
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter V(d). Modular Architecture: Client-Side. Client
Architecture Diagram, Threads, and Game Loop
posted December 14, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter V(d) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

After we’ve spent quite a lot of time discussing boring things such as deterministic
logic and finite automata, we can go ahead and finally draw the architecture
diagram for our MMO game client. Yahoo!

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/wp-content/uploads/BB_part069_BookChapter005d_v3.png


However, as the very last delay before that glorious and long-promised diagram,
we need to define one term that we’ll use in this section. Let’s define “tight loop” as
an “infinite loop which goes over and over without delays, and is regardless of any input”.  In
other words, tight loop is bound to eat CPU cycles (and lots of them) regardless of
doing any useful work.

And now we’re really ready for the diagram  .

 while different interpretations of the term “tight loop” exist out there, for our
purposes this one will be the most convenient and useful
 

Queues-and-FSMs (QnFSM) Architecture: Generic Diagram
Fig. V.2 shows a diagram which describes a “generic” client-side architecture. It is
admittedly more complicated than many of you will want or need to use; on the
other hand, it represents quite a generic case, and many simplifications can be
obtained right out of it by simple joining some of its elements.

Let’s name this architecture a “Queues-and-FSMs Architecture” for obvious
reasons, or “QnFSM” in short. Of course, QnFSM is (by far) not the only possible
architecture, and even not the most popular one, but its variations have been seen
to produce games with extremely good reliability, extremely good decoupling
between parts, and very good maintainability. On the minus side, I can list only a bit
of development overhead due to message-based exchange mechanism, but from my
experience it is more than covered with better separation between different parts
and very-well defined interfaces, which leads to the development speed-ups even
in the medium-run (and is even more important in the long-run to avoid spaghetti
code). Throw in the ability of “replay debug” and “replay-based post-mortem” in
production, and it becomes a solution for lots of real-world pre-deployment and
post-deployment problems.

1

1

/wp-content/uploads/Fig-V-2.png


There can be
dif f erent w ays
how  to pass
these messages
around;
examples
include explicit
message
posting, or
implementing
non-blocking
RPC calls
instead

In short – I’m an extremely strong advocate of this
architecture (and its variations described below),

and don’t know of any practical cases when it is not
the best thing you can do. While it might look over-

engineered at the first glance, it pays off in the
medium- and long-run

I hope that the diagram on Fig V.2 should be more or less self-explanatory, but I will
elaborate on a few points which might not be too obvious:

each of FSMs is a strictly-deterministic FSM as described in “Event-Driven
Programming and Finite State Machines” section above

while being strictly-deterministic is not a strict requirement,
implementing your FSMs this way will make your debugging and post-
mortem much much  much  easier.

all the exchange between different FSMs is message-based. Here “message” is
a close cousin of a network packet; in other words – it is just a bunch of bytes
formatted according to some convention between sending thread and
receiving thread.

There can be different ways how to pass these
messages around; examples include explicit message
posting, or implementing non-blocking RPC calls
instead. While the Big Idea behind the QnFSM
architecture won’t change because of the way how
the messages are posted, convenience and
development time may change quite significantly.
Still, while important, this is only an implementation
detail which will be further discussed in Chapter
[[TODO]].

for the messages between Game Logic Thread and
Animation&Rendering Thread, format should be
along the lines of “Logic-to-Graphics API”,
described in “Logic-to-Graphics Layer” section
above. In short: it should be all about logical changes
in the game world, along the lines of “NPC ID=ZZZ is
currently moving along the path defined by the set of
points {(X0,Y0),(X1,Y1),…} with speed V” (with
coordinates being game world coordinates, not
screen coordinates), or “Player at seat #N is in the
process of showing his cards to the opponents”.

each thread has an associated Queue, which is able to accept messages, and
provides a way to wait on it as long as is the Queue is empty

2

“

3



In most cases,
at least one of
these tw o
particular
queues w ill be
supported by
your platf orm

the architecture is “Share-Nothing”. It means that there is no data shared
between threads, and the only way to exchange data between threads, is via
Queues and messages-passed-via-the-Queues

“share-nothing” means no thread synchronization problems (there is no
need for mutexes, critical sections, etc. etc. outside of your queues). This
is a Really Good Thing™, as trying to handle thread synchronization with
any frequently changeable logic (such as the one within at least some of
the FSMs) inevitably leads to lots and lots of problems (see, for example,
[NoBugs2015])

of course, implementation of the Queues still needs to use inter-thread
synchronization, but this is one-time effort and it has been done many
times before, so it is not likely to cause too much trouble; see Chapter
[[TODO]] for further details on Queues in C++

as a nice side effect, it means that whenever you want it, you can deploy
your threads into different processes without changing any code within
your FSMs (merely by switching to an inter-process implementation of
the Queue). In particular, it can make answering very annoying questions
such as “who’s guilty for the memory corruption” much more easily

Queues of Game Logic Thread and Communications Thread, are rather
unusual. They’re waiting not only for usual inter-thread messages, but also for
some other stuff (namely input messages for Game Logic Thread, and
network packets for the Communications Thread).

In most cases, at least one of these two particular
queues will be supported by your platform (see
Chapter [[TODO]] for details)

For those platforms which don’t support such
queues – you can always use your-usual-inter-
thread-queue (once again, the specifics will be
discussed in Chapter [[TODO]]), and have an
additional thread which will get user input data (or
call select()), and then feed the data into your-usual-
inter-thread-queue as a yet another message. This
will create a strict functional equivalent (a.k.a.
“compliant implementation”) of two specific Queues
mentioned above

all the threads on the diagram (with one possible
exception being Animation&Rendering Thread, see below) are not tight-
looped, and unless there is something in their respective Queue – they just
wait on the Queue until some kind of message comes in (or select() event
happens)

while “no-tight-loops” is not a strict requirement for the client-side,
wasting CPU cycles in tight loops without Really Good Reason is rarely a
good idea, and might hurt quite a few of your players (those with weaker
rigs).

“



If  your
existing 3D
engine is too
complicated to
f it into single-

Animation&Rendering Thread is a potentially special case, and MAY use
tight loop, see “Game Loop” subsection below for details

to handle delays in other-than-Animation&Rendering Thread, Queues
should allow FSMs to post some kind of “timer message” to the own
thread

even without tight loops it is possible to write your FSM in an “almost-
tight-loop” manner that is closely resembling real-world real-time
control systems (and classical Game Loop too), but without CPU
overhead. See more on it in [[TODO!! – add subsection on it to “FSM”
section]] section above.

