
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter V(c). Modular Architecture: Client-Side. On
Debugging Distributed Systems, Deterministic Logic,
and Finite State Machines
posted December 7, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter V(c) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

Distributed Systems: Debugging Nightmare
Any MMOG is a distributed system by design (hey, we do need to have a server and
at least a few thousands of clients). While distributed systems tend to differ from
non-distributed ones in quite a few ways, one aspect of distributed systems is
especially annoying. It is related to debugging.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

The problem with debugging of distributed systems is that it is
usually impossible to predict all the scenarios which can
happen in real world. In short, we’re speaking about race
conditions. While it is usually possible to answer “What will
happen if such a packet arrives at exactly such and such
moment”, making an exhaustive list of such questions is
unfeasible for any distributed system which is more
complicated than a stateless HTTP request-response “Hello,
Network”. If you didn’t try creating such an exhaustive list
yourself for a non-trivial system – you may want to try doing it,
but it will be much cheaper to believe my experience in this
field – for any non-trivial stateful system it won’t work, period.

This automatically means that even the best possible unit
testing (while still being useful) inevitably fails to provide any
guarantees for a distributed system. Which in turn means that
in many cases you won’t be able to see the problem until it
happens in simulation testing, or even in real world. To make
things even worse, in simulation testing it will happen every
time at a different point. And when it happens in real world,
you usually won’t be able to reproduce it in-house. Sounds
grim, right? It certainly does, and for a reason too.

As a result, I am going to make the following quite bold statement:

Race
condition
A race
condition or
race hazard is
the behavior of
an electronic,
sof tw are or
other system
w here the
output is
dependent on
the sequence or
timing of other
uncontrollable
events.

— Wikipedia —

/wp-content/uploads/BB_part068_BookChapter005c_v1.png
https://en.wikipedia.org/wiki/Race_condition

If you don’t design your distributed system for
testing and post-mortem analysis, you will find

yourself in lots of trouble

Fortunately, it is possible to design your system for distributed testing, and it is not
that difficult, but it requires certain discipline and is better to be done from the
very beginning; we’ll discuss one of the ways to do it a little bit later.

The Holy Grail of Post Mortem

In practice, whatever amount of testing you do, test cases produced by real life and
by your inventive players, will inevitably go far beyond everything you were able to
envision in your tests. It means that from time to time your program will fail. While
reducing time between failures is very important, another thing is arguably even
more important than that: it is the time which takes you to fix the bug after it was
reported. And for reducing number of times which the program needs to fail
before you can fix it, post-mortem analysis is of paramount importance. The holy
grail of post-mortem, of course, is when you can fix any bug using the data from
one single crash, so it doesn’t affect anybody anymore. This holy grail (as well as
any other holy grail) is not achievable in practice. However,

I’ve seen systems which, using techniques similar to
those described in this book, were able to fix around

75% of all the bugs after a single post-mortem

 here we’re speaking about post-mortem analysis after program failure, core
dump or otherwise, and not about “project post-mortem”

Portability: Platform-Independent Logic as “Nothing But
Moving Bits Around”
Now let’s set aside all the debugging for a moment, and speak a little bit about
platform independent stuff. Yes, I know I am jumping to quite a different subject,
but we do need it, you will see how portability is related to debugging, just half a
page later.

In most cases graphics, input, and network APIs on different platforms will be
different. Even if all your current platforms happen to have the same API for one of
the purposes, chances are that your next platform will be different in this regard.

1

1

It is
necessary to

separate your
code into tw o

very-w ell-
def ined parts:

platf orm-
dependent one
and platf orm-

independent
one.

The idea here

As a result, it is necessary to separate your code into two
very-well-defined parts: platform-dependent one and
platform-independent one. Moreover, similar to what we’ve
discussed with regards to Logic-to-Graphics Layer (see
“Logic-to-Graphics Layer” section above), your platform-
dependent code needs to be very-rarely-changing, and your
frequently-changing game logic needs to be platform-
independent.

When speaking about platform-independent logic, a friend
and colleague of mine, Dmytro Ivanchykhin, likes to describe it
as “nothing more then moving bits around”. Actually, this is
quite an accurate description. If you can isolate a portion of
your program in such a way that it can be described as mere
“taking some bunches of bits, processing them, and giving
some other bunches of bits back”, all of this while making only
those external calls which are 100% cross-platform (ok, “100%
cross-platform for all the platforms you need”), you’ve got
your logic platform-independent.

Having your game logic on the client side as a platform-independent logic, is
absolutely necessary for any kind of cross-platform development. There is no way
around it, period; any attempts to have your game logic interspersed with the
platform-dependent calls will doom your code sooner rather than later. This is just
a common wisdom of cross-platform development, and not really specific to
games or distributed systems.

Stronger than Platform-Independent: Strictly-
Deterministic
The approach described above, is very well-known and is widely accepted as The
Right Way to achieve platform-independence. However, having spent quite a bit of
time with debugging of distributed systems, I’ve became a strong advocate of
making your logic part not only platform-independent, but also strictly-deterministic.
While strictly speaking, one is not a superset of the other one, in practice these two
concepts are very closely interrelated.

The idea here is to have your game logic consisting of the
functions, which are 100% defined by their-input-data plus by
internal-game-logic-state; as we’ll see below, strict
determinism can be achieved when you call system-dependent
functions inside, though it comes with some caveats and
should be usually avoided. For most of the well-written code
out there, a large part your game logic is already written more

“

“

is to have your
game logic
consisting of
the f unctions,
w hich are 100%
def ined by
their-input-
data plus by
internal-game-
logic-state

or less around these lines, and there are only a few relatively
minor modifications to be made. In fact, modifications can be
that minor, that if your code is reasonably well-written and
platform-independent, you may even be able to introduce
strict determinism as an afterthought. I’ve done such things
before, and it is not that much of a rocket science, but honestly,
it is still much better to go for strict determinism from the
very beginning, especially as the cost is very limited.

Strictly-Deterministic Logic: Benefits

At this point, you should have two very reasonable questions.
The first one is “What’s in this strict determinism for me?”, and
the second one is “How to implement it?”

To answer the first question and to explain why you should undertake this effort, all
the benefits of implementing your logic this way actually result from one single
word: determinism. When all the outputs of your logic are completely defined by
its internal state plus its inputs, your program module (class, etc.) becomes
perfectly deterministic. And while you may think that this is a purely theoretical
advantage, determinism provides several very practical benefits. Most of these
benefits result from one all-important property of a strictly deterministic system:

if you record all the inputs of a strictly deterministic
system, and re-apply these inputs to another

instance of the same strictly deterministic system in
the same initial state, you will obtain exactly the

same results

For practical purposes, let’s assume that we have mechanics to write an inputs-log,
recording all the inputs to our strictly-deteministic logic (see “Implementing
Strictly-Deterministic Logic: Definitions” section below for implementation
details):

Your testing becomes deterministic, reproducible, and reversible
it means that as soon as you’ve got a failure, you can repeat the whole
thing, and get the failure at exactly the same place in code. Such 100%
reproducibility, in particular, allows things such as “let’s stop our
execution at 5 iterations before the failure.” If you have ever debugged a
distributed program with a difficult-to-reproduce bug, you will
understand that one this single item is worth all kinds of trouble.

in addition, your testing becomes more meaningful; without 100%
determinism, any testing has a chance to fail depending on certain

“

2

Af ter your
logic has f ailed
in production,
you can
“replay” this
inputs-log on
your
f unctionally
identical in-
house system,
and the bug w ill
be reproduced
at the very same
point w here it
has originally
happened.

conditions, and having your tests failing randomly from time to time is
the best way I know to start ignoring such sporadic failures (which often
indicate race-related and next-to-impossible-to-figure-out bugs). On
the other hand, with 100% determinism, each and every test failure
means that there is a bug in your code, that cannot be ignored and needs
to be fixed (and can be fixed too, improving quality of your production
code significantly)

100% reproducible bugs during post-mortem, both
client-side and server-side

if you can log all the inputs to your logic in
production (and quite often you can, at least on
circular basis, see “EventProcessor Variations:
Circular Buffers” section below for details), then
after your logic has failed in production, you can
“replay” this inputs-log on your functionally identical
in-house system, and the bug will be reproduced at
the very same point where it has originally happened.
Even better, your in-house system needs be only
functionally identical to production one (i.e.
performance is a non-issue, and any PC will do); also
you are not required to replay the whole system, you
can replay only suspicious module instead.
Moreover, during such inputs-log replay it is not
necessary to run it on the same time scale as it was
run in production; it can be run either faster (for
example, if there were many delays, and delays can
be ignored during replay), or slower (if your test rig
is slower than the production one).

