDA/OpenCL/Phi on
servers will take much more effort than simply making your
software run on your local T itan X . Also – make sure to start
testing on real server rack-based hardware as early as
possible, you do need to know ASAP whether hardware of your
choice has any pitfalls.

 this potentially includes even assembling them yourself, but I
generally don’t recommend it
 I didn’t use any of these, so I cannot really vouch for them, but

at least you, IMHO, have reasonably good chances if you try;
also make sure to double-check if your colocation provider is
ready to host these not-so-mainstream boxes
 officially Supermicro doesn’t support Titans, but their 1U

boxes can be bought from 3rd-party VARs such as Thinkmate
with 4x Titan X for a total of $10K, T itans included; whether it
really works with Titans in datacenter environment 24×7 under
your type of load – you’ll need to see yourself

Simplifications. Of course, if your server doesn’t need to support UDP, you won’t
need corresponding threads and FSMs. However, keep in mind that usually your
connection to DB Server SHOULD be TCP (see “On Inter-Server Communications”
section below), so if your client-to-server communication is UDP, you’ll usually
need to implement both. On the other hand, our QnFSM architecture provides a
very good separation between protocols and logic, so usually you can safely start
with a TCP-only server, and this will almost-certainly be enough to test your game
intra-LAN (where packet losses and latencies are negligible), and implement UDP

7

8

“
6

7

8

support later (without the need to change your FSMs). Appropriate APIs which
allow this kind of clean separation, will be discussed in Chapter [[TODO]].

On Inter-Server Communications

One of the questions you will face when designing your server-side, will be about
the protocol used for inter-server communications. My take on it is simple:

even if you’re using UDP for client-to-server
communications, seriously consider using TCP for

server-to-server communications

Detailed discussion on TCP (lack of) interactivity is due in Chapter [[TODO]], but
for now, let’s just say that poor interactivity of TCP (when you have Nagle algorithm
disabled) becomes observable only when you have packet loss, and if you have non-
zero packet loss within your server LAN – you need to fire your admins.

On the positive side, TCP has two significant benefits. First, if you can get
acceptable latencies without disabling Nagle algorithm, TCP is likely to produce
much less hardware interrupts (and overall context switches) on the receiving
server’s side, which in turn is likely to reduce overall load of your Game Servers and
even more importantly – DB Server. Second, TCP is usually much easier to deal with
than UDP (on the other hand, this may be offset if you already have implemented
UDP support to handle client-to-server communications).

 to those asking “if it is zero packet loss, why would we need to use TCP at all?” –
I’ll note that when I’m speaking about “zero packet loss”, I can’t rule out two packet
lost in a day which can happen even if your system is really really well-built. And
while a-few-dozen-microsecond additional delay twice a day won’t be noticeable,
crashing twice a day is not too good

QnFSM on Server Side: Flexibility and Deployment-Time/Run-Time
Options.

When it comes to the available deployment options, QnFSM is an extremely flexible
architecture. Let’s discuss your deployment and run-time options provided by
QnFSM in more detail.

Threads and Processes

9

9

FSMs can be
deployed as
multiple-FSMs-
per-thread, one-
FSM-per-
thread-
multiple-
threads-per-
process, or one-
FSM-per-
process
conf igurations
(all this w ithout
changing your
FSM code at all)

First of all, you can have your FSMs deployed in different
configurations depending on your needs. In particular, FSMs
can be deployed as multiple-FSMs-per-thread, one-FSM-per-
thread-multiple-threads-per-process, or one-FSM-per-
process configurations (all this without changing your FSM
code at all).

In one real-world system with hundreds of thousands
simultaneous players but lightweight processing on the
server-side and rather high acceptable latencies, they’ve
decided to have some of game worlds (those for novice
players) deployed as multiple-FSMs-per-thread, another
bunch of game worlds (intended for mature players) –
deployed as a single-FSM-per-thread (improving latencies a
bit, and providing an option to raise thread priority for these
FSMs), and those game worlds for pro players – as a single-
FSM-per-process (additionally improving memory isolation in
case of problems, and practically-unobservedly improving
memory locality and therefore performance); all these FSMs
were using absolutely very same FSM code, but it was
compiled into different executables to provide slightly
different performance properties.

Moreover, in really extreme cases (like “we’re running a
Tournament of the Year with live players”), you may even pin a single-FSM-per-
thread to a single core (preferably the same where interrupts from you NIC come
on this server) and to pin other processes to other cores, keeping your latencies to
the absolute minimum.