 As usual, “I don’t know of any cases” doesn’t provide guarantees of any kind, and
your mileage may vary, but at least before throwing this architecture away and
doing something-that-you-like-better, please make sure to read the rest of this
Chapter, where quite a few of potential concerns will be addressed
 yes, I know I’ve repeated it for quite a few times already, but it is that important,

that I prefer to risk being bashed for annoying you rather than being pounded by
somebody who didn’t notice it and got into trouble
 

Migration from Classical 3D Single-Player Game
If you’re coming from single-player development, you may find this whole diagram
confusing; this maybe especially true for inter-relation between Game Logic FSM
and Animation&Rendering FSM. The idea here is to have 95% of your existing “3D
engine as you know it”, with all the 3D stuff, as a part of “Animation&Rendering
FSM”. You will just need to cut off game decision logic (which will go to the server-
side, and maybe partially duplicated to Game Logic FSM too for client-side
prediction purposes), and UI logic (which will go into Game Logic FSM). All the
mesh-related stuff should stay within Animation&Rendering FSM (even Game Logic
FSM should know absolutely nothing about meshes and triangles).

If your existing 3D engine is too complicated to fit into single-
threaded FSM, it is ok to keep it multi-threaded as long as it
looks “just as an FSM” from the outside (i.e. all the
communications with Animation&Rendering FSM go via
messages or non-blocking RPC calls, expressed in terms of
Logic-to-Graphics Layer). For details on using FSMs for multi-
threaded 3D engines, see “On Additional Threads and Task-
Based Multithreading” section below. Note that depending on
specifics of your existing 3D rendering engine, you MAY need
to resort to Option C; while Option C won’t provide you with
FSM goodies for your rendering engine (sorry, my supply of
magic powder is quite limited), you will still be able to enjoy all

2

3

“



threaded FSM, it
is ok to keep it
multi-threaded
as long as it
looks 'just as an
FSM' f rom the
outside

the benefits (such as replay debugging and production post-
mortem) for the other parts of your client.

It is worth noting that Game Logic FSM, despite its name, can
often be more or less rudimentary, and (unless client-side
prediction is used) mostly performs two functions: (a) parsing
network messages and translating them into the commands of
Logic-to-Graphics Layer, (b) UI handing. However, if client-
side prediction is used, Game Logic FSM can become much
more elaborated.

Interaction Examples in 3D W orld: Single-Player vs MMO

Let’s consider three typical interaction examples after migration from single-
player game to an MMO diagram shown above.

MMOFPS interaction example (shooting). Let’s consider an MMOFPS example
when Player A presses a button to shoot with a laser gun, and game logic needs to
perform a raycast to see where it hits and what else happens. In single-player, all
this usually happens within a 3D engine. For an MMO, it is more complicated:

Step 1. button press goes to our authoritative server as a message

Step 2. authoritative server receives message, performs a raycast, and
calculates where the shot hits.

Step 3. our authoritative server expresses “where it hits” in terms such as
“Player B got hit right between his eyes”  and sends it as a message to the
client (actually, to all the clients).

Step 4. this message is received by Game Logic FSM, and translated into the
commands of Logic-to-Graphics Layer (still without meshes and triangles, for
example,  “show laser ray from my gun to the point right-between-the-eyes-
of-Player B”, and “show laser hit right between the eyes of Player B”), which
commands are sent (as messages) to Animation&Rendering FSM.

Step 5. Animation&Rendering FSM can finally render the whole thing.

While the process is rather complicated, most of the steps are inherently inevitable
for an MMO; the only thing which you could theoretically save compared to the
procedure described above, is merging step 4 and step 5 together (by merging
Game Logic FSM and Animation&Rendering together), but I advise against it as
such merging would introduce too much coupling which will hit you in the long run.
Doing such different things as parsing network messages and rendering within one
tightly coupled module is rarely a good idea, and it becomes even worse if there is
a chance that you will ever want to use some other Animation&Rendering FSM (for
example, a newer one, or the one optimized for a different platform).

4

5



MMORPG interaction example (ragdoll). In a typical
MMORPG example, when an NPC is hit for 93th time and dies
as a result, ragdoll physics is activated. In a typical single-
player game, once again, the whole thing is usually performed
within 3D engine. And once again, for a MMO the whole thing
will be more complicated:

Step 1. button press (the one which will cause NPC death)
goes to authoritative server

Step 2. server checks attack radius, calculates chances to
hit, finds that the hit is successful, decreases health, and
find that NPC is dead

Step 3. server performs ragdoll simulation in the server-
side 3D world. However, it doesn’t need to (neither it
really can) send it to clients as a complete triangle-based
animation. Instead, the server can usually send to the
client only a movement of “center of gravity” of NPC in
question (calculated as a result of 3D simulation). This
movement of “center of gravity” is sent to the client
(either as a single message with the whole animation or as
a series of messages with “current position” each)

as an interesting side-effect: as the whole thing is quite simple, there may
be no real need to calculate the whole limb movement, and it may suffice
to calculate just a simple parabolic movement of the “center of gravity”,
which MAY save you quite a bit of resources (both CPU and memory-
wise) on the server side (!)

Step 4. Game Logic FSM receives the message with “center of gravity”
movement and translates it into Logic-to-Graphics commands. This doesn’t
necessarily need to be trivial; in particular, it may happen that Game Logic
stores larger part of the game world than Animation&Rendering FSM. In this
latter case, Game Logic FSM may want to check if this specific ragdoll
animation is within the scope of the current 3D world of Animation&Rendering
FSM.

Step 5. Animation&Rendering FSM performs some  ragdoll simulation (it can
be pretty much the same simulation which has already been made on the
server side, or something completely different). If ragdoll simulation is the
same, then the process of ragdoll simulation on the client-side will be quite
close to the one on the server-side; however, if there are any discrepancies
due to not-so-perfect determinism – client-side simulation will correct
coordinates so that “center of gravity” is adjusted to the position sent by
server. In case of non-deterministic behaviour between client and server, the
movement of the limbs on the client and the server may be different, but for a
typical RPG it doesn’t matter (what is really important is where the NPC
eventually lands – here or over the edge of the cliff, but this is guaranteed to

Ragdoll
physics
In computer
physics engines,
ragdoll physics
is a type of
procedural
animation that
is of ten used as
a replacement
f or traditional
static death
animations in
video games
and animated
f ilms.