Regression testing using production data
if you’ve got your inputs-log just once, you can
“replay” it to make sure that your code changes are
still working. In practice, it comes handy in at least
two all-important cases:

when your new code just adds new functionality, and unless this
new functionality is activated, the system should behave exactly as
before

when your new code is a pure optimization of previous one; when
dealing with many thousands of simultaneous users, such
optimizations can be Really Complicated (including major rewrites
of certain pieces), and having an ability to make sure that new code
works exactly as the old one (just faster), is extremely important.

Keeping code bases in sync
If you’re unlucky enough to have 2 code bases (or even “1.5 code bases”,
see Chapter [[TODO]] for details), then running the same inputs-log over

“

the two code bases provides an easy way to test whether the code bases
are equivalent. Keep in mind that it requires cross-platform
determinism, which has some additional issues, discussed in “Cross-
Platform Issues” section below.

User Replay, see discussion in “On User Replay” subsection below.

Last but not least – determinism may allow you to run exactly the same logic
(or even physics) both on client and server, feeding them with the same data
and obtaining the same results. This will allow to save A LOT on network
traffic (we’ll discuss it in more detail in Chapter [[TODO]]); on the other hand,
it requires cross-platform determinism across all your platforms, which is
much more difficult to achieve than a single-platform one (and is more
difficult to achieve than cross-platform determinism for two selected
platforms).

Keeping in mind that:

if you have a good development team, any reproducible bug is a dead bug

the most elusive and by far time-consuming bugs in distributed systems tend
to be race-related

the race-related bugs are very difficult to reproduce, we can easily conclude
that

having deterministic testing makes a Really Big
Difference when it comes to distributed systems.

With strictly deterministic systems (and appropriate testing framework), all those
elusive and next-to-impossible-to-locate race-related bugs are brought to you on
a plate.

There are also additional benefits of being deterministic , but these are beyond the
scope of this book.

 to be fair, similar things in non-production environments are reportedly possible
with GDB reverse debugging; however, it is platform-dependent, and is out of
question for production, as running production code in reverse-enabled debug
mode is tantamount to a suicide for performance reasons
 I don’t want to say that you’re like Pumba or Timon from Lion King series
 examples include, for example, an ability to perform incremental backup just by

recording all the inputs (will work if you’re careful enough), and an additional
ability to apply an existing inputs-log to a recently fixed code base; the latter, while
being quite esoteric, may even save your bacon in some cases, though admittedly
rather exotic ones

3

4

2

3

4

Strictly-Deterministic Logic: On User Replay

With traffic being cheap and YouTube videos ubiquitous, User Replay is not that
important these days, but still deserves being mentioned. When your game logic is
fully deterministic, it will be possible for the player to record the game as it was
played, get a very small (!) file with the record, and then share this file with the other
players. Which in turn may help to build your community, etc. etc. As mentioned
above, it is not that attractive these days, but you might still want to think about
User Replay (which is coming to you more or less “for free”, as you need
determinism for other reasons too). If you add some interactive features during
replay (such as changing viewing angle and commenting features such as labels
attached to some important units, etc.), it might (or might not) have business
sense.

A few points about implementing User Replay via deterministic replay:

Usually, you need to record (and replay) only one entity – the one which is
most close to the graphics. In other words, in terms of Generic QnFSM
Architecture described below, you need to record/replay only
“Animation&Rendering” FSM (and “Game Logic FSM” doesn’t need to be
recorded to enable User Replay)

Keep in mind that User Replay will normally require you to adhere to the most
stringent version of determinism, including cross-platform issues (see
“Cross-Platform Issues” section below)

As a bit of relief, you MIGHT (or might not) be able to get away with not-
that-strict determinism when it comes to floating-point issues (see
“Cross-Platform Issues” section below); however, there is a big open
question whether these really subtle differences will accumulate into
some kind of macroscopic effects.

When implementing User Replay as deterministic replay, you’ll need to deal
with the “version curse”. The problem here is that strictly speaking, replay
won’t run correctly on a different version of FSM . So you will need to add
FSM version number to all of these files, and then:

either to anayse track which version of replay file will run on which of the
FSMs. I don’t think is realistic (as analysis is too complicated)

or to keep all the different publicly-released versions of the FSM in the
client, so all of them are available for replay. This one might fly, because
FSM code size is usually fairly small (at most of the order of hundreds of
kilobytes), and updates to post-Logic-to-Graphics Layer are relatively
rare.

even in this case, your Animation&Rendering FSM will have external
dependencies (such as DirectX/OpenGL), which can be updated

5

I hope I've
managed to
convince you
that strictly-
deterministic
systems are a
Good Thing™

and cause problems. However, as long as external dependencies are
100% backward-compatible – you should be fine (at least in theory)

while adding meshes/textures isn’t a problem, replacing them is.
For most of the purely cosmetic texture updates, you may be fine
with using newer versions of textures on older replays, but for
meshes/animations – probably not, so you may need to make them
versioned too (ouch!)

Ultimately, this is still a business decision, so even if you like the idea of User
Replay a lot, but business guys say that they don’t need this kind of stuff –
don’t bother with implementing it; while seemingly trivial, it will require quite
a bit of time to implement in a way which makes it both replayable and
interesting for your players.

On the other hand, decision whether you want to have determinism for
testing/post-mortem purposes – is not a business decision, and you may
(and IMNSHO should) do it pretty much regardless of Business
Requirements (that is, unless Business Requirements state “crash for
each user at least twice a day”); at the very least you should go for
determinism for most of the games with Undefined Life Span.

 personally, I’ve never faced these things, so I cannot provide any real-world
comments

Implementing Strictly-Deterministic Logic: Definitions

I hope I’ve managed to convince you that strictly-deterministic
systems are a Good Thing™, and that now we can proceed to
the second question: how to implement these strictly-
deterministic systems?

First, let’s define what we want from our strictly-deterministic
system. Practically (and to get all those benefits above) we
want to be able to run our code in one of three modes:

Normal Mode. The system is just running, not actively
using any of its strictly-deterministic properties

Recording Mode. The system is running exactly as in
Normal Mode, but is additionally producing inputs-log

Replay Mode. The system is running using only
information from inputs-log (and no other information), reproducing exact
states and processing sequences which have occurred during Recording
Mode

5

“

it is much
more important
to encapsulate
your
serialization
f ormat f rom
your state
machine logic

Note that Replay Mode doesn’t require us to replay the whole system; in fact, we
can replay only one part of the whole thing, the one which we suspect to be guilty. If
after analysis we find that it was behaving correctly and that we have another
suspect – we can replay that suspect from its own inputs-log (which hopefully has
been written too during the same session which has caused failure).

