
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter V(b). Modular Architecture: Client-Side. Programming
Languages for Games, including Resilience to Reverse
Engineering and Portability
posted November 30, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter V(b) from the upcoming book “Development&Deployment
of Massively Multiplayer Online Games”, which is currently being beta-
tested. Beta-testing is intended to improve the quality of the book, and
provides free e-copy of the “release” book to those who help with
improving; for further details see “Book Beta Testing“. All the content
published during Beta Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of Contents.]]

Programming Language for Game Client
Some of you may ask: “What is the Big Fat Hairy Difference between
programming languages for the game client, and programming language for any other
programming project?” Fortunately or not, in addition to all the usual language holy wars , there
are some subtle differences which make programming language choice for the game client
different. Some of these peculiarities are described below.

 between strongly typed and weakly typed programming languages, between compiled and
scripted ones, and between imperative and functional languages, just to name a few

One Language for Programmers, Another for Game Designers

1

1

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/wp-content/uploads/BB_part067_BookChapter005b_v2b.png

It is quite
common to

have tw o
dif f erent

programming
languages: one

(roughly)
intended f or

programmers,
and another

one (even more
roughly)

intended f or
game designers.

(MMORPG/MMOFPS etc.)
First of all, let’s note that in quite a few (or maybe even “most”) development
environments, there is a practice of separating game designers from
programmers (see “On Developers, Game Designers, and Artists” section in
this chapter). This practice is pretty much universal for MMORPG/MMOFPS,
but can be applicable to other genres too (especially if your game includes
levels and/or quests designed-by-hand).

In such cases, it is quite common to have two different programming
languages: one (roughly) intended for programmers, and another one (even
more roughly) intended for game designers. For example, Unreal Engine 4
positions C++ for developers, and Blueprint language for game designers.
CryEngine goes further and has three (!) languages: C++, Lua, and Flowgraph.
It is worth noting that while Unity 3D does support different languages, it
doesn’t really suggest using more than one for your game, so with Unity you
can get away with only, say, C# for your game client.

While having two programming languages in your game client is not fatal, it
has some important ramifications. In particular, you need to keep in mind
that whenever you have two programming languages, the attacker (for
example, bot writer/reverse engineer as discussed in “Different Languages
Provide Different Protection from Bot Writers” section below) will usually go
through the weakest one. In other words, if you have C++ and JavaScript, it is
JavaScript which will be reverse-engineered (that is, if JavaScript allows to

manipulate those things which are needed for the bot writer – and usually it does).

A word on CUDA and OpenCL
I wanna show you something. Look, Timon. Go on, look. Look out to the horizon, past the trees, over the

grasslands. Everything the light touches… [sharply] belongs to someone else!
— Timon's Mom, Lion King 1 1/2 —

If your game is an inherently 3D one, it normally means that you have a really
powerful GPU at your disposal on each and every client. As a result, it can be
tempting to try using this GPU as a GPGPU, utilizing all this computing power
for your purposes (for example, for physics simulation or for AI).

Unfortunately, on the client side, player’s GPU is usually already pushed to its
limits (and often beyond), just for rendering. This means that if you try using
GPU for other purposes, you’re likely to sacrifice FPS, and this is usually a Big
No-No in 3D game development. This is pretty much why while in theory CUDA
(and/or OpenCL) is a great thing to use on the game client, it is rarely used for
games (beyond 3D rendering) in practice. In short – don’t hold your breath
about available GPU power to use it as a GPGPU; not because this power is
small (it is not), but because it is already used.

On the other hand, for certain types of simulations, server-side
CUDA/OpenCL in an authoritative server environment might make sense; we’ll
discuss it in a bit more detail in Chapter [[TODO]].

Different Languages Provide Different Protection from

“

GPGPU
General-
purpose
computing on
graphics
processing
units (GPGPU,
rarely GPGP or
GP²U) is the use
of a graphics
processing unit
(GPU), w hich
typically
handles
computation
only f or
computer

https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units

Bot f ighting
is alw ays a tw o-
w ay battle w ith
bot w riters
inventing a w ay
around the
MMO def ences,
and then MMO
developers
striking back
w ith a new
def ence against
the most recent
attack; rinse
and repeat.