— Wikipedia —

https://en.wikipedia.org/wiki/Ragdoll_physics


be the same for all the clients as “center of gravity” comes from the server
side).

UI interaction example. In a typical MMORPG game, a very common task is to
show object properties when the object is currently under cursor. For the diagram
above, it should be performed as follows:

Step 1. Game Logic FSM sends a request to the Animation&Rendering FSM:
“what is the object ID at screen coordinates (X,Y)?” (where (X,Y) are cursor
coordinates)

Step 2. Animation&Rendering FSM processes this (trivial) request and returns
object ID back

Step 3. Game Logic FSM finds object properties by ID, translates them into
text, and instructs Animation&Rendering FSM to display object properties in
HUD

While this may seem as an overkill, the overhead (both in terms of developer’s time
and run time) is negligible, and good old rule of “the more cleanly separated parts
you have – the easy is further development is” will more than compensate for the
complexities of such separation.

 this is generally preferable to player-unrelated “laser hit at (X,Y,Z)” in case of
client-side prediction; of course, in practice you’ll use some coordinates, but the
point is that it is usually better to use player-related coordinates rather than
absolute game world coordinates
 I won’t try to teach you how to render things; if you’re from 3D development side,

you know much more about it than myself
 

FSMs and their respective States
The diagram on Fig. V.2 shows four different FSMs; while they all derive from our
FiniteStateMachineBase described above, each of them is different, has a different
function, and stores a different state. Let’s take a closer look at each of them.

Game Logic FSM

Game Logic FSM is the one which makes most of decisions about your game world.
More strictly, these are not exactly decisions about the game world in general (this
one is maintained by our authoritative server), but about client-side copy of the game
world. In some cases it can be almost-trivial, in some cases (especially when client-
side prediction is involved) it can be very elaborated.

4

5



Game Logic
FSM is likely to
keep a copy of
the game w orld
f rom the game
server, as a part
of  it's state.

In any case, Game Logic FSM is likely to keep a copy of the
game world (or of relevant portion of the game world) from
the game server, as a part of it’s state. This copy has normally
nothing to do with meshes, and describes things in terms such
as “there is a PC standing at position (X,Y) in the game world
coordinates, facing NNW”, or “There are cards AS and JH on
the table”.

Game Logic FSM & Graphics

Probably the most closely related to Game Logic FSM is
Animation&Rendering one. Most of the interaction between the
two goes in the direction from Game Logic to
Animation&Rendering, using Logic-to-Graphics Layer
commands as messages. Game Logic FSM should instruct
Animation&Rendering FSM to construct a portion of its own game copy as a 3D
scene, and to update it as its own copy of the game world changes.

In addition, Game Logic FSM is going to handle (but not render) UI, such as HUDs,
and various UI dialogs (including the dialogs leading to purchases, social stuff,
etc.); this UI handling should be implemented in a very cross-platform manner, via
sending messages to Animation&Rendering Engine. These messages, as usual,
should be expressed in very graphics-agnostic terms, such as “show health at 87%”,
or “show the dialog described by such-and-such resource”.

To handle UI, Game Logic FSM MAY send a message to Animation&Rendering FSM,
requesting information such as “what object (or dialog element) is at such-and-
such screen position” (once again, the whole translation between screen
coordinates into world objects is made on the Animation&Rendering side, keeping
Game Logic FSM free of such information); on receiving reply, Game Logic FSM
may decide to update HUD, or to do whatever-else-is-necessary.

Other messages coming from Animation&Rendering FSM to Game Logic FSM, such
as “notify me when the bullet hits the NPC”, MAY be necessary for the client-side
prediction purposes (see Chapter [[TODO]] for further discussion). On the other
hand, it is very important to understand that these messages are non-authoritative
by design, and that their results can be easily overridden by the server.

As you can see, there can be quite a few interactions between
Game Logic FSM and Animation&Rendering FSM. Still, while it
may be tempting to combine Game Logic FSM with
Animation&Rendering FSM, I would advise against it at least
for the games with many platforms to be supported, and for
the games with Undefined Life Span; having these two FSMs
separate (as shown on Fig V.2) will ensure much cleaner

“



Having these
tw o FSMs
separate w ill
ensure much
cleaner
separation,
f acilitating
much-better-
structured code
in the medium-
to long-run.

separation, facilitating much-better-structured code in the
medium- to long-run. On the other hand, having these two FSM
running within the same thread is a very different story, is
generally ok and can be done even on a per-platform basis; see
“Variations” section below.

Game Logic FSM: Miscellaneous

There are two other things which need to be mentioned with
regards to Game Logic FSM:

Y ou MUST keep your Game Logic FSM truly
platform-independent. While all the other FSMs MAY be
platform-specific (and separation between FSMs along
the lines described above, facilitates platform-specific
development when/if it becomes necessary), you should
make all the possible effort to keep your Game Logic the same across all your
platforms. The reason for it has already been mentioned before, and it is all
about Game Logic being the most volatile of all your client-side code; it
changes so often that you won’t be able to keep several code bases reasonably
in sync.

If by any chance your Game Logic is that CPU-consuming that one single core
won’t cope with it – in most cases it can be addressed without giving up the
goodies of FSM-based system, see “Additional Threads and Task-Based
Multi-Threading” section below.

Animation&Rendering FSM

Animation&Rendering FSM is more or less similar to the rendering part of your
usual single-player game engine. If your game is a 3D one, then in the diagram
above,

it is Animations&Rendering FSM which keeps and
cares about all the meshes, textures, and animations;
as a Big Fat Rule of Thumb, nobody else in the system
(including Game Logic FSM) should know about them.

At the heart of the Animation&Rendering FSM there is a more or less traditional
Game Loop.

Game Loop

Most of single-player games are based on a so-called Game Loop. Classical game
loop looks more or less as follows (see, for example,

“



all the
decision-
making is
moved at least
to the Game
Logic FSM, w ith
most of  the

[GameProgrammingPatterns.GameLoop]):

Usually, Game Loop doesn’t wait for input, but rather polls input and goes ahead
regardless of the input being present. This is pretty close to what is often done in
real-time control systems.