 Restrictions apply, batteries not included. If you have blocking calls from within
your FSM, which is common for DB-style FSMs and some of gateway-style FSMs,
you shouldn’t deploy multiple-FSMs-per-thread
 yes, this will further reduce latencies in addition to any benefits obtained by

simple increase of thread priority, because of per-core caches being intact

Communication as an Implementation Detail

With QnFSM, communication becomes an implementation detail. For example, you
can have the same Game Logic FSM to serve both TCP and UDP. Not only it can
come handy for testing purposes, but also may enable some of your players (those
who cannot access your servers via UDP due to firewalls/weird routers etc.) to
play over TCP, while the rest are playing over UDP. Whether you want this
capability (and whether you want to match TCP players only with TCP players to

“
10

11

10

11

Y et another
tw o options
provided by

QnFSM, enable
server-side

sof tw are
upgrades

w ithout
stopping the

server.

make sure nobody has an unfair advantage) is up to you, but at least QnFSM does
provide you with such an option at a very limited cost.

Mov ing Game W orlds A round (at the cost of client reconnect)

Yet another flexibility option which QnFSM can provide (though with some
additional headache, and a bit of additional latencies), is to allow moving your
game worlds (or more generally – FSMs) from one server to another one. To do it,
you just need to serialize your FSM on server A (see Chapter V for details on
serialization), to transfer serialized state to a server’s B Game Logic Factory, and
to deserialize it there. Bingo! Your FSM runs on server B right from the same
moment where it stopped running on server A. In practice, however, moving FSMs
around is not that easy, as you’ll also need to notify your clients about changed
address where this moved FSM can be reached, but despite being an additional
chunk of work, this is also perfectly doable if you really want it.

Online Upgrades

Yet another two options provided by QnFSM, enable server-
side software upgrades while your system is running, without
stopping the server.

The first of these options is just to start creating new game
worlds using new Game Logic FSMs (while existing FSMs are
still running with the old code). This works as long as changes
within FSMs are minor enough so that all external inter-FSM
interfaces are 100% backward compatible, and the life time of
each FSM is naturally limited (so that at some point you’re
able to say that migration from the old code is complete).

The second of these online-upgrade options allows to
upgrade FSMs while the game world is still running (via
serialization – replacing the code – deserialization). This
second option, however, is much more demanding than the
first one, and migration problems may be difficult to identify.
Therefore, severe automated testing using “replay” technique

(also provided by QnFSM, see Chapter V for details) is strongly advised. Such
testing should use big chunks of the real-world data, and should simulate online
upgrades at the random moments of the replay.

On Importance of Flexibility

Quite often we don’t realize how important flexibility is. Actually, we rarely realize
how important it is until we run into the wall because of lack of flexibility.
Deterministic FSMs provide a lot of flexibility (as well as other goodies such as
post-mortem) at a relatively low development cost. That’s one of the reasons why I

“

While in
theory, it is
possible to use
your usual
ODBC-style
blocking calls to
your database
right f rom your
Game Server
FSMs, do
yourself a
f avor and skip
this option.

am positively in love with them.

DB Server

DB Server handles access to a database. This can be implemented using several
very different approaches.

The first and the most obvious model is also the worst one.
While in theory, it is possible to use your usual ODBC-style
blocking calls to your database right from your Game Server
FSMs, do yourself a favor and skip this option. It will have
several significant drawbacks: from making your Game Server
FSMs too tightly coupled to your DB to having blocking calls
with undefined response time right in the middle of your FSM
simulation (ouch!). In short – I don’t know any game where this
approach is appropriate.

DB A PI and DB FSM(s)

A much better alternative (which I’m arguing for) is to have at
least one FSM running on your DB server, to have your very
own message-based DB API (expressed in terms of messages
or non-blocking RPC calls) to communicate with it, and to keep
all DB work where it belongs – on DB Server, within
appropriate DB FSM(s). An additional benefit of such a
separation is that you shouldn’t be a DB guru to write your
game logic, but you can easily have a DB guru (who’s not a
game logic guru) writing your DB FSM(s).

DB API exposed by DB Server’s FSM(s), SHOULD NOT be plain SQL (which would
violate all the decoupling we’re after). Instead, your DB API SHOULD be specific to
your game, and (once again) should be expressed in game terms such as “take PC Z
and place it (with all it’s gear) into game world #NN”. All the logic to implement
this request (including pre-checking that PC doesn’t belong to any other game
world, modifying PC’s row in table of PCs to reflect the number of the world where
she currently resides, and reading all PC attributes and gear to pass it back) should
be done by your DB FSM(s).

In addition, all the requests in DB API MUST be atomic; no things such as “open
cursor and return it back, so I can iterate on it later” are ever allowed in your DB
API (neither you will really need such things, this stands in spite of whatever-your-
DB-guru-may-tell-you).

As soon as you have this nice DB API tailored for your needs, you can proceed with
writing your Game Server FSMs, without worrying about exact implementation of

“

Application-
level cache has
been observed

to provide 10x+
perf ormance

improvement
over DB cache
even if all the

necessary
perf ormance-

related
optimizations

are made on the
DB side

your DB FSM(s).