Bot Writers
As it was discussed in Chapter III, as soon as your MMO
game becomes successful, it becomes a target for
cheaters. And two common type of the cheaters are bot
writers and closely related bot users. For example, for an
MMORPG you can be pretty much sure that there will be
people writing bots; these bots will “grind” through your
RPG, will collect some goodies you’re giving for this
“grinding”, and will sell these goodies, say, on the eBay.
And as soon as there is a financial incentive for cheating,
cheaters will be abundant. For other genres, such as
MMOFPS or casino multiplayer games, bots are even
more popular. And if cheaters are abundant, and cheaters have significant
advantage over non-cheating players, your game is at risk (in the ultimate
case, your non-cheating players will become so frustrated that your game is

abandoned). As a result, you will find yourself in an unpleasant, but necessary role of a policeman,
who needs to pursue cheaters so that regular non-cheating users are not in a significant
disadvantage.

The problem of bot fighting is extremely common and well-known for MMOs;
unfortunately, there is no “once and for all” solution for it. Bot fighting is
always a two-way battle with bot writers inventing a way around the MMO
defences, and then MMO developers striking back with a new defence against
the most recent attack; rinse and repeat.

We’ll discuss bot fighting in more detail in Chapter [[TODO]], but at the
moment, we won’t delve into the details of this process; all we need at this
point is two observations:

for bot fighting, every bit of protection counts (this can be seen as a
direct consequence of the battle going back-and-forth between bot
writers and MMO developers)

reverse engineering is a cornerstone of bot writing

From these, we can easily deduce that

for the game client, the more resilient the
programming language against reverse engineering

– the better

Resilience to Reverse Engineering of Different Programming
Languages

Now let’s take a look at different programming languages, and their resilience to reverse
engineering. In this regard, most of practical programming languages can be divided into three
broad categories.

Compiled Languages. Whether you like compiled languages or not as a developer, they clearly
provide the best protection from reverse engineering.

graphics, to
perf orm
computation in
applications
traditionally
handled by the
central
processing unit
(CPU).

— Wikipedia —

Game Bot
is a type of

w eak AI expert
system

sof tw are w hich
f or each

instance of the
program

controls a
player

— Wikipedia —

“

2

https://en.wikipedia.org/wiki/Video_game_bot

f rom all the
popular

compiled
languages, C++

tends to
produce the
binary code
w hich is the

most dif f icult-
to-reverse-

engineer (that is,
provided that you

have turned all
the optimizations

on, disabled
debug info, and

are not using
DLLs)

And from all the popular compiled languages, C++ tends to produce the
binary code which is the most difficult-to-reverse-engineer (that is, provided
that you have turned all the optimizations on, disabled debug info, and are not using
DLLs). If you have ever tried to debug at assembly level your “release” (or “-
O3”) C++ code, compiled with a modern compiler, you’ve certainly had a hard
time to understand what is going on there, this is even with you being the author
of the source code! C++ compilers are using tons of optimizations which make
machine code less readable; while these optimizations were not intended to
obfuscate, in practice they’re doing a wonderful job in this regard. Throw in
heavy use of allocations typical for C++, and you’ve produced a binary code
which is among the most obfuscated ones out there.

One additional phenomenon which helps C++ code to be rather difficult to
reverse engineer, is that even a single-line change in C++ source code can
easily lead to vastly different executable; this is especially true when the
change is made within an inlined function, or within a template.

Compiled languages other than C++, tend to provide good protection too,
though the following observation usually stands. The less development time
has been spent on the compiler, the less optimizations there are in generated
binary code, and the more readable and more easy-to-reverse-engineer the
binary code is.