For our diagram on Fig V.2 above, within our Animation&Rendering Thread we can
easily have something very similar to a traditional Game Loop (with a substantial
part of it going within our Animation&Rendering FSM). Our Animation&Rendering
Thread can be built as follows:

Animation&Rendering Thread (outside of Animation&Rendering FSM) checks
if there is anything in its Queue; unlike other Threads, it MAY proceed even if
there is nothing in the Queue

it passes whatever-it-received-from-the-Queue (or some kind of NULL if
there was nothing) to Animation&Rendering FSM, alongside with any time-
related information

within the Animation&Rendering FSM’s process_event(), we can still have
process_input(), update() and render(), however:

there is no loop within Animation&Rendering FSM; instead, as discussed
above, the Game Loop is a part of larger Animation&Rendering Thread

process_input(), instead of processing user input,
processes instructions coming from Game Logic
FSM

update() updates only 3D scene to be rendered, and
not the game logic’s representation of the game
world; all the decision-making is moved at least to
the Game Logic FSM, with most of the decisions
actually being made by our authoritative server

render() works exactly as it worked for a single-
player game

after Animation&Rendering FSM processes input (or lack

1
2
3
4
5

while(true) {
  process_input();
  update();
  render();
}

“



decisions
actually being
made by our
authoritative
server

The best thing
about our
architecture is
that the
architecture as
such doesn't
really depend
on time step
choices; you can
even make
dif f erent time

thereof) and returns, Animation&Rendering Thread may
conclude Game Loop as it sees fit (in particular, it can be
done in any classical Game Loop manner mentioned
below)

then, Animation&Rendering Thread goes back to the very
beginning (back to checking if there is anything in its
Queue), which completes the infinite Game Loop.

All the usual variations of Game Loop can be used within the Animation&Rendering
Thread – including such things as fixed-time-step with delay at the end if there is
time left until the next frame, variable-time-step tight loop (in this case a
parameter such as elapsed_time needs to be fed to the Animation&Rendering FSM
to keep it deterministic), and fixed-update-time-step-but-variable-render-time-
step tight loop. Any further improvements (such as using VSYNC) can be added on
top. I don’t want to elaborate further here, and refer for further discussion of game
loops and time steps to two excellent sources: [GafferOnGames.FixYourTimestep]
and [GameProgrammingPatterns.GameLoop].

One variation of the Game Loop that is not discussed there, is a simple event-
driven thing which you would use for your usual Windows programming (and
without any tight loops); in this case animation under Windows can be done via
WM_TIMER,  and 2D drawing – via something like BitBlt(). While usually woefully
inadequate for any serious frames-per-second-oriented games, it has been seen to
work very well for social- and casino-like ones.

However, the best thing about our architecture is that the
architecture as such doesn’t really depend on time step
choices; you can even make different time step choices for
different platforms and still keep the rest of your code
(beyond Animation&Rendering Thread) intact, though
Animation&Rendering FSM may need to be somewhat different
depending on the fixed-step vs variable-step choice.

A nimation&Rendering FSM: Running from Game Logic
Thread

For some games and/or platforms it might be beneficial to run
Animation&Rendering FSM within the same thread as Game
Logic FSM. In particular, if your game is a social game running
on Windows, there may be no real need to use two separate
CPU cores for Game Logic and Animation&Rendering, and the
whole thing will be quite ok running within one single thread.
In this case, you’ll have one thread, one Queue, but two FSMs,
with thread code outside of the FSMs deciding which of the

6

“7



step choices f or
dif f erent
platf orms and
still keep the
rest of  your
code intact

For most of
(if  not 'all') the
platf orms, the

code of
Communications
FSM can be kept

the same

FSMs incoming message belongs to.

However, even in this case I still urge you to keep it as two
separate FSMs with a very clean message-based interface
between them. First, nobody knows which platform you will
need to port your game next year, and second, clean well-
separated interfaces at the right places tend to save lots of
trouble in the long run.

 yes, this does work, despite being likely to cause ROFLMAO syndrome for any
game developer familiar with game engines
 of course, technically you may write your Animation&Rendering FSM as a variable-

step one and use it for the fixed-step too, but there is a big open question if you
really need to go the variable-step, or can live with a much simpler fixed-step
forever-and-ever
 

Communications FSM

Another FSM, which is all-important for your MMOG, is Communications FSM. The
idea here is to keep all the communications-related logic in one place. This may
include very different things, from plain socket handling to such things as
connect/reconnect logic , connection quality monitoring, encryption logic if
applicable, etc. etc. Also implementations of higher-level concepts such as generic
publisher/subscriber, generic state synchronization, messages-which-can-be-
overridden etc. (see Chapter [[TODO]] for further details) also belong here.

For most of (if not “all”) the platforms, the code of
Communications FSM can be kept the same, with the only
things being called from within the FSM, being your own
wrappers around sockets (for C/C++ – Berkeley sockets).
Your own wrappers are nice-to-have just in case if some other
platform will have some peculiar ideas about sockets, or to
make your system use something like OpenSSL in a
straightforward manner. They are also necessary to
implement “call interception” on your FSM (see
“Implementing Strictly-Deterministic Logic: Strictly-
Deteministic Code via Intercepting Calls” section above),
allowing you to “replay test” and post-mortem of your
Communications FSM.

The diagram of Fig. V.2 shows an implementation of the
Communications FSM that uses non-blocking socket calls. For client-side it is
perfectly feasible to keep the code of Communications FSM exactly the same, but to
deploy it in a different manner, simulating non-blocking sockets via two additional

6

7

8

“



threads (one to handle reading and another to handle writing), with these
additional threads communicating with the main Communications Thread via
Queues (using Communication Thread’s existing Queue, and one new Queue per
new thread).

One more thing to keep in mind with regards to blocking/non-blocking Berkeley
sockets, is that getaddrinfo() function (as well as older gethostbyname() function)
used for DNS resolution, is inherently blocking, with many platforms having no
non-blocking counterpart. However, for the client side in most cases it is a non-
issue unless you decide to run your Communications FSM within the same thread
as your Game Logic FSM. In the latter case, calling a function with a potential to
block for minutes, can easily freeze not only your game (which is more or less
expected in case of connectivity problems), but also game UI (which is not
acceptable regardless of network connectivity). To avoid this effect, you can always
introduce yet another thread (with its own Queue) with the only thing for this
thread to do, being to call getaddrinfo() when requested, and to send result back
as a message, when the call is finished.

Communications FSM: Running from Game Logic Thread

For Communications FSM, running it from Game Logic Thread might be possible.
One reason against doing it, would be if your communications are encrypted, and
your Game Logic is computationally-intensive.