Implementing Inputs-Log

Implementation-wise, inputs-log is usually organized as a sequence of “frames”, with
each “frame” depending on the type of data being written. Each of the “frames”
usually consists of a type, and serialized data depending on type.

Let’s discuss how it can/should be done in C++ (other languages are usually
simpler, or MUCH simpler), and which caveats need to be avoided. Below are a few
hints in this regard:

don’t serialize your data as plain C structures; use serialization library
instead.

it is often a good idea to use your marshalling library (see Chapter
[[TODO]]) for serialization purposes too

it doesn’t really make much difference which serialization
format (binary or text-based) you use; it is much more
important to encapsulate your serialization format from
your state machine logic (i.e. to have serialization library
which takes care of all the formatting stuff)

as a part of this encapsulation, I strongly suggest to
define your own (and opaque!) stream class , using
this your-own-and-opaque-class as a parameter to
your serialization functions. The only thing which
you’re allowed to do with an object of this class, is to
pass it to a function from your serialization library.
This approach will save you quite a lot of trouble
down the road.

despite exact format being more or less irrelevant,
make sure that your serialization format is portable
between your plaftorms

while we’re speaking about inputs-log, most of the time your data will be plain
and without any pointers; however, in some cases (and when state
serialization becomes necessary, see, for example, “EventProcessor
Variations: Circular Buffers” below), the need to serialize more complicated
data structures may arise.

In such cases, usually, you fill find that your data (whether for inputs-log
frames or for states) is still simple enough to be described by levels 1 to 3
on the sophistication scale as defined by [ISOCPP]. You may want to use

“

suggestions described there.

Implementing Strictly-Deterministic Logic: Original Non-Strictly-
Deteministic Code

Now as we have our inputs-log, let’s see how we can implement our logic which will
record/replay it. Let’s start with a simple example: a class, which implements a
“double-hit” logic. The idea is that if the same NPC gets hit twice within certain
pre-defined time, something nasty happens to him. Usually, such a class would be
implemented along the following lines:

While this example is intentionally trivial, it does illustrate the key point. Namely,
while being trivial, function DoubleHit::hit() it is NOT strictly-deterministic. When
we’re calling hit(), the result depends not only on input parameters of hit() and on
members of DoubleHit class, but also on the time when it was called.

 while such logic normally belongs to server-side in MMOs, it may need to be
duplicated on the client-side (for example, due to the client-side prediction, see
Chapter [[TODO]] for details), so it is relevant for client-side too

Implementing Strictly-Deterministic Logic: Strictly-Deteministic Code
via Intercepting Calls

6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

class DoubleHit {
 private:
 const int THRESHOLD = 5;//in MyTimestamp units
 MyTimestamp last_hit;
 //actual type of MyTimestamp may vary
 // from time_t to microseconds, and is not important for our purposes

 public:
 DoubleHit() {
 last_hit = MYTIMESTAMP_MINUS_INFINITY;
 }

 void hit() {
 MyTimestamp now = my_get_current_time();
 if(now – last_hit < THRESHOLD)
 on_double_hit();

 last_hit = now;
 }

 void on_double_hit() {
 //do something nasty to the NPC
 }
};

6

The f irst
approach is to
“intercept” all
the calls to the

f unction
my_get_current_time().

Now let’s see what we can possibly do to make our DoubleHit::hit() deterministic. In
general, I know two and a half approaches to achieve it.

The first approach is to “intercept” all the calls to the function
my_get_current_time(). “Intercepting calls” here is meant as
changing behaviour of the function depending on the mode in
which the code is running, adding/changing some
functionality in “Recording” or “Replay” modes. “Intercepting”
my_get_current_time() can be done, for example, as follows:
whenever the system is running in “recording” mode,
my_get_current_time() would run as normal, but would
additionally store each returned value to the inputs-log. And
whenever the system is running in “replay” mode,
my_get_current_time() would read the next value from the
inputs-log, and would return that value regardless of actual
time (and without making any system calls). This is possible
exactly because of 100% determinism: as all sequences of calls

during Replay are exactly the same as they were during Recording, it means that
whenever we’re calling my_get_current_time(), at the “current position” within
our inputs-log we will always have exactly a record which was made by
my_get_current_time() during Recording.

Therefore, “interception” of the function my_get_current_time() may be
implemented, for example, as follows:

Bingo! This approach would make our implementation strictly-deterministic, and
without any code changes too! Actually, this is pretty much what [liblog] replay tool

“

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

MyTimestamp my_get_current_time() {
 if(Mode == REPLAY_MODE) {
 MyTimestamp ret =
 //read next frame from global inputs-log into 'ret'
 // this frame MUST be a my_get_current_time() frame
 ;
 return ret;
 }

 MyTimestamp ret =
 // code for my_get_current_time() before “call interception”
 ;

 if(Mode == RECORDING_MODE) {
 //write my_get_current_time() as a 'frame'
 // to a global inputs-log
 }

 return ret;
}

7

did.

However, there is a significant caveat with this way of making your logic strictly
deterministic. If we add (or remove) any calls to my_get_current_time() (or more
generally, to any of the functions-which-record-to-inputs-log), the replay will fall
apart. While replay will still work for exactly the same code base, things such as
replay-based regression testing will become pretty much unusable in practice, and
existing real-world inputs-logs (which are an important asset, helping to test things)
will be invalidated too frequently.

 not to be confused with other tools with the same name; as of now, I wasn’t able to
find an available implementation of liblog

Implementing Strictly-Deterministic Logic: “Pure Logic”

An alternative way (the one which I usually prefer) of making the class strictly-
deterministic, is to change the class DoubleHit itself so that it becomes strictly
deterministic without any interception trickery. For example, we could change our
DoubleHit::hit() function to the following:

If we change our class DoubleHit in this manner, it becomes strictly deterministic
without any need to “intercept” any calls; let’s name such classes “pure logic”
classes.

In general, whenever there is a choice, I usually prefer this “Pure Logic” approach;
it is more explicit than intercepting calls, more easily readable, and has better
resilience to modifications. However, it has some implications to keep in mind:

with “pure logic”, it becomes a responsibility of the caller to provide stuff
such as timestamps

this passing parameters may (and usually will) go through multiple levels
of calls

at some level, however, some caller-of-caller-… needs to call
my_get_current_time() and pass obtained value as parameter

it is a responsibility of whoever-calls-my_get_current_time(), to record data
to inputs-log (and to handle replay too). See class EventProcessor below for an
example.

7

1
2
3
4
5

void hit(MyTimestamp now) {
 if(now – last_hit < THRESHOLD)
 on_double_hit();
 last_hit = now;
}

the whole chunk of processing (while caller-which-has-called-
my_get_current_time() passes parameter around) is deemed to happen at
the same point in time. While this is exactly what is desired for 99.9% of game
logic, you need to be careful not to miss remaining 0.1%.

Implementing Strictly-Deterministic Logic: TLS-based Compromise

As an alternative to passing parameters around, you might opt
to pass parameters via TLS instead of stack.The idea is to
store MyTimestamp (alongside with any other parameters of
similar nature) to the TLS, and then whenever
my_current_get_time() is called, merely read the value from
TLS.