Meanw hile, at the King’s Castle…

As soon as we have this really nice separation between Game Server’s FSMs and DB
FSM(s) via your very own message-based DB API, in a sense, the implementation of
DB FSM will become an implementation detail. Still, let’s discuss how this small but
important detail can be implemented. Here I know of two major approaches.

Single-connection approach. This approach is very simple. You have run just one
FSM on your DB Server and process everything within one single DB connection:

Here, there is a single DB FSM which has single DB connection
(such as an ODBC connection, but there are lots of similar
interfaces out there), which performs all the operations using
blocking calls. A very important thing in this architecture is
application-level cache, which allows to speed things up very
considerably. In fact, this application-level cache has been
observed to provide 10x+ performance improvement over DB
cache even if all the necessary performance-related
optimizations (such as prepared statements or even stored
procedures) are made on the DB side. Just think about it –
what is faster: simple hash-based in-memory search within
your DB FSM (where you already have all the data, so we’re
speaking about 100 CPU clocks or so even if the data is out of
L3 cache), or marshalling -> going-to-DB-side-over-IPC ->
unmarshaling -> finding-execution-plan-by-prepared-
statement-handle -> executing-execution-plan -> marshaling
results -> going-back-to-DB-FSM-side-over-RPC ->
unmarshaling results. In the latter case, we’re speaking at
least a few dozens of microseconds, or over 1e4 CPU clocks,
over two orders of magnitude difference. And with single
connection to DB which is able to write data, keeping cache
coherency is trivial. The main thing which gets cached for
games is usually ubiquitous USERS (or PLAYERS) table, as well
as some of small game-specific near-constant tables.

“

12

/wp-content/uploads/Fig-VIv2-61.png

There is no
need to w orry
about
transaction
isolation levels,
locks and
deadlocks

Despite all the benefits provided by caching, this schema clearly sounds as an
heresy from any-DB-gal-out-there point of view. On the other hand, in practice it
works surprisingly well (that is, as soon as you manage to convince your DB gal that
you know what you’re doing). I’ve seen such single-connection architecture
handling 10M+ DB transactions per day for a real-world game, and it were real
transactions, with all the necessary changes, transactions, audit tables and so on.

Actually, at least at first stages of your
development, I’m advocating to go with this single-

connection approach.

It is very nice from many different points of view.

First, it is damn simple.

Second, there is no need to worry about transaction
isolation levels, locks and deadlocks

Third, it can be written as a real deterministic FSM (with
all the associated goodies); moreover, this determinism
stands (a) both if you “intercept calls” to DB for DB FSM
itself, or (b) if we consider DB itself as a part of the FSM
state, in the latter case no call interception is required
for determinism.

Fourth, the performance is very good. There are no locks
whatsoever, the light is always green, so everything goes
unbelievably smoothly. Add here application-level
caching, and we have a winner! The single-connection
system I’ve mentioned above, has had an average
transaction processing time in below-1ms range (once again, with real-world
transactions, commit after every transaction, etc.).

The only drawback of this schema (and the one which will make DB people
extremely skeptical about it, to put it very mildly) is an apparent lack of scalability.
However, there are ways to modify this single-connection approach to provide
virtually unlimited scalability The ways to achieve DB scalability for this single-
connection model will be discussed in Vol. 2.

One thing to keep in mind for this single-connection approach, is that it (at least if
we’re using blocking calls to DB, which is usually the case) is very sensitive to
latencies between DB FSM and DB; we’ll speak about it in more detail in Chapter
[[TODO]], but for now let’s just say that to get into any serious performance (that is,
comparable to numbers above), you’ll need to use RAID card with BBWC in write-

13

“

14

15

The upside of

back mode , or something like NVMe, for the disk which stores DB log files (other
disks don’t really matter much). If your DB server is a cloud one, you’ll need to look
for the one which has low latency disk access (such things are available from quite a
few cloud providers).

 with stored procedures the things become a bit better for DB side, but the
performance difference is still considerable, not to mention vendor lock-in which
is pretty much inevitable when using stored procedures

 with a full cache of PLAYERS table
 while in practice I’ve never went above around 100M DB transactions/day with

this “single-connection-made-scalable” approach, I’m pretty sure that you can get
to 1B pretty easily, and then it MAY become tough, as the number is too different
from what-I’ve-seen so some unknown-as-of-now problems can start to develop.
On the other hand, I daresay reaching these numbers is even more challenging with
traditional multiple-connection approach

 don’t worry, it is a perfectly safe mode for this kind of RAID, even for financial
applications

Multiple-Connections approach. This approach is much more along the lines of
traditional DB development, and is shown on Fig VI.7:

In short: we have one single DB-Proxy FSM (with the same DB API as discussed
above), which does nothing but dispatches requests to DB-Worker FSMs; each of
these DB-Worker FSMs will keep its own DB connection and will issue DB requests
over this connection. Number of these DB-Worker FSMs should be comparable to
the number of the cores on your DB server (usually 2*number-of-cores is not bad
starting number), which effectively makes this schema a kind of transaction
monitor.