And again, as with Animation&Rendering FSM, even if you run two FSMs from one
single thread, it is much better to keep them separate. One additional reason to
keep things separate (with this reason being specific to Communications FSM) is
that Communications FSM (or at least large parts of it) is likely to be used on the
server-side too.

 BTW, connect/reconnect will be most likely needed even for UDP
 for the server-side, however, these extra threads are not advisable due to the

performance overhead. See Chapter [[TODO]] for more details
 Alternatively, it is also possible to create a new thread for each getaddrinfo()

(with such a thread performing getaddrinfo(), reporting result back and
terminating). This thread-per-request solution would work, but it would be a
departure from QnFSM, and it can lead to creating too many threads in some
fringe scenarios, so I usually prefer to keep a specialized thread intended for
getaddrinfo() in a pure QnFSM model
 

Sound FSM

Sound FSM handles, well, sound. In a sense, it is somewhat similar to
Animation&Rendering FSM, but for sound. Its interface (and as always with QnFSM,

9

10

8

9

10



Once again –
even if  you
decide to run
tw o FSMs f rom
the same thread
– do yourself  a
f avour and
keep the FSMs
separate

interfaces are implemented over messages) needs to be implemented as a kind of
“Logic-to-Sound Layer”. This “Logic-to-Sound Layer” message-based API should
be conceptually similar to “Logic-to-Graphics Layer” with commands going from
the Game Logic expressed in terms of “play this sound at such-and-such volume
coming from such-and-such position within the game world”.

Sound FSM: Running from Game Logic Thread

For Sound FSM running it from the same thread as Game Logic FSM makes sense
quite often. On the other hand, on some platforms sound APIs (while being non-
blocking in a sense that they return before the sound ends) MAY cause substantial
delays, effectively blocking while the sound function finds and parses the file
header etc.; while this is still obviously shorter than waiting until the sound ends, it
might be not short enough depending on your game. Therefore, keeping Sound
FSM in a separate thread MAY be useful for fast-paced frame-per-second-
oriented games.

And once again – even if you decide to run two FSMs from the
same thread – do yourself a favour and keep the FSMs
separate; some months down the road you’ll be very happy that
you kept your interfaces clean and different modules nicely
decoupled.

 Or you’ll regret that you didn’t do it, which is pretty much the
same thing
 

Other FSMs

While not shown on the diagram on Fig V.2, there can be other
FSMs within your client. For example, these FSMs may run in
their own threads, but other variations are also possible.

One practical example of such a client-side FSM (which was
implemented in practice) was “update FSM” which handled online download of
DLC while making sure that the gameplay delays were within acceptable margins
(see more on client updates in general and updates-while-playing in Chapter
[[TODO]]).

In general, any kind of entity which performs mostly-independent tasks on the
client-side, can be implemented as an additional FSM. While I don’t know of
practical examples of extra client-side FSMs other than “update FSM” described
above, it doesn’t mean that your specific game won’t allow/require any, so keep
your eyes open.

“
11

11



On Additional Threads and Task-Based Multithreading
If your game is very CPU-intensive, and either your Game Logic Thread, or
Animation&Rendering Thread become overloaded beyond capabilities of one single
CPU core, you might need to introduce an additional thread or five into the
picture. This is especially likely for Animation&Rendering Thread/FSM if your
game uses serious 3D graphics. While complexities threading model of 3D graphics
engines are well beyond the scope of this book, I will try to provide a few hints for
those who’re just starting to venture there.

As usually with multi-threading, if you’re not careful, things can easily become ugly,
so in this case:

first of all, take another look if you have some Gross
Inefficiencies in your code; it is usually much better to
remove these rather than trying to parallelize. For
example, if you’d have calculated Fibonacci numbers
recursively, it is much better to switch to non-recursive
implementation (which is IIRC has humongous O(2 )
advantage over recursive one ) than to try getting more
and more cores working on unnecessary stuff.

From this point on, to the best of my knowledge you have about three-and-a-
half options:

Option A . The first option is to split the whole thing into several FSMs
running within several threads, dedicating one thread per one specific
task. In 3D rendering world, this is known as “System-on-a-Thread”, and
was used by Halo engine (in Halo, they copy the whole game state
between threads[GDC.Destiny], which is equivalent to having a queue, so
this is a very direct analogy of our QnFSM).

Option B. The second option is to “off-load” some of the processing to a
different thread, with this new thread being just as all the other threads
on Fig V.2; in other words, it should have an input queue and a FSM
within. This is known as “Task-Based Multithreading”
[GDC.TaskBasedMT]. In this case, after doing its (very isolated) part of
the job a.k.a. “task”, the thread may report back to the whichever-thread-
has-requested-its-services. This option is really good for several
reasons, from keeping all the FSM-based goodies (such as “replay
testing” and post-mortem) for all parts of your client, to encouraging
multi-threading model with very few context switches (known as
“Coarse-grained parallelism”), and context switches are damn expensive
on all general-purpose CPUs.  The way how “task off-loading” is done,
depends on the implementation. In some implementations, we MAY use
data-driven pipelines (similar to those described in [GDC.Destiny]) to
enable dynamic task balancing, which allows to optimize core utilization

IIRC
abbv f or If  I
Recall Correctly

— Urban Dictionary

—N

12

13

http://www.urbandictionary.com/define.php?term=iirc


If  you need
Option C f or
your Game
Logic – think

on different platforms. Note that in pure “Option B”, we still have
shared-nothing model, so each of the FSMs has it’s own exclusive state.
On the other hand, for serious rendering engines, due to the sheer size of
the game state, pure “shared-nothing” approach MIGHT BE not too
feasible.

Option B1. That’s the point where “task-off-loading-with-an-
immutable-shared-state” emerges. It improves  over a basic
Option B by allowing for a very-well-controlled use of a shared state –
namely, sharing is allowed only when the shared state is guaranteed to be
immutable. It means that, in a limited departure from our shared-
nothing model, in addition to inter-thread queues in our QnFSM, we
MAY have a shared state. However, to avoid those nasty inter-thread
problems, we MUST guarantee that while there is more than one
thread which can be accessing the shared state, the shared state is
constant/immutable (though it may change outside of “shared”
windows). At the moment, it is unclear to me whether Destiny engine
(as described in [GDC.Destiny]) uses Option B1 (with an immutable
game state shared between threads during “visibility” and “extract”
phases) – while it looks likely, it is not 100% clear. In any case, both
Option  B and Option B1 can be described more or less in terms of
QnFSM (and most importantly – both eliminate all the non-
maintainable and inefficient tinkering with mutexes etc. within your
logic). From the point of view of determinism, Option B1 is
equivalent to Option B, provided that we consider that immutable-
shared-state as one of our inputs (as it is immutable, it is
indistinguishable from an input, though delivered in a somewhat
different way); while such a game sharing would effectively preclude
from applying recording/replay in production (as recording the
whole game state on each frame would be too expensive),
determinism can still be used for regression testing etc.