In practice, it means doing the following:

keep your original logic code intact, with
my_get_current_time() calls within

rename my_get_current_time() to
my_real_get_current_time()

at those points where you’d call my_get_current_time() (for passing result as
a parameter) in “pure logic” model, call my_real_get_current_time() and
write the result to TLS

implement my_get_current_time() as simply reading of the value from TLS

This model is a kind of compromise between the two approaches above; it is less
verbose (and less explicit) then “pure logic”, but it is functionally equivalent to
“pure logic”, and therefore it doesn’t suffer when somebody inserts yet another
my_get_current_time(). If you prefer this model to “Pure Logic” – it is fine, but
you’ll need to figure out fine details of TLS yourself, as I will describe things mostly
in terms of “Pure Logic” (though it can be converted to TLS-based Compromise
Model in a very straightforward manner).

In TLS-based Compromise Model, handling of the recording/replay is exactly the
same as in “pure logic” model (see also class EventProcessor below); the only thing
which TLS-based Compromise changes compared to the “pure logic”, is how the
data is passed from caller to callee; everything else (including the data written to
the inputs-log) is exactly the same.

 for C++, see C++11’s thread_local storage duration specifier, but there are usually
other platform-dependent alternatives

TLS
Thread-local
storage (TLS) is
a computer
programming
method that
uses static or
global memory
local to a
thread.

— Wikipedia —

8

8

https://en.wikipedia.org/wiki/Thread-local_storage

Implementing Strictly-Deterministic Logic: Passing Input Parameters
as Data Members

Yet another way to handle it is to put all the input parameters as data members of
your class DoubleHit:

While it again is functionally equivalent to “Pure Logic”, and will work, I shall say
that I don’t like it on readability grounds. Perceptionally, members of class
DoubleHit clearly represent “current state” of class DoubleHit, and putting
now (which is an “input parameter”, and is semantically very different from
“current state”) there will be too confusing as soon as you give the code to
somebody not familiar with your conventions.

 Implementing Strictly-Deterministic Logic: W hich Model to Choose?

Personally, I usually prefer “Pure Logic” approach described above. However, I
admit that “TLS-based Compromise” is functionally equivalent to “Pure Logic” one,
and that a discussion about being explicit vs being brief in this case is pretty much
about personal preferences.

Therefore, I think that any of these two models is fine, just stay away from
“intercepting calls” and “passing parameters as data members”; actually, even
“intercepting calls” and “passing parameters as data members” are light years
ahead of having no strict determinism at all, but why settling for something worse
when you can have something better at the same price?

Implementing Strictly-Deterministic Logic: W hich system functions
we’re speaking about?

In general,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

class DoubleHit {
 private:
 const int THRESHOLD = 5;
 MyTimestamp last_hit;
 MyTimestamp now;//NOT recommended because of confusion!

 public:
 //...
 void hit() {
 if(now – last_hit < THRESHOLD)
 on_double_hit();

 last_hit = now;
 }
 //...

Let's take a
closer look at

the question
“w hat exactly
do w e need to

intercept /
provide?”

each and every of system calls (including system
calls made indirectly via wrappers), creates a

danger of deviating your class from being strictly-
deterministic.

As a result, some of the readers will say: “hey, this way we will
end up with millions of parameters (or function calls we need
to intercept)!” . Fortunately, it is not that bad. Let’s take a
closer look at the question “what exactly do we need to
intercept/provide?”

As we’ve already discussed in “Logic-to-Graphics Layer”
section above, all the code which works directly with graphics,
should be separated from game logic by Logic-to-Graphics
Layer; moreover, the interface which we’ve defined for this
Layer, was essentially one-way communication (with game
logic sending instructions to draw something, to the Layer),
and one-way communication which goes in “from logic”
direction, doesn’t affect determinism. In a similar manner, all
the code which directly calls network sockets or input, should

be moved to the platform-dependent part; moreover, these parts will usually
reside in a different thread, or at least “higher” than our game logic (so that will act
as callers with regards to game logic), see section [[TODO]] below; such usage
won’t affect determinism either.

This leaves us with two major items which are closely related to the logic, and are
not deterministic per se; these are time and client-side configuration. Let’s take a
look at each of these two items:

Time. T ime as such is not deterministic by design, but obtaining time is
generally cheap, so usually there is no problem for the caller to pass time to
the callee, even if callee won’t use it. Therefore, for time we can use “pure
logic” approach above, to make the things more explicit (and to avoid
problems when existing input-logs get incorrect when somebody inserts
another my_get_current_time() into processing logic); functionally
equivalent “TLS Compromise” will be less explicit and less verbose too.

Client-side Configuration. Client-side configuration is pretty much the only
case when you may need an access to the client-side file system (leaving aside
caching, see on it below). With regards to the client-side configuration, you
usually can set it to one fixed value for the whole session, and to put this one
fixed value into the very beginning of your input-logs. If you want to test
manipulating client-side configuration (which I never needed and never heard
of somebody who needed it, but in the game world anything can happen) – you
may choose either to intercept calls, or to use a kind of exception-based

“

9

10

trickery which will be described in Chapter [[TODO]] with regards to
conditional handling of real (hardware-based) randomicity.

Other stuff. There is a chance that you will genuinely need to use a non-
deterministic call which is not covered in this Chapter, and to do it from
within your game logic. One such example includes re-formatting of the
server time into local time (which is better to be avoided anyway to avoid
confusion, replacing it with system-independent “it happens in 37 minutes
from now” kind of stuff, but sometimes you just don’t have a choice). In such
cases, you have the same two choices as right above – either to intercept
relevant calls , or to use exception-based approach described in Chapter
[[TODO]]. As long as such calls are rare, both these approaches will work
reasonably well in practice.

 it took me quite a few years to realize, how actually good it is
 for server-side, there is also real (hardware-based) randomicity and databases,

but we’ll set this discussion aside until Chapter [[TODO]]
 it is MUCH better to do this interception after conversion to system-independent

data formats, so it is system-independent data which gets into inputs-log

Strictly-Deterministic Logic: Non-Issues

In addition to the non-deterministic issues described above, there are also three
non-issues; these are pseudo-random numbers, logging and caching.

Pseudo-random numbers as such are perfectly deterministic; that is, as long as
you’re storing PRNG state as a part of your logical state (if you’re using
FiniteStateMachine as described below – as a member of specific class
MyFiniteStateMachine). Instead of using non-deterministic rand() (which implicitly
uses a global, see also below), you can either implement your own linear
congruential PRNG (which is literally a one-liner, but is not really good when it
comes to randomicity, see also Chapter [[TODO]]), or use one of those Mersenne
Twister classes which are dime a dozen these days (just make sure that those PRNG
classes have PRNG state as a class member, not as a global); for C++ you can use
something like boost::mt19937. Note that to get your PRNG seeded, you still need to
provide some seed which is external to your deterministic logic, but this is rarely a
problem.

Logging/tracing (as in “log something to a text/binary log file”), while it does
interact with an outside world, is usually strictly deterministic per se. Moreover,
even if your logging procedure prints current time itself (and to do it, calls
my_get_current_time() or something else of the sort), and technically becomes
non-deterministic from the “all the world outside of our logic” point of view (this
happens because it’s end-result depends on the current time), it still stays strictly

11

9

10

11

The second
deterministic
non-issue is
related to
caching.

deterministic from the point of view of the logic itself (as long as the logic cannot
read the log). Practical consequence: even in “Pure Logic” model, there is no need
to pass ‘now’ parameter to those framework-level functions which implement
logging (even if they call my_get_current_time() inside, but only as long as the
result of this my_get_current_time() is not used other than to write data to the
log).