The upside of this schema is that it is inherently somewhat-
scalable, but that’s about it. Downsides, however, are
numerous. The most concerning one is the cost of code
maintenance in face of all those changes of logic, which are
run in multiple connections. This inevitably leads us to a well-
known but way-too-often-ignored discussion about
transaction isolation levels, locks, and deadlocks at DB level.
And if you don’t know what it is – believe me, you Really don’t

15

12

13

14

15

16

“

/wp-content/uploads/Fig-VIv2-7.png

this schema is
that it is

inherently
somew hat-

scalable, but
that's about it.

want to know about them. And updating DB-handling code
when you have lots of concurrent access (with isolation levels
above UR), is possible, but is extremely tedious. Restrictions
such as “to avoid deadlocks, we must always issue all our
SELECT FOR UPDATEs in the same order – the one written in
blood on the wall of DB department” can be quite a headache
to put it mildly.

Oh, and don’t try using application-side caching for multiple-connections (i.e. even
DB-Proxy SHOULD NOT be allowed to cache). While this is theoretically possible,
re-ordering of replies on the way from DB to DB-Proxy make the whole thing way
too complicated to be practical. While I’ve done such a thing myself once, and it
worked without any problems (after several months of heavy replay-based testing),
it was the most convoluted thing I’ve ever written, and I clearly don’t want to
repeat this experience.

But IMNSHO the worst thing about using multiple DB connections, is that while
each of those DB FSMs can be made deterministic (via “call interception”), the
whole DB Server cannot possibly be made deterministic (for multiple connections),
period. It means that it may work perfectly under test, but fail in production while
processing exactly the same sequence of requests.

Worse than that, there is a strong tendency for
improper-transaction-isolation bugs to manifest

themselves only under heavy load.

So, you can easily live with such a bug (for example, using SELECT instead of
SELECT FOR UPDATE) quietly sitting in, but not manifesting itself until your Big
Day comes, and then it crashes your site. Believe me, you really don’t find yourself
in such a situation, it can be really (and I mean Really) unpleasant.

In a sense, working with transaction isolation levels is akin to working with threads:
about the same problems with lack of determinism, bugs which appear only in
production and cannot be reproduced in test environment, and so on. On the other
hand, there are DB guys&gals out there who’re saying that they can design a real-
world multi-connection system which works under the load of 100M+ write
transactions per day and never deadlocks, and I don’t doubt that they can indeed
do it. The thing which I’m not so sure about, is whether they really can maintain
such quality of their system in face of new-code-required-twice-a-week, and I’m
even less sure that you’ll have such a person on your game team.

In addition, the scalability under this approach, while apparent, is never perfect
(and no, those TPC-C linear-scalability numbers don’t prove that linear scalability
is achievable for real-world transactions). In contrast, single-connection-made-

“

17

scalable approach which we’ll discuss in Vol. 2, can be extended to achieve perfect
linear scalability (at least in theory).

 in particular, it means that we can rewrite our DB FSM from Single-connection
to Multiple-connections without changing anything else in the system

 And it is not a generic “all the problems are waiting for the worst moment to
happen” observation (which is actually purely perception), but a real deal. When
probability of the problem depends on site load in a non-linear manner (and this is
the case for transaction isolation bugs), chances of it happening for the first time
exactly during your heavily advertised Event of the Year are huge.

DB Serv er: Bottom Line.

Unless you happen to have on your team a DB gal
with real-world experience of dealing with locks,

deadlocks, and transaction isolation levels for your
specific DB under at least million-per-day DB write-

transaction load – go for single-connection approach

If you do happen to have such a DB guru who vehemently opposes going single-
connection – you can try multi-connection, at least if she’s intimately familiar with
SELECT-FOR-UPDATE and practical ways of avoiding deadlocks (and no, using
RDBMS’s built-in mechanism to detect the deadlock 10 seconds after it happens, is
usually not good enough).

And in any case, stay away from any things which include SQL in your Game Server
FSMs.

Failure Modes & Effects

When speaking about deployment, one all-important question
which you’d better have an answer to, is the following: “What
will happen if some piece of hardware fails badly?” Of course,
within the scope of this book we won’t be able to do a formal
full-scale FMEA for an essentially unknown architecture, but at
least we’ll be able to give some hints in this regard.

Communication Failures

So, what can possibly go wrong within our deployment
architecture? First of all, there are (not shown, but existing)
switches (or even firewalls) residing between our servers; while
these can be made redundant, their failures (or transient

16

17

FMEA
Failure mode
and ef f ects
analysis (FMEA)
w as one of the
f irst systematic
techniques f or
f ailure
analysis.