Option C. To throw away “replay debug” and post-mortem benefits for
this specific FSM, and to implement it using multi-thread in-whatever-
way-you-like (i.e. using traditional inter-thread synchronization stuff
such as mutexes, semaphores, or Dijkstra forbid – memory fences etc.
etc.).

This is a very dangerous option, and it is to be
avoided as long as possible. However, there are
some cases when clean separation between the
main-thread-data and data-necessary-for-the-
secondary-thread is not feasible, usually
because of the piece of data to be used by both
parallel processes, being too large; it is these
cases (and to the best of my knowledge, only
these cases), when you need to choose Option C.
And even in these cases, you might be able to

14

“



tw ice, and then
tw ice more.

stay away from handling fine-grained thread
synchronization, see Chapter [[TODO]] for some
hints in this direction.

Also, if you need Option C for your Game Logic – think twice, and
then twice more. As Game Logic is the one which changes a damn lot,
with Option C this has all the chances of becoming unmanageable
(see, for example, [NoBugs2015]). It is that bad, that if you run into
this situation, I would seriously think whether the Game Logic
requirements are feasible to implement (and maintain) at all.

On the positive side, it should be noted that even in such an
unfortunate case you should be losing FSM-related benefits (such
as “replay testing” and post-mortem) only for the FSM which you’re
rewriting into Option C; all the other FSMs will still remain
deterministic (and therefore, easily testable).

In any case, your multi-threaded FSM SHOULD look as a normal FSM
from the outside. In other words, multi-threaded implementation
SHOULD be just this – implementation detail of this particular FSM, and
SHOULD NOT affect the rest of your code. This is useful for two reasons.
First, it decouples things and creates a clean well-defined interface, and
second, it allows you to change implementation (or add another one, for
example, for a different platform) without rewriting the whole thing.

 that is, if you’re not programming in Haskell or something similar
 GPGPUs is the only place I know where context switches are cheap, but usually

we’re not speaking about GPGPUs for these threads
 or “degrades”, depending on the point of view

 

On Latencies
One question which may arise for queue-based architectures and fast-paced
games, is about latencies introduced by those additional queues (we do want to
show the data to the user as fast as possible). My experience shows that  then we’re
speaking about additional latency  of the order of single-digit microseconds.
Probably it can be lowered further into sub-microsecond range by using less trivial
non-blocking queues, but this I’m not 100% sure of because of relatively expensive
allocations usually involved in marshalling/unmarshalling; for further details on
implementing high-performance low-latency queues in C++, please refer to
Chapter [[TODO]]. As this single-digit-microsecond delay is at least 3 orders of
magnitude smaller than inter-frame delay of 1/60 sec or so, I am arguing that
nobody will ever notice the difference, even for single-player or LAN-based games;
for Internet-based MMOs where the absolutely best we can hope for is 10ms delay,
makes it even less relevant.

12

13

14

15

16

17



In short – I don’t think this additional single-digit-microsecond delay can possibly
have any effect which is visible to end-user.

 assuming that the thread is not busy doing something else, and that there are
available CPU cores

 introduced by a reasonably well-designed message marshalling/unmarshalling +
reasonably well-designed inter-process single-reader queue

 see Chapter [[TODO]] for conditions when such delays are possible before hitting
me too hard
 

V ariations
The diagram on Fig V.2 shows each of the FSMs running within it’s own thread. On
the other hand, as noted above, each of the FSMs can be run in the same thread as
Game Logic FSM. In the extreme case it results in the system where all the FSMs are
running within single thread with a corresponding diagram shown on Fig V.3:

Each and every of FSMs on Fig V.3 is exactly the same as an FSM on Fig V.2;
moreover, logically, these two diagrams are exactly equivalent (and “recording”
from one can be “replayed” on another one). The only difference on Fig V.3 is that
we’re using the same thread (and the same Queue) to run all our FSMs. FSM
Selector here is just a very dumb selector, which looks at the destination-FSM field
(set by whoever-sent-the-message) and routes the message accordingly.

This kind of threading could be quite practical, for example, for a casino or a social
game. However, not all the platforms allow to wait for the select() in the main
graphics loop, so you may need to resort to the one on Fig V.4:

15

16

17

/wp-content/uploads/Fig-V-3.png


Here Sockets Thread is very simple and doesn’t contain any substantial logic; all it
does is just pushing whatever-it-got-from-Queue to the socket, and pushing
whatever-it-got-from-socket – to the Queue of the Main Thread; all the actual
processing will be performed there, within Communications FSM.

Another alternative is shown on Fig V.5:

Both Fig V.4 and Fig V.5 will work for a social or casino-like game on Windows.

On the other end of the spectrum, lie such heavy-weight implementations as the
one shown on Fig V.6:

18

/wp-content/uploads/Fig-V-4.png
/wp-content/uploads/Fig-V-51.png


Here, Animation&Rendering FSM, and Communications FSM run in their own
processes. This approach might be useful during testing (in general, you may even
run FSMs on different developer’s computers if you prefer this kind of interactive
debugging). However, for production it is better to avoid such configurations, as
inter-process interfaces may help bot writers.

Overall, an exact thread (and even process) configuration you will deploy is not
that important and may easily be system-dependent (or even situation-dependent,
as in “for the time being, we’ve decided to separate this FSM to a separate process
to debug it on respective developer’s machines”). What really matters is that

as long as you’re keeping your development model
FSM-based, you can deploy it in any way you like

without any changes to your FSMs.

In practice, this property has been observed to provide quite a bit of help in the
long run. While this effect has significantly more benefits on the server-side (and
will be discussed in Chapter [[TODO]]), it has been seen to aid client-side
development too; for example, different configurations for different platforms do
provide quite a bit of help. In addition, situation-dependent configurations have
been observed to help a bit during testing.

