
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter V(a). Modular Architecture: Client-Side.
Graphics from “D&D of MMOG” upcoming book
posted November 23, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter V(a) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

– How do you program an elephant? – One byte at a time!
— (almost) proverb —

As we’ve discussed in Chapter IV, there are basically only two viable approaches for
building your game: we named one of them an “Engine-Centric Architecture”, and
another a “Modular Architecture”. Which of these approaches is right for your
game, depends a lot on the genre and other Business Requirements; the choice
between the two was more or less explained in Chapter IV.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc


In this chapter, we’ll discuss “Modular Architecture” in more detail. If you’re going
to implement your game as an “Engine-Centric” one, you still need to read this
chapter; while most of these decisions we’re about to discuss, are already made for
you by your game engine, you still need to know what these decisions are (and
whether you like what specific engine has chosen for you); and whatever-your-
engine didn’t decide for you, you need to make the right decisions yourself.
Applicability of the findings from this Chapter to “Engine-Centric Architecture”
and to specific popular game engines, will be discussed in the next Chapter
([[TODO]]).

Graphics
One of the first things you need when dealing with client-side, is graphics engine.
Here, depending on specifics of your game, there are significant differences, but
there are still a few things which are (almost) universal. Note that at this point
w e’re not about to describe subtle implementation details of graphics
engines (these w ill be discussed in Chapter [[TODO]]). For the time being, w e
only need to figure out a few  v ery high-lev el things, w hich allow  us to
describe the engine(s) w e need in v ery general terms (to filter out those
w hich are obv iously not a good fit for your game) and to know  enough to be
able to draw  an ov erall client-side architecture.

/wp-content/uploads/BB_part066_BookChapter005a_v5.png


Actually,
these toolchains

On Developers, Game Designers, and Artists
For most of the games out there, there is a pretty obvious separation between
developers and artists. There is usually a kind of mutual understanding, that
developers do not interfere in drawing pictures (making 3D models, etc. etc.), and
artists are not teaching developers how to program. This, however, raises a Big Fat
Question about a toolchain which artists can use to do their job. These toolchains
are heavily dependent on the graphics type, on the game you’re using, etc. etc.
When making decisions about your graphics, you absolutely need to realize which
tools your artists will use (and which file formats they will produce so that you can
use these formats within your game).

For some genres (notably FPS and RPG), there are usually also game designers.
These folks are sitting in between developers and artists, and are responsible for
creating levels, writing quests, etc. etc. And guess what – they need their own tools
too  .

Actually, these toolchains are so important, that I would say
that at least half of the value that game engine provides to your
project, comes from these toolchains. If you’re going to write
your own engine – you need to think about these toolchains, as
they can easily make-or-break your game (and if you’re using
3rd-party game engine – make sure that the toolchain they’re
providing, is understandable for both your artists and your
developers – and for game designers too, if applicable). “

/wp-content/uploads/BB_part066_BookChapter005a_v4.png


are so
important, that
I w ould say that
at least half  of
the value that
game engine
provides to
your project,
comes f rom
these
toolchains.

On Using Game Engines as Pure Graphics
Engines, and V endor Lock-In
These days, if you want to use a 3rd-party graphics engine,
most of the time you won’t find “graphics engine”, but will
need to choose between “game engines”. And “game engines”
tend to provide much more functionality than “graphics
engines”, which has many positives, but there is also one
negative too. Additional features provided by “game engines”
in addition to pure graphic rendering capabilities, may include
such things as processing user input, support for humanoid-
like creatures (which may include, for example, inverse
kinematics), asset management, scripting, network support,
toolchains, etc. etc. etc. And most of these features even work.

However,  there is a dark spot in this overall bright picture. Exactly the same thing
which tends to help a lot, backfires. The thing is that the more features the engine
has – the more you will want to use (“hey, we can have this nice feature for free!”).
And the more features you use – the more you’re tied to a specific 3rd-party game
engine, and this process will very soon make it your Absolute Dependency (as
defined in Chapter IV), also known as a Vendor Lock-In.