The second deterministic non-issue is related to caching.
Caching (whether file-based or memory-based), when it comes
to the determinism, is an interesting beast. As long as all your
caching does, is strictly caching of the data and nothing else, it
is deterministic, regardless of all the reads and writes
(provided that original state of the cache is stored, if
applicable, in inputs-logs). While relying on caching being
implemented as a correct cache won’t allow you to “replay-
test” caching itself, as long as you’re sure that your caching is
working – you can rely on it’s determinism.

More generally, such things as logging and caching (if they are
strictly deterministic themselves), can be considered “outside”
of our logic (more strictly – outside of “isolation perimeter” as defined in “Event-
Driven Programming and Finite State Machines” section below); this approach
greatly reduces amount of logging which is required to guarantee correct
recording/replay, at the cost of the recording/replay being unable to aid with
testing of your logging/caching routines. In practice, as logging/caching are
relatively simple and are rarely changed, the latter restriction doesn’t cause too
much trouble.

 I know that this explanation reads quite ugly, but I cannot find better wording
now; regardless of the wording, the statements in this paragraph stand

 strict proof is beyond the scope of this book

Strictly-Deterministic Logic: No Access to Globals

This might go without saying, but let’s make it explicit:

for your logic to be strictly-deterministic, you MUST
NOT use any global variables. Y es, it means “No

Singletons” too.

Actually, it is not just a requirement to be strictly-deterministic, but is a well-
known “best practice” for your code to be reasonably reliable and readable, so
please don’t take it as an additional burden which you’re doing just to become

12

“
13

12

13

strictly-deterministic; following this practice will make your code better in the
medium- and long-run even if you’re not using any of the benefits provided by
strict determinism.

The only exception to this rule is that accessing constants is allowed without
restrictions (well, as long they you don’t modify them).

As an consequence,

you SHOULD NOT use any function which implicitly
uses globals

Identifying such functions can be not too trivial, but if you need to stay strictly
deterministic, there it is a requirement to avoid them. Alternatively, you may decide
to “intercept” these calls (and write whatever-they-return into inputs-log) to keep
your logic strictly deterministic, but as noted above, “intercepting calls” is better
to be avoided when feasible.

C standard library is particularly guilty of providing functions which implicitly
access globals (this includes rand()). Most of these functions (such as strtok())
should be avoided anyway due to the logic being non-obvious and being potentially
thread-unsafe on some of the platforms. One list of such functions can be found in
[ARM]; note that the problem here is not about thread-safety, so rand() and strtok()
are still non-deterministic even on those platforms (notably Windows) which make
them thread-safe by replacing globals with TLS-based stuff.

Strictly-Deterministic Logic: Pointers

C/C++ pointers are quite a nasty beast in general, and can cause quite a few
problems when it comes to determinism too . The problem with pointers from
determinism point of view is that in general, you cannot guarantee that allocated
pointers are the same on different runs of the program. As a result, below is a list
of things which should be avoided when writing for determinism:

using convoluted pointer arithmetic (and “convoluted” here means “anything
beyond simple array indexing). Seriously, if you’re relying on this kind of stuff,
you’d better write for Obfuscated C contest and stay away from any serious
development.

sending pointers over the network (and writing them to inputs-log), regardless
of marshalling used. Actually, this one should be avoided regardless of
determinism.

using pointers as identifiers

using pointers for ordering purposes; even using pointers to get “just some

14

kind of temporary ordering” is not good for determinism, sorry about that

While this looks as quite a few items to remember about, it is not too bad in
practice.

Strictly-Deterministic Logic: Cross-Platform Issues

Achieving strict determinism on one single platform is significantly easier than
across different platforms. For many practical purposes (such as post-mortem
and debugging), it is sufficient to have strict determinism only within one single
platform. However, to obtain some other properties (for example, cross-platform-
equivalence testing, User Replay, and identically running physics engines) you may
need to have cross-platform determinism. In such a case, additional
considerations apply:

non-ordered and partially-ordered collections may produce different results
on different platforms while staying compliant. For C++, examples include
hash-table-based unordered_map<>/unordered_set<> containers, and tree-
based partially ordered multiset<>/multimap<> containers.

a funny thing about them is that they ARE indeed nothing more than
“moving bits around”, it is just that bits are moved in a bit different (but
compliant) manner for different implementations

it means that one way to deal with them, is to write your own version (or
just to compile any of existing ones to all the platforms); as long as the
code for all the platforms is (substantially) the same, it will compile into
the code which behaves exactly the same

for tree-based partially ordered sets/maps, you often can make them
fully-ordered by adding an artificial ID (for example, incremented for
each insert to the container) and using it as a tie-breaker if original
comparison returns that objects are equal. It is quite a nasty hack, but if
you don’t need to care about ID wraparounds (which is almost
universally the case if you’re using 64-bit IDs), and you don’t care about
storing an extra ID for each item in collection, it works.

floating-point arithmetic issues. In short: while floating-point will return
almost the same results on different platforms, making them exactly the same
across different hardware/compilers/… is very challenging at the very least.
For further details, refer to [RandomASCII2013] and [Fiedler2015]. A few minor
but important points in addition to the discussion in those references:

As floating-point arithmetic is once again all about “moving bits around”
(it just takes some bunches of bits and returns some other bunches of
bits), it can be made perfectly deterministic. In practice, you can achieve
it by using software floating-point library which simulates floating-point
via integer arithmetic [[TODO: add ref to Knuth]]

Note that such a library (if used consistently for all your platforms)

does not need to be IEEE compliant; all you need is just to get some
reasonable results, and last bit of mantissa really matters in
practice (as long as it is the same for all the platforms)

such libraries are slooooow; for a reasonably good floating-point
emulation library (such as [SoftFloat]) you can expect slowdown of
the order of 20-50x compared to hardware floating point .

however, certain speed up can be expected if the library is
rewritten to avoid packing/unpacking floats (i.e that class
MyFloat is actually a two-field struct), and replacing IEEE-
compliant rounding with some-reasonable-and-convenient-
to-implement rounding; very wild guesstimate for such an
improvement is of the order of 2x [JohnHauser], which is not
bad, but will still leave us at least with 10x slow-down
compared to hardware floating point .

however, if you’re fine with this 20-50x-slower floating-point
arithmetic (for example, because your logic performs relatively few
floating-point operations) – such libraries will provide you with
perfect determinism.

Strictly-Deterministic Logic: Implementation summary

Given analysis above, we’ve found that while there are tons of places where your
logic can potentially call external functions (and get something from them, making
the logic potentially non-deterministic), in practice all of them can be dealt with
easily, and in most cases the only thing you’ll need to pass around, will be “current
timestamp”.

All the other system function calls will fall under one of the following:

function calls which are output-only (drawing, logging, generating output
events)

function calls which shouldn’t be called from within the logic
(communications, user input)

function calls which are used to implement caching; as long as caching is
working correctly, they can be ignored for the purposes of determinism (see
explanation above)

Even if you need more than “current timestamp”, nothing prevents you from
making a struct, consisting of all-of-your-pre-calculated-input-parameters, and
passing around one single parameter (FSMInputData* input_data or something).

This single
extra
parameter is
not a large price
f or all the
benef its you
w ill get f rom
making your
logic strictly
deterministic
(and if you have
strong f eelings
about this extra
parameter, you
can avoid it by
using TLS
Compromise)

From my experience, this single extra parameter is not a large
price for all the benefits you will get from making your logic
strictly deterministic (and if you have strong feelings about
this extra parameter, you can avoid it by using TLS
Compromise).

As for other issues (those not related to external function
calls), they are also of only very limited nature until you’re
going for a full-scale cross-platform determinism; neither
avoiding globals (which is a good practice anyway), nor
avoiding pointer-related trickery tends to cause much
practical problems.