 While on Windows it is possible to create both “| select()”  and “| user-input”
queues, I don’t know how to create one single queue which will be both “| select()”
and “| user-input” simultaneously, without resorting to a ‘dumb’ extra thread; more
details on these and other queues will be provided in Chapter [[TODO]]

On Code Bases for Different Platforms
As it was noted above, you MUST keep your Game Logic FSM the same for all the
platforms (i.e. as a single code base). Otherwise, given the frequent changes to

18

/wp-content/uploads/Fig-V-6.png


If  your game
is graphics-

intensive, there
can be really

good reasons to
have your

Animation&Rendering
FSM dif f erent

f or dif f erent
platf orms

Game Logic, all-but-one of your code bases will most likely start to fall behind, to
the point of being completely useless.

But what about other FSMs? Do you need to keep them as a single code base? The
answer here is quite obvious:

while the architecture shown above allows you to
make non-Game-Logic FSMs platform-specific, it

makes perfect sense to keep them the same as long as
possible

For example, if your game is graphics-intensive, there can be
really good reasons to have your Animation&Rendering FSM
different for different platforms; for example, you may want
to use DirectX on some platforms, and OpenGL on some other
platforms (granted, it will be quite a chunk of work to
implement both of them, but at least it is possible with the
architecture above, and it becomes a potentially viable
business choice, especially as OpenGL version and  DirectX
version can be developed in parallel).

On the other hand, chances that you will need the platform-
specific Communications FSM, are much lower.  Even if
you’re writing in C/C++, usable implementations of Berkeley
sockets exist on most (if not on all) platforms of interest.
Moreover, the behavior of sockets on different platforms is
quite close from game developer’s point of view (at least with
regards to those things which we are able to affect).

So, while all such choices are obviously specific to your specific game, statistically
you should have much more Animation&Rendering FSMs than Communications
FSMs  .

 I don’t count conditional inclusion of WSAStartup() etc. as being really platform-
specific
 

QnFSM Architecture Summary
Queues-and-FSMs Architecture shown on Fig V.2 (as well as its variations on Fig
V.3-Fig V.6) is quite an interesting beast. In particular, while it does ensure a clean
separation between parts (FSMs in our case), it tends to go against commonly used
patterns of COM-like components or even usual libraries. The key difference here

“
19

19



Most of
developers
agree that FSM-
based
programming is
benef icial in
the medium- to
long-run.

is that COM-like components are essentially based on blocking RPC, so after you
called a COM-like RPC , you’re blocked until you get a reply. With FSM-based
architecture from Fig V.2-V.6, even if you’re requesting something from another
FSM, you still can (and usually should) process events coming while you’re waiting
for the reply. See in particular [[TODO!! add subsection on callbacks to FSM]]
section above.

From my experience, while developers usually see this kind of
FSM-based programming as somewhat more cumbersome
than usual procedure-call-based programming, most of them
agree that it is beneficial in the medium- to long-run. This is
also supported by experiences of people writing in Erlang,
which has almost exactly the same approach to concurrency
(except for certain QnFSM’s goodies, see also “Relation to
Erlang” section below). As advantages of QnFSM architecture,
we can list the following:

very good separation between different modules (FSMs in
our case). FSMs and their message-oriented APIs tend to
be isolated very nicely (sometimes even a bit too nicely,
but this is just another side of the “somewhat more
cumbersome” negative listed above).

“replay testing“ and post-mortem analysis. See “Strictly-
Deterministic Logic: Benefits” section above.

very good performance. While usually it is not that important for client-side, it
certainly doesn’t hurt either. The point here is that with such an architecture,
context switches are kept to the absolute minimum, and each thread is
working without any pauses (and without any overhead associated with these
pauses) as long as it has something to do. On the flip side, it doesn’t provide
inherent capabilities to scale (so server-side scaling needs to be introduced
separately, see Chapter [[TODO]]), but at least it is substantially better than
having some state under the mutex, and trying to lock this mutex from
different threads to perform something useful.

We will discuss more details on this Queues-and-FSMs architecture as applicable
to the server-side, in Chapter [[TODO]], where its performance benefits become
significantly more important.

Relation to Actor Concurrency

NB: this subsection is entirely optional, feel free to skip it if theory is of
no interest to you

From theoretical point of view QnFSM architecture can be

20

“

Actor
Concurrency
Model
The actor model

https://en.wikipedia.org/wiki/Actor_model#Contrast_with_other_models_of_message-passing_concurrency


seen as a system which is pretty close to so-called “Actor
Concurrency Model” (that is, until Option C from “Additional
Threads and Task-Based Multithreading” is used), with
QnFSM’s deterministic FSMs being Actor Concurrency’s
‘Actors’. However, there is a significant difference between the
two, at least perceptionally. Traditionally, Actor concurrency
is considered as a way to ensure concurrent calculations; that
is, the calculation which is considered is originally a “pure”
calculation, with all the parameters known in advance. With
games, the situation is very different because we don’t know
everything in advance (by definition). This has quite a few
implications.

Most importantly, system-wide determinism (lack of which is
often considered a problem for Actor concurrency when we’re
speaking about calculations) is not possible for games.  In
other words, games (more generally, any distributed interactive
system which produces results substantially dependent on timing;
dependency on timing can be either absolute, like “whether the
player pressed the button before 12:00”, or relative such as
“whether player A pressed the button before player B”) are
inherently non-deterministic when taken as a whole. On the
other hand, each of the FSMs/Actors can be made completely
deterministic, and this is what I am arguing for in this book.

In other words – while QnFSM is indeed a close cousin of Actor
concurrency, quite a few of the analysis made for Actor-
concurrency-for-HPC type of tasks, is not exactly applicable to
inherently time-dependent systems such as games, so take it
with a big pinch of salt.

 also DCE RPC, CORBA RPC, and so on; however, game engine RPCs are usually very
different, and you’re not blocked after the call, in exchange for not receiving
anything back from the call

 the discussion of this phenomenon is out of scope of this book, but it follows from
inherently distributed nature of the games, which, combined with Einstein’s light
cone and inherently non-deterministic quantum effects when we’re organizing
transmissions from client to server, mean that very-close events happening for
different players, may lead to random results when it comes to time of arrival of
these events to server. Given current technologies, determinism is not possible as
soon as we have more than one independent “clock domain” within our system
(non-deterministic behaviour happens at least due to metastability problem on
inter-clock-domain data paths), so at the very least any real-world multi-device
game cannot be made fully deterministic in any practical sense.
 

in computer
science is a
mathematical
model of
concurrent
computation
that treats
'actors' as the
universal
primitives of
concurrent
computation: in
response to a
message that it
receives, an
actor can make
local decisions,
create more
actors, send
more messages,
and determine
how  to respond
to the next
message
received.