— Wikipedia —

https://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis

Note that the
stuf f marked as

'High
Availability',

doesn't help
w ith losing in-
memory state:

w hat w e need to
avoid losing in-

memory state,
is 'Fault-

Tolerant'
techniques.

software failures of the network stack on hosts) may easily cause occasional packet
loss, and also (though extremely infrequently) may cause TCP disconnects on inter-
server connections. Therefore, to deal with it, our Server-to-Server protocols need
to account for potential channel loss and allow for guaranteed recovery after the
channel is restored. Let’s write this down as a requirement and remember until
Chapter [[TODO]], where we will describe our protocols.

Serv er Failures

In addition, of course, any of the servers can go badly wrong.
There are tons of solutions out there claiming to address this
kind of failures, but you should keep in mind that usually, the
stuff marked as “High Availability”, doesn’t help with losing in-
memory state: what you need if you want to avoid losing in-
memory state, is “Fault-Tolerant” techniques (see “Server
Fault Tolerance: King is Dead, Long Live the King!” section
below).

Fortunately, though, for a reasonably good hardware (the one
which has a reasonably good hardware monitoring, including
fans, and at least having ECC and RAID, see Chapter [[TODO]]
for more discussion on it), such fatal server failures are
extremely rare. From my experience (and more or less
consistently with manufacturer estimates), failure rate for
reasonably good server boxes (such as those from one of Big
Three major server vendors) is somewhere between “once-
per-5-years” and “once-per-10-years”, so if you’d have only
one such server (and unless you’re running a stock exchange),
you’d be pretty much able to ignore this problem completely.
However, if you have 100 servers – the failure rate goes up to
“once or twice a month”, which is unacceptable if such a

failure leads to the whole site going down.

Therefore, at the very least you should plan to make sure that single failure of the
single server doesn’t bring your whole site down. BTW, most of the time it will be a
Game World Server going down, as you’re likely to have much more of these than
the other servers, so at first stages you may concentrate on containment of Game
World server failures. Also we can note that, counter-intuitively, failures of DB
Server are not that important to deal with; not because they have less impact (they
do have much more impact), but because they’re much less likely to happen that a
failure of one-of-Game-World-servers.

 that is, beyond keeping a DB backup with DB logs being continuously moved to
another location, see Chapter [[TODO]] for further discussion

“

18

18

If Game
World server
f ails, it can be
restarted f rom
scratch, losing
all the changes
since last save-
to-DB, but at
least preserving
previous
results.

If you disrupt
the game-event-

currently-in-
progress f or

more than 0.5-2

Containment of Game W orld serv er failures

The very first (and very obvious) technique to minimize the
impact of your Game World server failure on the whole site, is
to make sure that your Game World reports relevant changes
(without sending the whole state) to DB Server as soon as they
occur. So that if Game World server fails, it can be restarted
from scratch, losing all the changes since last save-to-DB, but
at least preserving previous results. These saves-to-DB are the
best to be done at some naturally arising points within your
game flow.

For example, if your game is essentially a Starcraft- or
Titanfall-like sequence of matches, then the end of each match
represents a very natural save-to-DB point. In other words, if
Game World server fails within the match – all the match data
will be lost, but all the player standings will be naturally
restored as of beginning of the match, which isn’t too bad. In
another example, for a casino-like game the end of each “hand”
also represents the natural save-to-DB point.

If your gameplay is an MMORPG with continuous gameplay,
then you need to find a way to save-to-DB all the major changes of the players’ stats
(such as “level has been gained”, or “artifact has changed hands”). Then, if the Game
Server crashes, you may lose the current positions of PCs within the world and a
few hundred XP per player, but players will still keep all their important stats and
achievements more or less preserved.

Two words of caution with regards to save-to-DB points. First,

For synchronous games, don’t try to keep the whole
state of your Game Worlds in DB

Except for some rather narrow special cases (such as stock
exchanges and some of slow-paced and/or “asynchronous”
games as defined in Chapter I), saving all the state of your
game world into DB won’t work due to
performance/scalability reasons (see discussion in “Taming
DB Load: Write-Back Caches and In-Memory States” section
above). Also keep in mind that even if you would be able to
perfectly preserve the current state of the game-event-
currently-in-progress (with game event being “match”,
“hand”, or an “RPG fight”) without killing your DB, there is
another very big practical problem of psychological rather
than technical nature. Namely, if you disrupt the game-event-

“

“

minutes, f or
almost-any

synchronous
multi-player

game you w on't
be able to get the

same players
back, and w ill

need to rollback
the game event

anyw ay.

Y ou should
have a special

currently-in-progress for more than 0.5-2 minutes, for
almost-any synchronous multi-player game you won’t be able
to get the same players back, and will need to rollback the
game event anyway.