However, if you’re going into realm of cross-platform
determinism, things may get quite a bit nastier (and will cause
more trouble); while collection differences can be handled if
you’re careful enough, achieving fully cross-platform floating
point calculations can be trouble across different CPUs.

Strictly-Deterministic Logic: Overall summary

TL;DR of the “Stronger than Platform-Independent: Strictly-
Deterministic” section:

Strictly-deterministic logic is a Good Thing™, providing
game-changing benefits for debugging distributed
systems, including production post-mortem

When implementing strictly-deterministic logic, either “Pure Logic”
approach, or “TLS-based Compromise” is generally preferred

Implementing strictly-deterministic logic requires rather few changes in
addition to following existing best practices, as long as cross-platform
determinism is not required

Going for a full-scale cross-platform determinism can be tricky, especially
because of floating-point issues.

Event-Driven Programming and Finite State Machines
when they don’t know what to say

and have completely given up on the play
just like a finger they lift the machine

and the spectators are satisfied
— Antiphanes, IV century B.C. —

“

https://en.wikipedia.org/wiki/Antiphanes_%28comic_poet%29

We need to
make an

“isolation
perimeter”

w here w e
control and log

all the inputs of
this piece of

code.

So, we’ve got our one single DoubleHit class as a strictly-deterministic logic. Good
for us, but in any realistic system there will be much more classes than this. What
should we do about it?

Pieces of strictly-deterministic logic can be combined with each other easily; the
only two things to keep in mind are the following:

don’t mix strictly-deterministic code with any non-strictly-deterministic
code; such a mix will be non-strictly-deterministic, and you will lose all the
benefits arising from being strictly-deterministic

if you’re using “Pure Logic” model to achieve determinism, you’re not allowed
to call my_get_current_timestamp() within your logic. It implies that
whenever you need to pass the MyTimestamp parameter to the callee, you
yourself should get it from the caller.

The latter observation leads us to a reasonable question: well, somebody will need
to call my_get_current_timestamp(), so where this whole calling tree (the one
which passes ‘now’ around) should end? Let’s see how it can (and should) be
organized.

First of all, let’s note that to take advantage of determinism of
a certain piece of code, we need to isolate it and make sure
that we can control (and log to inputs-log) all the inputs of
this piece of code. In other words, we need to make an
“isolation perimeter” where we control and log all the inputs
of this piece of code. Now let’s see how we want to build this
“isolation perimeter”. Systems such as [liblog] are trying to
build this “isolation perimeter” around the whole app;
actually, without access to internals of the code it is next to
impossible for them to do anything else. On the other hand, we
do have access to internals of our own code, and we can build
our “isolation perimeter” pretty much anywhere. Let’s discuss
one approach which has been observed to produce very good
results in practice.

Let’s say that we have a high-level class EventProcessor, which
does nothing but processes incoming events (anything can be

an event, from the user input up to passing a certain amount of time, with
message-from-server in between). At the point of receiving the event,
EventProcessor calls my_get_current_time(), and then calls
FiniteStateMachineBase::process_event():

“

15

In “Recording” mode, EventProcessor::process_event() will additionally write both
now and ev to inputs-log. In addition, while strictly not required to ensure
determinism, usually at least some of the output-only function calls (such as
events-generated-for-other-FSMs, instructions to Logic-to-Graphics Layer, etc.)
are also written to the same inputs-log, to simplify automated testing and
debugging.

In “Replay” Mode, EventProcessor::process_event() is not called at all; instead,
EventProcessor::replay_event() is called, which parses an entry in the inputs-log
and calls fsm->process_event() accordingly; in addition,
EventProcessor::replay_event() may parse expected outputs from the inputs-log
and compare them with the calls which actually happened, raising an exception at
the first sign of inconsistency.

Both class FiniteStateMachineBase and class EventProcessor mentioned above are
merely providing a framework to implement your own FiniteStateMachine to
implement some kind of specific logic:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

class FiniteStateMachineBase {
 public:
 virtual void process_event(MyTimestamp now, MyEvent& ev) = 0;
};

class EventProcessor {
 private:
 FiniteStateMachineBase* fsm;
 int mode;
 InputsLogForWriting& ol;

 public:
 void process_event(MyEvent& ev) {
 MyTimestamp now = my_get_current_timestamp();
 if(mode == RECORDING_MODE) {
 //write both ev and now to ol
 }
 try {
 fsm->process_event(now,ev);
 } catch(exception& x) {
 //some error handling
 }
 }

 void replay_event(InputsLogForReading& il) {
 //parse inputs-log and call fsm->process_event() accordingly
 }
};

It is these classes-derived-from-FiniteStateMachineBase which contains actual
FSM state (as data members) and actual FSM logic (as process_event() function).

Relation to Finite Automata as taught in Uni

– Have it compose a poem – a poem about a haircut! But lofty, noble, tragic, timeless, full of
love, treachery, retribution, quiet heroism in the face of certain doom! Six lines, cleverly

rhymed, and every word beginning with the letter s!! - And why not throw in a full exposition of
the general theory of nonlinear automata while you’re at it?

— Dialogue between Klapaucius and Trurl from The Cyberiad by Stanislaw Lem —

NB: if you’re not interested in theory, you can safely skip this subsection; for practical
purposes it suffices to know that whatever event-driven program you’ve already written, is in
fact a finite automaton, so there is absolutely no need to be scared. On the other hand, if you
are interested in theory, you’ll certainly need much more than this subsection. The idea here
is just to provide some kind of “bridge” between your uni courses and practical use of finite
automata in programming (which unfortunately differ significantly from quite a few courses out
there).

First of all we need to note that our class FiniteStateMachine, strictly falls under
definition of Finite Automaton (or more precisely – Deterministic Finite
Automaton) given in Wikipedia (and in quite a few uni courses). Namely,
deterministic Finite State Machine (a.k.a. Deterministic Finite Automaton) is
usually defined as follows [Wiki.DeterministicFiniteAutomaton]:

Σ is the input alphabet (a finite, non-empty set of symbols).
in our FiniteStateMachine, Σ is a set of values which a pair (now,ev) can
take; while this set is exponentially huge, it is still obviously finite

S is a finite, non-empty set of states.
in our case, it is represented by all possible combinations of all the bits
forming data members of FiniteStateMachine. Again, it is exponentially
huge, but certainly still finite.

s is an initial state, an element of S.
whatever state results from FiniteStateMachine::FiniteStateMachine()

1
2
3
4
5
6
7
8
9

10

class MyFiniteStateMachine : public class FiniteStateMachineBase {
 private:
 //FSM state goes here
 public:
 virtual void process_event(MyTimestamp now, MyEvent& ev) override {
 //within, the function MAY generate output,
 // including sending events intended for other state machines (!)
 // ...
 }
};

0

https://en.wikipedia.org/wiki/The_Cyberiad

The problem
w hich kills this

neat idea, is
know n as “state
explosion”, and

is all about
exponential

grow th of states
as you increase

complexity of
your machine.

δ is the state-transition function. δ: S × Σ -> S
implemented as FiniteStateMachine::process_event();

F is the set of final states, a (possibly empty) subset of S.
for our FiniteStateMachine, F is always empty.

Therefore, our class FiniteStateMachine complies with this defintion, and is a
Deterministic Finite Automaton (and most of event-processing systems are Finite
Automatons, albeit usually non-deterministic ones).