— Wikipedia —

21

20

21



Relation to Erlang Concurrency and Akka Actors

On the other hand, if looking at Erlang concurrency (more
specifically, at ! and receive operators), or at Akka’s Actors, we
will see that QnFSM is pretty much the same thing.  There are
no shared states, everything goes via message passing, et
caetera, et caetera, et caetera.

The only significant difference is that for QnFSM I am arguing
for determinism (which is not guaranteed in Erlang/Akka, at
least not without “call interception”; on the other hand, you
can write deterministic actors in Erlang or Acca the same way
as in QnFSM, it is just an additional restriction you need to
keep in mind and enforce). Other than that, and some of those
practical goodies in QnFSM (such as recording/replay with all
the associated benefits), QnFSM is extremely close to Erlang’s
concurrency (as well as to Akka’s Actors which were inspired
by Erlang) from developer’s point of view.

Which can be roughly translated into the following
observation:

to have a good concurrency model, it is not
strictly necessary to program in Erlang or

to use Akka

 While both Erlang and Akka zealots will argue ad infinitum
that their favourite technology is much better, from our
perspective the differences are negligible
 

Bottom Line for Chapter V
Phew, it was a long chapter. On the other hand, we’ve managed to provide a 50’000-
feet (and 20’000-word) view on my favorite MMOG client-side architecture. To
summarize and re-iterate my recommendations in this regard:

Think about your graphics, in particular whether you want to use pre-
rendered 3D or whether you want/need dual graphics (such as 2D+3D); this is
one of the most important questions for your game client;  moreover, client-
side 3D is not always the best choice, and there are quite a few MMO games
out there which have rudimentary graphics

if your game is an MMOFPS or an MMORPG, most likely you do need

Akka
is... simplif ying
the
construction of
concurrent and
distributed
applications on
the JVM. Akka...
emphasizes
actor-based
concurrency,
w ith
inspiration
draw n f rom
Erlang.

— Wikipedia —

22

Erlang
Erlang is a
general-
purpose,
concurrent,
garbage-
collected
programming
language and
runtime system.

— Wikipedia —

22

23

https://en.wikipedia.org/wiki/Akka_%28toolkit%29
https://en.wikipedia.org/wiki/Erlang_%28programming_language%29


Write your
code in a
deterministic
event-driven
manner, it
helps, and helps
a lot

fully-fledged client-side 3D, but even for an MMORTS the answer can be
not that obvious

when choosing your programming language, think twice
about resilience to bot writers, and also about those
platforms you want to support. While the former is just
one of those things to keep in mind, the latter can be a
deal-breaker when deciding on your programming
language

Usually, C++ is quite a good all-around candidate,
but you need to have pretty good developers to work
with it

Write your code in a deterministic event-driven manner
(as described in “Strictly-Deterministic Logic” and
“Event-Driven Programming and Finite State Machines”
sections), it helps, and helps a lot

This is not the only viable architecture, so you may be
able to get away without it, but at the very least you
should consider it and understand why you prefer an alternative one

The code written this way magically becomes a deterministic FSM, which
has lots of useful implications

Keep all your FSMs perfectly self-contained, in a “Share-Nothing” model.
It will help in quite a few places down the road.

Feel free to run multiple FSMs in a single thread if you think that your
game and/or current platform is a good fit, but keep those FSMs
separate; it can really save your bacon a few months later.

Keep one single code base for Game Logic FSM. For other FSMs, you may
make different implementations for different platforms, but do it only if
it becomes really necessary.

 yes, I know I’m putting on my Captain Obvious’ hat once again here
 

[[To Be Continued…
This concludes beta Chapter V(d) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VI, “Modular
Architecture: Server-Side. Naive and Classical Deployment
Architectures.]]

“

23

[–] References



« Chapter V (c). Modular A rchitecture: Client-Side. On Debuggin… 

 Chapter V I(a). Serv er-Side MMO A rchitecture. Naïv e, W eb-Ba…  »

Acknowledgement
Cartoons by Sergey Gordeev  from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: client, game, multi-player, Multithreading

Copyright © 2014-2016 ITHare.com

[NoBugs2015] 'No Bugs' Hare, “Multi-threading at Business-logic Level is
Considered Harmful”, Overload #128
[GameProgrammingPatterns.GameLoop] Robert Nystrom, “Game Programming
Patterns”
[GafferOnGames.FixYourTimestep] Glenn Fiedler, “Fix Your Timestep!”, Gaffer On
Games
[GDC.Destiny] Natalya Tatarchuk, “Destiny's Multithreaded Rendering
Architecture”, GDC2015
[GDC.TaskBasedMT] Ron Fosner, “Task-based Multithreading - How to Program
for 100 cores”, GDC2010

http://accu.org/index.php/journals/2134
http://accu.org/var/uploads/journals/overload128.pdf
http://gameprogrammingpatterns.com/game-loop.html
http://www.amazon.com/Game-Programming-Patterns-Robert-Nystrom/dp/0990582906
http://gafferongames.com/game-physics/fix-your-timestep/
http://www.gdcvault.com/play/1021926/Destiny-s-Multithreaded-Rendering
http://www.gdcvault.com/play/1012321/Task-based-Multithreading-How-to
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines/
http://ithare.com/chapter-via-server-side-mmo-architecture-naive-and-classical-deployment-architectures/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/multithreading/

	Chapter V(d). Modular Architecture: Client-Side. Client Architecture Diagram, Threads, and Game Loop
	Queues-and-FSMs (QnFSM) Architecture: Generic Diagram
	Migration from Classical 3D Single-Player Game
	Interaction Examples in 3D World: Single-Player vs MMO

	FSMs and their respective States
	Game Logic FSM
	Game Logic FSM & Graphics
	Game Logic FSM: Miscellaneous

	Animation&Rendering FSM
	Game Loop
	Animation&Rendering FSM: Running from Game Logic Thread

	Communications FSM
	Communications FSM: Running from Game Logic Thread

	Sound FSM
	Sound FSM: Running from Game Logic Thread

	Other FSMs

	On Additional Threads and Task-Based Multithreading
	On Latencies
	Variations
	On Code Bases for Different Platforms
	QnFSM Architecture Summary
	Relation to Actor Concurrency
	Relation to Erlang Concurrency and Akka Actors

	Bottom Line for Chapter V
	[[To Be Continued…
	[–]References
	Acknowledgement