One last thing to mention with respect to compiled languages, is that while
C++ usually provides the best protection from reverse-engineering from
programming language side, it doesn’t mean that your code won’t be cracked.
Anything which resides on the client-side, can be cracked, the only question is
how long it will take them to do it (and there is a Big Difference between being

cracked in two days, and being cracked in two years). Therefore, making all the other precautions
against bot writers, mentioned in Chapter [[TODO]], is still necessary even if you’re using C++.
Moreover, even if you do everything that I’ve mentioned in this book to defend yourself from bot
writers – most likely there still will be bot writers able to make reverse engineering of your client
(or at least to simulate user behaviour on top of it); however, with bots it is not the mere fact of
their existence, but their numbers which count, so every bit of additional protection does make a
difference (fo further discussion on it, see Chapter [[TODO]]).

Languages w hich compile to Byte-Code. Compiling to a byte-code (with the runtime
interpreting of this byte-code in some kind of VM) is generally a very useful and neat technique.
However, the byte-code tends to be reverse engineered significantly more easily than a compiled
binary code. There are many subtle reasons for this; for example, function boundaries tend to be
better visible within the byte-code than with compiled languages, and in general byte-code
operations tend to have higher-level semantics than “bare” assembler commands, which makes
reverse engineering substantially easier. In addition, some of byte-code-executing VMs (notably
JVM) need to verify the code, which makes the byte code much more formalized and restricted
(which in turn limits options available for obfuscation).

It should be noted that JIT compilers don’t help to protect from the reverse-
engineering; however, so-called Ahead-of-Time Compilers (such as gcj or
Excelsior JET), which compile Java to binary instructions, do help against
reverse engineering. What really matters here is what you ship with your client
– machine binary code or byte-code; if you’re shipping machine code – you’re
better than if you’re shipping byte code. This also means that “compile to .exe”
techniques (such as “jar2exe”) which essentially produce .exe consisting of JVM

“
3

JIT
just-in-time
(JIT)
compilation,
also know n as
dynamic

https://en.wikipedia.org/wiki/Just-in-time_compilation

and byte-code, do not provide that much protection. Moreover, “byte-code
encryption” feature in such .exes is still a Security-by-Obscurity feature , and
(while being useful to scare some of bot writers) won’t withstand an attack by
a dedicated attacker (in short: as decryption key needs to be within the .exe, it
can be extracted, and as soon as it is extracted, all the protection falls apart).

Still, I would say that with an “encrypted”/”scrambled” byte-code within your
client, you do have a fighting chance against bot writers, though IMHO it is
going to be an uphill battle.

Interpreted Languages. From the reverse engineering point of view,
interpreted programming languages provide almost-zero protection. The
attacker essentially has your source code, and understanding what you’ve meant, is only a matter
of (quite little) time. Obfuscators, while improving protection a little bit against a casual observer,
are no match against dedicated attackers. Bummer. As a rule of thumb, if you have interpreted
language in your client, you shall assume that whatever interpreted code is there, will be reverse
engineered, and modified to the bot writer’s taste. Oh, and don’t think that “we will sign/encrypt
the interpreted code, so we won’t need to worry about somebody modifying it” – exactly as with
“byte-code encryption”, it doesn’t really provide more than a scrambling (and to make things
worse, this scrambling can be broken in one single point).

On Compilers-w ith-Unusual-Targets. In recent years, several interesting projects have arisen
(such as Emscripten, GWT, JSIL/Santarelle, and FlasCC), which allow to compile C++ into JS or into
Flash bytecode (a.k.a. “ABC”=”ActionScript Byte Code”). From resilience-to-reverse-engineering
point of view, a few things need to be kept in mind with regards of these compilers:

those compilers which are based on LLVM front-end (and just provide back-end), will
generate quite difficult-to-break code even for JS

this include at least Emscripten and FlasCC (I have no idea about the others)

on the other hand, as all the communication with the rest of the system will need to be kept in
JS (or in ActionScript), overall protection will suffer significantly compared to “pure”
generated code

if you have encrypted traffic (which itself serves as a quite strong protection from bot writers,
see discussion in Chapter [[TODO]]), you will face a dilemma: either to use system-provided
TLS (which will weaken your protection greatly), or to try compiling OpenSSL with these
compilers (no idea if it will work, and also performance penalties, especially on
connecting/reconnecting, can be Really Bad).