Quite often, in university courses state-transition function δ is replaced with a
“set of transitions”. From formal point of view, these two definitions are strictly
equivalent, because:

for any state-transition function δ with a finite number of possible inputs, we
can run this function through all the possible inputs, and to obtain the
equivalent set of transitions.

having a set of transitions, we can easily define our state-transition function δ
via this set

On the other hand, if you start to define your state machine via
set of transitions in practice (and not just in theory), most likely
you’re starting a journey on a long and painful way on
shooting yourself in the foot. When used in practice, this “set
of transitions” is usually implemented as some kind of a state
transition table (see [Wiki.StateTransitionTable]). It all looks
very neat, and fairly obvious. There is only one problem with
table-driven finite state machines, and the problem is that
they don’t work in the real world. The problem which kills this
neat idea, is known as “state explosion”, and is all about
exponential growth of states as you increase complexity of
your machine. I won’t delve into too much details on the “state
explosion”, but will note that it quickly becomes really really
bad as soon as you’re starting to develop something realistic;
even having 5 different 1-bit fields within your state lead to a
state transition table of size 32, and adding anything else is
already difficult; make it 8 1-bit fields and corresponding 256
already existing transitions, and adding any further logic has
already became unmanageable. In fact, while I’ve seen several
attempts to define state machines via state transition tables,

none of them was able to come even somewhat-close to succeeding.

What is normally used in practice, is an automaton which is defined via state-
transition function δ (which function δ is implemented as a usual function in an
imperative programming language, see, for example,

16

17

“

18

Y ou can
implement your
Finite State
Machine as a
deterministic
variation of a
usual event-
driven program

FiniteStateMachine::process_event() above). Actually, such automatons are used
much more frequently than developers realize that they’re writing a finite
automaton . To distinguish these real-world state machines from table-driven
(but usually impractical) finite state machines, I like the term “ad-hoc state
machines” (to the best of my knowledge, the term was coined in [Calderone2013]).

 for some of the platforms, and when you have your whole program
recorded/replayed, you may get such guarantees, but as we’re aiming to
record/replay on smaller-than-whole-program basis, it won’t fly for us

 yes, it could have be done with less code, but I certainly prefer to be extremely
explicit here

 see, for example, [CSC173]
 Never mind that such enumeration may easily take much longer than the universe

ends from something such as Heat Death or Big Rip – in maths world we don’t need
to restrict ourselves with such silly notions.

 while hierarchical state machines may mitigate this problem a bit, in practice they
become too intertwined if you’re trying to keep your state machines small enough
to be table-driven. In other words: while hierarchical state machines are a good
idea in general, even they won’t be able to allow you to use table-driven stuff

Implementing Deterministic Finite State Machines

Back to the real world, we need to discuss how to implement deterministic finite
state machines. In general, while you’re staying within your FiniteStateMachineBase
interface and restrictions stated above, exact implementation is up to you, and
may easily be different for the different state machines you have. Popular
possibilities include:

any deterministic event-driven program (which is
inherently a deterministic ad-hoc state machine); this is
probably what you really want to do if it is your first
experience with the state machines. While it may (or may
not) result in the code which is unwieldy, it is a very
familiar pattern, and (if you’re making it deterministic as
discussed above), you will still benefit from all the
goodies mentioned in “Strictly-Deterministic Logic:
Benefits” section (such as greatly improved debug and
post-mortem).

in many cases, it is useful to have a separate data member
called state, which takes one of (mutually exclusive)
enumerated values. One good example for state variable is
your PC running, or walking, or jumping, or croaching;
another good example is state reflecting stage of the
specific quest. In any case, you’re allowed to have other

14

15

16

17

18

“

data members in addition to state (they represent so-called “extended state”
in terms of UML state machines)

note that in quite a few cases, having state member is considered a
requirement to be named a “Finite State Machine”; I hate arguing about
which terminology is “right”, so I will just note that we’re using the
definition of “Finite State Machine” taken from Wikipedia (see also
above), and according to that definition, state member is not strictly
required (though often convenient).

Finite State Machines with state member can be implemented in an ad-
hoc manner (basically with a switch on your state in quite a few places);
this is simple and is known to work

alternatively, you may want to use State pattern from
[GameProgrammingPatterns.StatePattern]; the same book also gives
some hints on implementing hierarchical state machines and push-down
automata.

If you have this state member, you may want to document a diagram of
your state machine using UML state diagrams [Wiki.UMLStateMachine];
they have some useful concepts too. note that I mean using it only for
documentation purposes (and not for code generation), so it doesn’t
really what kind of software you’re using for drawing

As a Big Fat rule of thumb, you SHOULD NOT try table-driven state machines
(those which you might have been taught in uni); see “Relation to Finite
Automata as taught in Uni” section above if you need justification.

 for most of the commercial games, you will have a requirement to keep such
things private, so double-check your policy before using something like draw.io;
something like Visio will usually be ok

EventProcessor V ariations: Circular Buffers

The implementation of EventProcessor described above, is certainly not the only
possible one. In fact, the beauty (and practical implications) of the separation
between EventProcessor and FiniteStateMachine is that we have a liberty to plug
our FiniteStateMachine into pretty much any EventProcessor we want.

One practical case for a different EventProcessor arises when we want to have a
“post-mortem log” (sufficient to identify the problem), but we don’t want to write
all the things “forever and ever”, as it might cause performance degradation.

19

19

We can
implement
inputs-log as an
in-memory
circular buf f er,
avoiding the
need to keep the
data f orever-
and-ever.

Ok, for such cases we can make a different EventProcessor,
let’s name it EventProcessorWithCircularBuffer. For this
EventProcessorWithCircularBuffer, we can implement inputs-
log as an in-memory circular buffer, avoiding the need to keep
the data forever-and-ever. However, for this to work, it will
additionally need to:

make sure that underlying FiniteStateMachine has an
additional function such as void
serializeStateToLog(InputsLogForWriting& ol), and a
counterpart function
deserializeStateFromLog(InputsLogForReading& il).
State serialization should be implemented in a manner
which is consistent with serialization used for inputs-log in
general; see “Implementing Inputs-Log” section above for
further discussion on state serialization.

call this serializeStateToLog() function so that in-
memory circular buffer always has at least one instance of serialized state

make sure that there is always a way to find serialized state even after a
circular buffer wrap-around (this can be done by designing format of your
inputs.log carefully)

on failure, just dump the whole in-memory inputs.log to disk

on start of “Replay”, find the serialized state in inputs-log, call
deserializeStateFromLog() from that serialized state, and proceed with
rollforward as usual.

EventProcessorWithCircularBuffer describes only one of multiple possible
implementations of EventProcessor; it has an advantage that all the logging can be
kept in-memory and therefore very cheap, but in case of trouble this in-memory
log can be dumped, usually providing sufficient information about those all-
important “last seconds before the crash”. Further implementation details (such as
“whether implement buffer as a memory-mapped file” and/or “whether the buffer
should be kept in a separate process to make the buffer corruption less likely in
case of memory corruption in the process being logged”) are entirely up to you .

One very important usage of
EventProcessorWithCircularBuffer is that in many

cases it allows to keep the logging running all the
time in production, both on client side and on server
side. It means near-perfect post-mortem analysis in

case of problems

“

Let’s make some very rough estimates. Typical game client receives around a few
hundred bytes per second; let’s take it at 200 bytes/sec. User input is very rarely
more than that. It means that we’re speaking about at most 500-1000
bytes/second. 1MByte RAM buffer is nothing for client-side these days, and at a
rate of 1000 bytes/second we’ll be able to store about 3 hours of “last breath data”
for our “game logic” FSM; these 3 hours of data is usually orders of magnitude
more than enough to find a logical bug. For an FSM implementing your
animation/rendering engine, calculations will be different, but taking into account
that all the game resources are well-known and don’t need to be recorded, we
again can keep the data recorded to the minimum, again enabling a very good
post-mortem.