For example, if you are running a bingo game with a hundred
of players, and you disrupt it for 10 minutes for technical
reasons, you won’t be able to continue it in a manner which is
fair to all the players, at the very least because you won’t be
able to get all that 100 players back into playing at the same
time. The problem is all about numbers: for two-player game
it might work, for 10+ – succeeding in getting all the players
back at the same time is extremely unlikely (that is, unless the
event is about a Big Cash Prize). I’ve personally seen a large

commercial game that handled the crashes in the following way: to restore after the
crash, first, it rolled forward its DB at the DB level to get perfectly correct current
state, and then it rolled all the current game-events back at application level,
exactly because continuing these events wasn’t a viable option due to the lack of
players.

Trying to keep all the state in DB is a common pitfall which arises when the guys-
coming-from-single-player-casino-game-development are trying to implement
something multiplayer. Once again: don’t do it. While for a single-player casino
game having state stored in DB is a big fat Business Requirement (and is easily
doable too), for multi-player games it is neither a requirement, nor is feasible (at
least because of the can’t-get-the-same-players-together problem noted above).
Think of Game World server failure as of direct analogy of the fire-in-brick-and-
mortar-casino in the middle of the hand: the very best you can possibly do in this
case is to abort the hand, return all the chips to their respective owners (as of the
beginning of the hand), and to run out of the casino, just to come back later when
the fire is extinguished, so you can start an all-new game with all-new players.

The second pitfall on this way is related to DB consistency issues and DB API.

Y our DB API MUST enforce logical consistency

For example, if (as a part of your very own DB API) you have
two DB requests, one of which says “Give PC X artifact Y”, and
another one “Take artifact Y from PC X”, and are trying to
report an occurrence of “PC X took over artifact Y from PC XX”
as two separate DB requests (one “Take” and one “Give”),
you’re risking that in case of Game World server failure, one of
these two requests will go through, and the other one won’t, so
artifact will get lost (or will be duplicated) as a result. Instead
of using these two requests to simulate “taking over”

“

DB request “PC
X took over
artif act Y f rom
PC XX” (and it
should be
implemented as
a single DB
transaction
w ithin DB FSM)

occurrence, you should have a special DB request “PC X took
over artifact Y from PC XX” (and it should be implemented as a
single DB transaction within DB FSM); this way at least the
consistency of the system will be preserved, so whatever
happens – there is still exactly one artifact. The very same
pattern MUST be followed for passing around anything of
value, from casino chips to artifacts, with any other goodies in
between.

Serv er Fault Tolerance: King is Dead, Long Liv e the King!

If you want to have your servers to be really fault-tolerant,
there are some ways to have your cake and eat it too.

However, keep in mind, that all fall-tolerant
solutions are complicated, costly, and in the games

realm I generally consider them as an over-
engineering (even by my standards).

Fault-Tolerant Serv ers: Damn Expensiv e

Historically, fault-tolerant systems were provided by damn-expensive hardware
such as [Stratus] (I mean their hardware solutions such as ftServer; see discussion
on hardware-vs-software redundancy in Chapter [[TODO]]) and
[HPIntegrityNonStop] which have everything doubled (and CPUs often
quadrupled(!)) to avoid all single points of failure, and these tend do work very
well. But they’re usually way out of game developer’s reach for financial reasons, so
unless your game is a stock exchange – you can pretty much forget about them.

Fault-Tolerant V Ms

Fault-Tolerant VMs (such as VMWare FT feature or Xen Remus) are quite new kids
on the block (for example, VMWare FT got beyond single vCPU only in 2015), but
they’re already working. However, there are some significant caveats. Take
everything I’m saying about fault-tolerant VMs with a really good pinch of salt, as all the
technologies are new and evolving, and information is scarce; also I admit that I didn’t have a
chance to try these things myself .

When you’re using a fault-tolerant VM, the Big Picture looks
like this: you have two commodity servers (usually right next to
each other), connect them via 10G Ethernet, run VM on one of
them (the “primary” one), and when your “primary” server fails,
your VM magically reappears on the “secondary” box. From
what I can see, modern Fault-Tolerant VMs are using one of
two technologies: “virtual lockstep” and “fast checkpoints”.

Modern
Fault-Tolerant
VMs are using
one of tw o
technologies:
'virtual
lockstep' and
'f ast
checkpoints'.
Unf ortunately,
each of them
has its ow n
limitations.

Unfortunately, each of them has its own limitations.

V ir tual Lockstep: Not Available Anymor e?