 technically, we’re speaking not about languages as such, but about compilers/interpreters. Still,
for the sake of keeping things readable, let’s use the term “language” for our purposes (with an
understanding that there is compiled-to-binary Java, and there is compiled-to-bytecode-Java,
etc.)
 in practice, it may be a good idea to throw in a randomized allocator, so that memory locations

differ from one run to another , more on this in Chapter [[TODO]]
 in fact, “scrambling” would be more fair name for such features
 I didn’t have a chance to test this theory myself, so take it as just my yet another educated guess

Summary. Observations above can be summarized in the following Table V.1 (numbers are
subjective and not to scale, just to give an idea some relations between different programming
languages):

translation, is
compilation
done during
execution of a
program – at
run time –
rather than
prior to
execution.

— Wikipedia —

4

5

2

3

4

5

Programming Language
Resilience to Rev erse Engineering

(Subjectiv e Guesstimate)

C++ (high-level optimization, no debug info, no

DLLs)
7.5/10

C (high-level optimization, no debug info, no

DLLs)
7/10

Java or C# (compiled to binary, no DLLs) 6.5/10

Java or C# (compiled to byte code, obfuscated,

and scrambled)
5.5/10

Java or C# or ActionScript (compiled to byte

code)
5/10

JavaScript (obfuscated) 2/10

JavaScript 1/10

Note that here I’m not discussing other advantages/disadvantages of these programming
languages; the point of this exercise is to emphasize one aspect which is very important for games,
but is overlooked way too often. Also note that I’m not saying that you MUST write in C++ no-
matter-what; what you should do, however, is to take this table into account when making your
choice.

 while it is supported by anecdotal evidence, gathering reliable statistics is next-to-impossible in
this field
 as discussed in Chapter [[TODO]], DLLs represent a weak point for reverse engineering

Language Availability for Game Client-Side Platforms

The next very important consideration when choosing programming language, is “whether it will
run on all the platforms you need”. While this requirement is very common not only for games, it
still has specifics in the game development world. In particular, list of the client platforms is not
that usual.

In the Table V.2 below, I’ve tried to gather as much information as possible about support of
different programming languages for different client game platforms. [[NOTE TO BETA TESTERS:
PLEA SE POINT OUT IF Y OU SEE SOMETHING W RONG W ITH THIS TA BLE]]

W indow s Mac OS X PS4
X Box

One
iOS A ndroid Facebook etc.

6

7

6

7

8
8

8

C/C++ Nativ e Nativ e Nativ e Nativ e Nativ e Nativ e

Emscripten,

Chrome

Nativ e Client

(Chrome

Only), FlasCC

Objectiv e C GNUStep Nativ e No No Nativ e No No

Jav a

Oracle, can

be

distributed

w ith the

game

Oracle, can

be

distributed

w ith the

game

Not

really

Not

really

Oracle

MA F,

Robo V M

Nativ e,

Oracle

MA F

Oracle,

usually

requires

separate

install, or

GW T(?)

C# Nativ e Mono Not yet Nativ e X amarin X amarin
JSIL(?) or

Saltarelle(?)

A ctionScript

(a.k.a.

“Flash”)

A dobe A IR

SDK

A dobe A IR

SDK
No No

A dobe

A IR SDK

A dobe

A IR SDK

A dobe, most

of the time

already

installed

HTML

5/Jav aScript
Nativ e Nativ e Nativ e Nativ e Nativ e Nativ e Nativ e

 not accounting for jail-broken devices
 Caution required, see Chapter [[TODO]]
 see Chapter [[TODO]]
 well, you can write your own JVM and push it there, but…
 see “Big Fat Browser Problem” section below
 Given developments in the 2H’2015 (see, for example, [TheVerge]), ActionScript’s future looks

very grim
 Compatibility and capabilities are still rather poor

Sprinkle with All The Usual Considerations
We’ve discussed several peculiarities of the programming languages when it comes to games. In
addition to these not-so-usual things to be taken into account, all the usual considerations still
apply. In particular, you need to think about the following:

9 10 10

11 11

12

12

13

14

8

9

10

11

12

13

14

Any (half -
)decent
programmer
w ith any real-
w orld
experience in
more than one
programming
language can
start w riting in
a new one in a
f ew w eeks
w ithout much
problems.

how w ill it
look on my

is your-language-of-choice used long enough to be reasonably mature (so you won’t find
yourself with fixing compiler bugs – believe me, this is not a task which you’re willing to do
while developing a game)?

are available tools/libraries/engines sufficient for your game?

is it readable? More specifically: “is it easily readable to the common developer out there?”
(the latter is necessary so that those developers you will hire later, won’t have too much
trouble jumping in)

how comfortable your team feels about it?

how difficult is to find developers willing to write in it? Note that I’m not
speaking about “finding somebody with 5 years of experience in the
language”; I’m sure from my own 15+ years experience as an architect and
a team lead, that any [half-]decent programmer with any real-world
experience in more than one programming language can start writing in
a new one in a few weeks without much problems. It is frameworks which
usually require more knowledge than languages, but chances of finding
somebody who is versed in your specific framework are usually small
enough to avoid counting on such miracles. On the other hand, if your
programming language of choice is COBOL, Perl, FORTRAN, or
assembler, you may have difficulties with finding developers willing to
use it.

do you have at least one person on the team with substantial real-world
experience in the language, with this person developing a comparable-
size projects in it? Right above I was arguing that in general language
experience is not really necessary, but this argument applies only when
developer comes to a well-established environment. And to build this
well-established environment, you need “at least one person” with an
intimate knowledge of the language, environments, their peculiarities,
and so on.

is it fast enough for your purposes? Here it should be noted that
performance-wise, there are only a very few tasks which are time-critical
on the client side. Traditionally, with games time-critical stuff is pretty
much restricted to graphics, physics, and AI. With MMO, however, most of physics and AI
normally need to be moved to the authoritative server, leaving graphics pretty much the only
client-side time critical thing. Therefore, it might (or might not) happen that all of your
game logic is not time-critical; if it isn’t – you can pretty much forget about performance of
your programming language (though you still need to remember not to do crazy things like
using O(N^3) algorithms on million-item containers).

Just for the sake of completeness, here is the list of questions which are NOT to be taken into
account when choosing your programming language:

is it “cool”?

how will it look on my resume after we fail this project?

is it #1 language in popularity ratings? (while popularity has some impact
on those valid questions listed above, popularity as such is still very much
irrelevant, and choosing programming language #6 over language #7
just because of the number in ratings is outright ridiculous)

is the code short? As code is read much more often than it is written, it is
“readability” that needs to be taken into account, not “amount of stuff
which can be fit into 10 lines of code”. Also note that way too often

“
15

16

17

“

18

resume af ter
w e f ail this
project?

“brevity” is interpreted as “expressiveness” (and no, they’re not the
same).

 BTW, feel free to pass this message on to your hiring manager; while they
might not trust you that easily, in certain not-so-bad cases a quote from a book might help

 that is, if it is not an exotic one such as LISP, PROLOG, or Haskell
 in case of client-side prediction, however, you may need to duplicate some or even most of

physics/AI on the client side, see Chapter [[TODO]] for details
 if you succeed with the MMO project, the project itself will be much more important for your

resume than the language you’ve used, so the only scenario when you should care about “language
looking good on resume” is when you’re planning for failure

C++ as a Default Game Programming Language
Given our analysis above, it is not at all surprising that C++ is frequently used for games. Just a few
years ago, it was pretty much the only programming language used for serious game development
(with some other language usually used at the game designer level). These days, there is a tendency
towards introducing other programming languages into game development; in particular, Unity is
pushing C#.