For the server side, you will need much more memory to run recording, and you
might not be able to keep circular buffers running all the time, but at the very least
you should be able to run them on selected FSMs (those are currently under
suspicion, or those which are not-so-time-critical, or just a random sample).

Deterministic Finite State Machines: Nothing too New But…
While there is nothing really new in event-driven programming (and ad-hoc finite
state machines used for this purpose), our finite state machines have one
significant advantage compared to those usually used in the industry. Our state
machines are strictly-deterministic (at least when it comes to one single platform),
that allows for lots of improvements for debugging of distributed systems (mostly
due to “replay testing/debugging” and “production post-mortem”).

On the other hand, in academy Deterministic Finite Automata are well-known, but I
don’t know of the descriptions on “how to write them in practical applications”.

On the third hand , determinism for games has been a popular topic for a while
(see, for example, [Gamasutra2001]) , and in recent years has got a new life with
MMOs and synchronous physics simulation on client and server (see, for example,
[Fiedler2015-2])).

On the fourth hand (yes, we’re exactly half way on becoming an octopus), I didn’t
see anybody concentrating on using determinism for the purposes of debug and
production post-mortem, and from my experience effect of these items on the
quality of your game cannot be underestimated. If you want to have your game
crashing 10x less frequently than competition – do yourself and your players a
favour, and record production inputs-logs for post-mortem purposes, as well as
perform replay-based testing. I know I sound like a commercial, but as a gamer
myself I do have a very legitimate interest in making games crash much more rarely
than they do it now; I also know that for most of good game developers out there,
deterministic testing and post-mortem will help in this regard, and will help a lot
(in addition to any replay/synchronous-physics goodies if you need them).

Deterministic Finite State Machines: Summary

To summarize all this long talk about determinism and state machines:

for distributed systems, you DO need to have at least single-platform
determinism. It will help A LOT with testing, debugging, and production post-
mortem.

achieving this one is not too difficult, and is usually only a minor
annoyance

on the other hand, it still provides A LOT of useful stuff, mostly for the
purposes of bugfixing (including those elusive production-only bugs)

for other purposes (cross-platform code equivalence testing, User Replay,
and physics equivalence) you MAY need cross-platform determinism

achieving this one can be a challenge, especially in the field of floating-
point calculations

nothing prevents you from starting small, with single-platform determinism,
and then trying to extend it to cross-platform one. Unless the life of your
game depends on a cross-platform determinism, this might be a viable option
to pursue.

Finite State Machines are a nice and convenient way to express deterministic
(sub)systems

this includes (but is not limited to) ad-hoc Finite State Machines, which
are nothing more than very-well known event-based systems

[[To Be Continued…
This concludes beta Chapter V(c) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter V(d), “Modular
Architecture: Client-Side Overall Architecture.]]

[–] References
[ISOCPP] Standard C++ Foundation, “How do I select the best serialization
technique?”
[liblog] Dennis Geels, Gautam Altekar, Scott Shenker, Ion Stoica, “Replay Debugging
for Distributed Applications”
[ARM] “C library functions that are not thread-safe”, ARM Compiler toolchain ARM C
and C++ Libraries and Floating-Point Support Reference
[RandomASCII2014] Bruce Dawson, “Floating-Point Determinism”, 2013
[Fiedler2015] Glenn Fiedler, “Floating Point Determinism”, Gaffer on Games, 2015
[SoftFloat] “Berkeley SoftFloat”
[JohnHauser] John Hauser, author of Berkeley SoftFloat, “Private communications

https://isocpp.org/wiki/faq/serialization#serialize-selection
http://www.cs.berkeley.edu/~istoica/papers/2006/liblog.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0492c/Chddjdaj.html
https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/
http://gafferongames.com/networking-for-game-programmers/floating-point-determinism/
http://www.jhauser.us/arithmetic/SoftFloat.html

« Chapter V (b). Modular A rchitecture: Client-Side. Programmin…

 Chapter V (d). Modular A rchitecture: Client-Side. Client A rch… »

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: client, debug, game, multi-player

Copyright © 2014-2016 ITHare.com

with”
[Wiki.DeterministicFiniteAutomaton] Wikipedia, “Deterministic Finite Automaton”
[CSC173] Randal Nelson, “CSC 173: Computation and Formal Systems”, University of
Rochester
[Wiki.StateTransitionTable] Wikipedia, “State Transition Table”
[Calderone2013] Jean-Paul Calderone, “What is a State Machine?”
[GameProgrammingPatterns.StatePattern] Robert Nystrom, “Game Programming
Patterns”
[Wiki.UMLStateMachine] Wikipedia, “UML State Machine”
[Gamasutra2001] Patrick Dickinson, “Instant Replay: Building a Game Engine with
Reproducible Behavior”, Gamasutra, 2001
[Fiedler2015-2] Glenn Fiedler, “Deterministic Lockstep”, Gaffer on Games, 2015

https://en.wikipedia.org/wiki/Deterministic_finite_automaton
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://en.wikipedia.org/wiki/State_transition_table
https://clusterhq.com/2013/12/05/what-is-a-state-machine/
http://gameprogrammingpatterns.com/state.html
http://www.amazon.com/Game-Programming-Patterns-Robert-Nystrom/dp/0990582906
https://en.wikipedia.org/wiki/UML_state_machine
http://www.gamasutra.com/view/feature/131466/instant_replay_building_a_game_.php
http://gafferongames.com/networked-physics/deterministic-lockstep/
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-vb-modular-architecture-client-side-programming-languages-for-games-including-resilience-to-reverse-engineering-and-portability/
http://ithare.com/chapter-vd-modular-architecture-client-side-client-architecture-diagram-threads-and-game-loop/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/debug/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/

	Chapter V(c). Modular Architecture: Client-Side. On Debugging Distributed Systems, Deterministic Logic, and Finite State Machines
	Distributed Systems: Debugging Nightmare
	The Holy Grail of Post Mortem

	Portability: Platform-Independent Logic as “Nothing But Moving Bits Around”
	Stronger than Platform-Independent: Strictly-Deterministic
	Strictly-Deterministic Logic: Benefits
	Strictly-Deterministic Logic: On User Replay
	Implementing Strictly-Deterministic Logic: Definitions
	Implementing Inputs-Log
	Implementing Strictly-Deterministic Logic: Original Non-Strictly-Deteministic Code
	Implementing Strictly-Deterministic Logic: Strictly-Deteministic Code via Intercepting Calls
	Implementing Strictly-Deterministic Logic: “Pure Logic”
	Implementing Strictly-Deterministic Logic: TLS-based Compromise
	Implementing Strictly-Deterministic Logic: Passing Input Parameters as Data Members
	Implementing Strictly-Deterministic Logic: Which Model to Choose?
	Implementing Strictly-Deterministic Logic: Which system functions we’re speaking about?
	Strictly-Deterministic Logic: Non-Issues
	Strictly-Deterministic Logic: No Access to Globals
	Strictly-Deterministic Logic: Pointers
	Strictly-Deterministic Logic: Cross-Platform Issues
	Strictly-Deterministic Logic: Implementation summary
	Strictly-Deterministic Logic: Overall summary

	Event-Driven Programming and Finite State Machines
	Relation to Finite Automata as taught in Uni
	Implementing Deterministic Finite State Machines
	EventProcessor Variations: Circular Buffers
	Deterministic Finite State Machines: Nothing too New But…
	Deterministic Finite State Machines: Summary

	[[To Be Continued…
	[–]References
	Acknowledgement