The concept of virtual lockstep is very similar to our QnFSM
(with the whole VM treated as FSM). Virtual lockstep takes one
single-core VM, intercepts all the inputs, passes these inputs
to the secondary server, and runs a copy VM there. As any other
fault-tolerant technology, virtual lockstep causes additional
latencies, but it seems to be able to restrict its appetite for
additional latency to a sub-ms range, which is acceptable for
most of the games out there. Virtual lockstep is the method of
fault-tolerance vSphere prior to vSphere v6 was using. The
downside of virtual lockstep is that it (at least as implemented
by vSphere) wasn’t able to support more that one core. For our
QnFSMs, this single-core restriction wouldn’t be too much of a
problem, as they’re single-threaded anyway (though balancing
FSMs between VMs would be a headache), but there are lots of
applications out there which are still heavily-multithreaded, so it was considered
an unacceptable restriction. As a result, vSphere, starting from vSphere 6, has
changed their fault-tolerant implementation from virtual lockstep to checkpoint-
based implementation. As of now, I don’t know of any supported implementations of
Virtual Lockstep .

Checkpoint-Based Fault T oler ance: Latencies

To get around the single-core limitation, a different technique, known as
“checkpoints”, is used by both Xen Remus and vSphere 6+. The idea behind
checkpoints is to make a kind of incremental snapshots (“checkpoints”) of the full
state of the system and log it to a safe location (“secondary server”). As long as you
don’t let anything out of your system before the coming-later “checkpoint” is
committed to a secondary server, all the calculations you’re making meanwhile,
become inherently unobservable from the outside, so in case of “primary” server
failure, it is not possible to say whether it didn’t receive the incoming data at all. It
means that for the world outside of your system, your system (except for the
additional latency) becomes almost-indistinguishable from a real fault-tolerant
server such as Stratus (see above). In theory, everything looks perfect, but with VM
checkpoints we seem to hit the wall with checkpoint frequency, which defines the
minimum possible latency. On systems such as VMWare FT, and Xen Remus,
checkpoint intervals are measured in dozens of milliseconds. If your game is ok
with such delays – you’re fine, but otherwise – you’re out of luck . For more
details on checkpoint-based VMs, see [Remus].

Saving for latencies (and the need to have 10G connections between servers, which
is not that big deal), checkpoint-based fault tolerance has several significant
advantages over virtual lockstep; these include such important things as support

“

19

for multiple CPU cores, and N+1 redundancy.

 strictly speaking, the difference can be observed as some network packets may
be lost, but as packet loss is a normal occurrence, any reasonable protocol should
deal with transient packet loss anyway without any observable impact

Complete Recover y f r om Game W or ld ser ver f ailur es: DIY Fault-T oler ance in
QnFSM W or ld

If you’re using FSMs (as you should anyway), you can also implement your own
fault-tolerance. I should confess that I didn’t try this approach myself, so despite
looking very straightforward, there can be practical pitfalls which I don’t see yet.
Other than that, it should be as fault-tolerant as any other solution mentioned
above, and it should provide good latencies too (well in sub-ms range).

As any other fault-tolerant solution, for games IMHO it is an over-engineering, but
if I’d feel strongly about the failures causing per-game-event rollbacks, this is the
one I’d try first. It is latency friendly, it allows for N+2 redundancy (saving you from
doubling the number of your servers in case of 1+1 redundancy schemas), and it
plays really well alongside our FSM-related stuff.

The idea here is to have separate Logging Servers logging all the events to all the
FSMs residing on your Game World servers; then, you will essentially have enough
information on your Logging Servers to recover from Game World server failure.
More specifically, you can do the following:

have an additional Logging Server(s) “in front of Game Servers”; these
Logging Server(s) perform two functions:

log all the messages incoming to all Game Server FSMs

these include: messages coming from clients, messages coming
from other Game Servers, and messages coming from DB Server

moreover, even communications between different FSMs residing
on the same Game Server, need to go via Logging Server and need
to be logged

timestamp all the incoming messages

all your Game Server FSMs need to be strictly-deterministic

in particular, Game Server FSMs won’t use their own clocks, but will use

19

if it is Game
Server w hich
f ails, w e can re-
provision it,
and then roll-
f orw ard each
and every FSM
w hich w as
running on it

timestamps provided by Logging Servers instead

In addition, from time to time each of Game Server FSMs need to serialize its
whole state, and report it to Logging Server

then, we need to consider two scenarios: Logging Server failure and Game
Server failure (we’ll assume that they never fail simultaneously, and such an
event is indeed extremely unlikely unless it is a fire-in-datacenter or
something)

if it is Logging Server which fails, we can just replace it with another (re-
provisioned) one; there is no game-critical data there

if it is Game Server which fails, we can re-provision
it, and then roll-forward each and every FSM which
was running on it, using last-reported-state and
logs-saved-since-last-reported-state saved on the
Logging Server. Due to the deterministic nature of
all the FSMs, the restored state will be exactly the
same as it was a few seconds ago

at this point, all the clients and servers which
were connected to the FSM, will experience a
disconnect

on disconnect, the clients should automatically
reconnect anyway (this needs to account for IP
change, what is a medium-sized headache, but
is doable; in [[TODO]] section we’ll discuss
Front-End servers which will isolate clients
from disconnects completely)

issues with server-to-server messages should already be solved as
described in “Communication Failures” subsection above

In a sense, this “Complete Recovery” thing is conceptually similar to
EventProcessorWithCircularLog from Chapter V (but with logging residing on
different server, and with auto-rollforward in case of server failure), or to a
traditional DB restore-and-log-rollforward.