However, we should note that while C# may speed up your development, it comes with several
significant (albeit non-fatal) caveats. First, as noted above, C# apps (at least when they are shipped
as byte code) has lower resilience to bot writers. Second, you need to keep an eye on the platforms
supported by C#/Mono. Third, with automated memory management, And last but not least, many
of C# implementations out there are known to use so-called “stop-the-world” garbage collection;
in short – from time to time the whole runtime needs to be stopped for some milliseconds, causing
“micro-freezes”. While this is certainly not a problem for games such as chess or farming, it can
easily kill your MMOFPS or MMORPG. There are quite a few tricks to mitigate “stop-the-world”
issues, so you might be able to get away with it, but honestly, I don’t think that it is worth the
trouble for FPS-critical games.

Bottom line: C++ is indeed a default programming for games, and for a good reason. While your
team might benefit from using alternative languages such as C#, take a look at issues above to
make sure that they won’t kill your specific game.

On C++ and Cross-Platform Libraries

One common approach in cross-platform C++ development world is to find and use one single
cross-platform library to cover all your platforms; with this one-library-for-all-platforms
approach, you can have different libraries for different functionality (for example, one for graphics
and another for networking), but each of these libraries is very often chosen with an intention to
cover the whole spectrum of your target platforms; anything less than that is thrown away as
unacceptable. I am arguing (alongside with quite a few developers out there) that such an
approach is not necessary, and moreover, is usually detrimental, especially for Games with
Undefined Life Span. More precisely, it is not the libraries which are detrimental, it is dependency
on the library which is detrimental.

First of all, let’s show that relying on one single library is not necessary. To avoid relying on one
single library, there is one well-known tried-and-tested way: you can (and should) make an
isolation layer with your own API, which isolates your code from all the 3rd-party libraries. If your
own API is indeed about your own needs (and not just a dumb wrapper around 3rd-party library),
you will be able, when/if it becomes necessary, to write another isolation layer and to start using a

15

16

17

18

19

Option 1.
Drop Facebook
as a platf orm.
While very
tempting
technically,
business-w ise it
might be
unacceptable.

completely different library on a different platform. One example of such an approach was
described in “Logic-to-Graphics Layer” section above. [[TODO: elaborate?]]

Now, to the question why it is a Bad Idea to use API of a single library directly. This is because of
the same good old vendor lock-in, the very same which has caused us to write cross-platform
programs. The thing is that, using any API all over your code means that you won’t be able to switch
from it, hence whenever such using-some-API-all-over-your-code happens, you are locked-in. And
being locked-in to a cross-platform library is not necessarily any better than being locked in to a
single platform; not only nobody knows whether the library will be alive and kicking in the long run,
but also nobody knows whether they are the best for every target platform, and whether they will
support that new platform which everybody will be using in 5 years from now, soon enough after it
appears.

I certainly don’t mean that cross-platform libraries are in any way “evil”; what I mean is that you
should (whenever possible) to keep your own isolation layer (which is more than just a “dumb
wrapper”, and provides you with an API tailored to your needs), to avoid vendor lock-in on a cross-
platform library. Behind this isolation layer – feel free to use anything which you want, cross-
platform or platform-specific. This approach is good for many reasons; in particular, it allows to
resolve a dilemma “whether to use one single cross-platform library which is imperfect, or to use
different libraries which are better but time consuming”; with this isolation layer in place, you can
start with a single cross-platform library (hiding behind your isolation layer), and to rewrite
isolation layer (not touching anything else) for those platforms which are of particular importance
for you.

 and usually will, though many of C++ negatives can be avoided if you’re careful enough, see
Chapter [[TODO]] for details

Big Fat Browser Problem
As we can see from the Table V.2 above, if you need to have your game both for Facebook (read:
“browser”), and for some other platform, you’ll have quite a problem at your hands. As of now, I
don’t see any “fit-for-all” solution, so let’s just describe more-or-less viable options available in
this case.

Option 1. Drop Facebook as a platform. While very tempting technically
(“hey, we can stay with C++/C#/… then!”), business-wise it might be
unacceptable. Bummer.

Option 1a. Drop Ev erything-Except-Facebook as a platform. Also very
tempting technically, and also likely to be unacceptable business-wise.

Option 2. Use A dobe A IR SDK w ith or w ithout [Starling]/Citrus. One Big
Obstacle on the way of this (otherwise very decent) option is that whole future
of the ActionScript currently looks very grim; with even Adobe pushing its own
users towards HTML5+JS [TheVerge], chances of ActionScript being
developed further in 5 years from now, look negligible. Another problem with
using ActionScript (as if the first one is not enough) is that resilience of your
code to hacking will be not-so-good (see Table V.1 above for “ActionScript”);
while not fatal, this is one thing to remember about.

Option 3. Other-Language plus A ctionScript (2 code bases). This will

19

“

Despite all
the
improvements
in this f ield, JS
is still one big
can of w orms
w ith lots of
programming
problems trying
to get out of the
can right in the
f ace of your
unf ortunate
player.

require to keep two separate code bases for “Other-Language” and ActionScript. And clients with
two code bases are known to fail pretty badly. You may still try it, but don’t tell that I didn’t warn
you. Also, keep in mind that as with Option 2 above, resilience of your code to reverse engineering
will be that of ActionScript (according to “the weakest link” security principle).

Option 3a. Other-Language plus Line-by-Line manual translation to A ctionScript (1.5 code
bases). Details of line-by-line conversion will be described in [[TODO]] section below. For now,
let’s take it as granted that such a thing might work, and results in “1.5 code bases” to be
maintained. Maintaining of these 1.5 code bases tends to be much easier than maintaining 2 code
bases, and it might work for you. This option will represent a significant headache maintenance-
wise, but at least it won’t hurt performance on mobiles, which might make it viable, especially if
mobile is more important for your game business-wise than Facebook.

Option 4. so-called “HTML5” (actually, JS). This is the option which I’d try to
avoid even for a game as simple as AngryBirds (and anything beyond it would
only make things worse). Despite all the improvements in this field, JS is still
one big can of worms with lots of programming problems trying to get out of
the can right in the face of your unfortunate player. While low-weight games
along this way may be viable (see, for example, [Bergström]), as the complexity
of your game grows, problems will mount exponentially. While HTML5 might
become a viable technology for larger games at some point, right now it is not
there, by far. And even when it does – you’ll need to keep in mind that
protection of JS from being hacked tends to be very low (see Table V.1 above).

Option 5. Other-Language w ith a “Client-on-Serv er” trick and Flash
front-end (1.5 code bases). Details of this approach will be discussed in
[[TODO]] section below. Disadvantages of this approach are mostly related to
scalability (and these issues MUST NOT be taken lightly, as described below);
however, on the plus side – you can stay with single-code-based Other-
Language for your game logic, and you can keep your Other-Language
reasonably protected from bot writers (that is, if you are not too concerned
about bots coming from Flash clients, which may happen if player capabilities
for Facebook and for non-Facebook versions are different, so that Facebook
version is actually just a “teaser” for the main one).

Option 5a. Other-Language w ith a “Client-on-Serv er” trick and
HTML5/JS front-end. A variation of Option 4, replacing Flash front-end with HTML5/JS one.
Might work even for larger games, but no warranties of any kind (and the issue with JS being easily
hackable, is still present). For further discussion, see [[TODO]] section below.

Option 6. Compile-to-JS: Emscripten, Jav a w ith GW T, or C# w ith JSIL/Santarelle. It seems to
be possible to compile game logic from C++ to JS using Emscripten, (or from Java to JS using GWT,
or from C# to JS using JSIL or Santarelle), and then to have Logic-to-Graphics Layer, as well as
graphics engine, in JS/HTML5. Performance-wise, LLVM-based Emscripten claims performance
which is merely 3-to-10x worse compared to native C++,[GDC2013] which is not too bad for at least
95% of the client-side code. On the other hand, I have no experience with these technologies, and
have no idea whether they work in practice (even less idea if they work for games); if you have any
experience about this route (either positive or negative) – please let me know. IMHO, this option is
one of the most promising ones in the long run, but I am not sure if it is production-ready yet.