Note that only hardware problems (and software bugs outside of your FSMs, such
as OS bugs) can be addressed with this method; bugs within your FSM will be
replayed and will lead to exactly the same failure .

“20

Last but not least, I need to re-iterate that I would object any fault-tolerant
schema for most of the games out there on the basis of over-engineering, though I
admit that there might be good reasons to try achieving it, especially if it is not too
expensive/complicated.

 or, in case of almost-strictly-deterministic FSMs such as those CUDA-based
ones, it will be almost-exactly-the-same

[[T ODO!]] DIY V Ir tual-Lockstep

Classical Game Deployment Architecture: Summary

To summarize the discussion above about Classical Game Deployment
Architecture:

It works

It can and should be implemented using QnFSM model with deterministic
FSMs, see discussion above for details

Your communication with DB (DB API) SHOULD use game-specific requests,
and SHOULD NOT use any SQL; all the SQL should be hidden behind your DB
FSM(s)

Your first DB Server SHOULD use single-connection approach, unless you
happen to have a DB guy who has real-world experience with multi-
connection systems under at least millions-per-day write(!) transaction loads

Even in the latter case, you SHOULD try to convince him, but if he resists,
it is ok to leave him alone, as long as external DB API is still exactly the
same (message-based and expressed in terms of whatever-your-game-
needs). This will provide assurance that in the extreme case, you’ll be
able to rewrite your DB Server later.

[[To Be Continued…
This concludes beta Chapter VI(a) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VI(b), “Modular
Architecture: Server-Side. Throwing in Front-End Servers.]]

20

[–] References
[Lightstreamer] http://www.lightstreamer.com/
[Redis.CAS] http://redis.io/topics/transactions#cas
[Zubek2016] Robert Zubek, “Private communications with”
[Zubek2010] Robert Zubek, “Engineering Scalable Social Games”, GDC2010

http://www.lightstreamer.com/
http://redis.io/topics/transactions#cas
http://gdcvault.com/play/1012230/Engineering-Scalable-Social

« Chapter V (d). Modular A rchitecture: Client-Side. Client A rch…

 Chapter V I(b). Serv er-Side A rchitecture. Front-End Serv ers a… »

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: game, multi-player, Multithreading, server

Copyright © 2014-2016 ITHare.com

[Stratus] “Stratus Technologies”, Wikipedia
[HPIntegrityNonStop] “HP Integrity NonStop”, Wikipedia
[Remus] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew Warfield, “Remus: High Availability via Asynchronous
Virtual Machine Replication”

https://en.wikipedia.org/wiki/Stratus_Technologies
https://en.wikipedia.org/wiki/NonStop
http://usenix.org/legacy/event/nsdi08/tech/full_papers/cully/cully_html/index.html
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-vd-modular-architecture-client-side-client-architecture-diagram-threads-and-game-loop/
http://ithare.com/chapter-vib-server-side-architecture-front-end-servers-and-client-side-random-load-balancing/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/multithreading/
http://ithare.com/tag/server/

	Chapter VI(a). Server-Side MMO Architecture. Naïve, Web-Based, and Classical Deployment Architectures
	Deployment Architectures, Take 1
	Don’t Do It: Naïve Game Deployment Architectures
	Web-Based Game Deployment Architecture
	Web-Based Deployment Architecture: How It Works
	Taming DB Load: Write-Back Caches and In-Memory States
	Write-Back Caches: Locking
	Web-Based Deployment Architecture: FSMs
	Web-Based Deployment Architecture: Merits

	Classical Game Deployment Architecture
	Game Servers
	Implementing Game Servers under QnFSM architecture
	On Inter-Server Communications
	QnFSM on Server Side: Flexibility and Deployment-Time/Run-Time Options.
	Threads and Processes
	Communication as an Implementation Detail
	Moving Game Worlds Around (at the cost of client reconnect)
	Online Upgrades
	On Importance of Flexibility

	DB Server
	DB API and DB FSM(s)
	Meanwhile, at the King’s Castle…

	Failure Modes & Effects
	Communication Failures
	Server Failures
	Containment of Game World server failures
	Server Fault Tolerance: King is Dead, Long Live the King!
	Fault-Tolerant Servers: Damn Expensive
	Fault-Tolerant VMs

	Classical Game Deployment Architecture: Summary

	[[To Be Continued…
	[–]References
	Acknowledgement