Option 7. Chrome Nativ e Client. This thing will work only for Chrome browsers, but given the
growing market share of Chrome , you might be able to get away business-wise with supporting
only Chrome for Facebook-oriented games. If it is the case, and if your primary language of choice

“

20

« Chapter V (a). Modular A rchitecture: Client-Side. Graphics from “D&D of M…

 Chapter V (c). Modular A rchitecture: Client-Side. On Debugging Distribute… »

is C/C++, you can try to run C++ game logic within Chrome’s “sandboxed” [GoogleNativeClient]. I
have no idea if you succeed on this way, but IMHO it looks quite promising (that is, if Google will
keep supporting it, which in turn depends on the number of developers using it).

Option 8. FlasCC/Crossbridge. As LLVM guys were able to compile C++ into JS, I am not surprised
that they were also able to compile it into ABC (ActionScript Byte Code). Originally, FlasCC was an
Adobe project, and then they released it as an open-source project known as Crossbridge.
Unfortunately, as of the end of 2015, neither FlasCC nor Crossbridge seem to be actively
maintained. A pity.

Which of the options above suits your game better – is your decision, and it heavily depends on
specifics of your game. A few hints though (no warranties of any kind, batteries not included): if
Facebook is your primary platform – take a look at Option 3a (most reliable, but with lots of extra
maintenance and with only limited protection from bot writers), and Option 6 with Emscripten
(the most promising in the long run, but probably a bit too immature now); if other platforms are
of more interest than Facebook – take a look at Option 3a, Option 5/5a (ugly, but might work for
you), Option 6, and Option 7 (the easiest one and the best protection, but Chrome-only).

 As of the end of 2015, Chrome market share is about 50% and is still growing
[UsageShareOfWebBrowsers]

[[To Be Continued…
This concludes beta Chapter V(b) from the upcoming book “Development and
Deployment of Massively Multiplayer Games (from social games to MMOFPS,
with social games in between)”. Stay tuned for beta Chapter V(c), “Modular
Architecture: Client-Side. On Debugging Distributed Systems, Deterministic
Logic, and Finite State Machines”]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: client, game, multi-player

Copyright © 2014-2015 ITHare.com

20

[–] References
[Bergström] Sven Bergström, “Real T ime Multiplayer in HTML5”
[Starling] “Starling, The Cross Platform Game Engine”
[GoogleNativeClient] Wikipedia, “Google Native Client”
[GDC2013] “Fast C++ on the Web using Emscripten and asm.js”
[TheVerge] Jacob Kastrenakes, “Adobe is telling people to stop using Flash”
[UsageShareOfWebBrowsers] Wikipedia, “Usage share of web browsers”

http://www.htmlgoodies.com/html5/client/real-time-multiplayer-in-html5.html
http://gamua.com/starling/
https://en.wikipedia.org/wiki/Google_Native_Client
https://kripken.github.io/mloc_emscripten_talk/gindex.html#/
http://www.theverge.com/2015/12/1/9827778/stop-using-flash
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-v-a-modular-architecture-client-side-graphics/
http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/

	Chapter V(b). Modular Architecture: Client-Side. Programming Languages for Games, including Resilience to Reverse Engineering and Portability
	Programming Language for Game Client
	One Language for Programmers, Another for Game Designers (MMORPG/MMOFPS etc.)
	A word on CUDA and OpenCL
	Different Languages Provide Different Protection from Bot Writers
	Resilience to Reverse Engineering of Different Programming Languages
	Language Availability for Game Client-Side Platforms

	Sprinkle with All The Usual Considerations
	C++ as a Default Game Programming Language
	On C++ and Cross-Platform Libraries

	Big Fat Browser Problem

	[[To Be Continued…
	[–]References
	Acknowledgement