It is not that Absolute Dependencies are bad per se (and, as mentioned in Chapter
IV, for quite a few games the advantages of having it outweigh the negatives), but if
you have an Absolute Dependency – it is Really Important to realize that you are
Locked In, and that you SHOULD NOT rely on throwing it away in the future.

Just one example where this can be important. Let’s consider you writing a game
with an Undefined Life Span (i.e. you’re planning your game to run for a really long
while, see Chapter I for further details); then you’ve decided (to speed things up) to
make a first release of your game using a 3rd-party game engine. Your game
engine of choice is very good, but has one drawback – it doesn’t support one of the
platforms which you do want to support (for example, it doesn’t support mobile,
which you want to have ASAP after the very first release). So you’re thinking that
“hey, we’ll release our game using this engine, and then we’ll migrate our game
from it (or will support another graphics engine for those platforms where it
doesn’t run, etc.)” .

In theory, it all sounds very good. In practice, however, unless
you’re extremely vigilant (see on it a bit below), and not taking
special measures to deal with dependencies, you’ll find
yourself in a hot water. By the time when you want to migrate
away, your code and game in general will be that much
intertwined and interlocked with the game engine, that
separating them will amount to a full rewrite (which is rarely



Unless you're
extremely

vigilant, and
not taking

special
measures to

deal w ith
dependencies,

you'll f ind
yourself  in a

hot w ater.

Contrary to
the popular
belief , you can
build a game
w ithout any
graphics at all,
or w ith a very
rudimentary

possible within the same game without affecting too many
subtle gameplay-affecting issues which make or break your
game). It means that in our hypothetical example, you won’t be
able to support mobile devices, ever (well, unless you scrap the
whole thing and rewrite it from scratch, which will almost
inevitably require a re-release at least on a different set of
servers, if not under a different title). This situation tends to
be even worse for 3D game engines (to the point that I’m not
sure that it is possible at all to avoid your 3D game engine
Locking you In).

The only way to avoid this kind of (very unpleasant) scenarios,
is to be extremely vigilant and prohibit the use of all the game
features, unless their use is explicitly allowed (and before
allowing the use of a certain feature, you need to understand –
and document! – how you’re going to implement this feature

when you are migrating away from the engine). For further details on the measures
which you need to take to ensure that your component (such as graphics engine)
doesn’t become your Absolute Dependency – see Chapter IV.

Once again – having an Absolute Dependency is not necessarily evil, but if you have
one – you’d better realize that you’re pretty much at the mercy of the engine
developer (the one who has successfully locked you in).

Games with Rudimentary Graphics
Now, let’s start considering different types of graphics which you may need for
your game. First of all, let’s see what happens if your game requires only a minimal
graphics (or none at all).

Contrary to the popular belief, you can build a game without
any graphics at all, or with a very rudimentary one. When
speaking about rudimentary graphics, I mean static graphics,
without animation, just pictures with defined areas to click.
Such games-with-rudimentrary-graphics are not limited to
obvious examples such as stock exchanges, but also include
some of social games which are doing it with a great success
(with one such example being quite popular Lords&Knights).

If your graphics is non-existent or rudimentary, you can (and
probably should) write your graphics engine all by yourself. It
won’t take long, and having a dependency on a 3rd-party
engine merely to render static images is usually not worth the
trouble.

“

“



one.Artist’s toolchain is almost non-existent too; all artists need to
work with rudimentary graphics, is their favourite graphics
editor to provide you with bitmaps of sizes-which-you-need.

Games with 2D Graphics
The next step on the ladder from non-existent graphics to the holy grail of realistic
ray-traced 3D  is 2D graphics. 2D graphics is still very popular, especially for games
oriented towards mobile phones, and for social games (which tend to have mobile
phone version, so there is a strong correlation between the two). This section also
covers 2D engines used by games with pre-rendered 3D graphics.

In general, if you’re making a 2D game, your development, while more complicated
than for games with rudimentary graphics, will be still much much simpler than
that of 3D game . First of all, 2D graphics (unlike 3D graphics) is rather simple, and
you can easily write a simple 2D engine yourself (I’ve seen a 2D engine with double-
buffering and virtually zero flickering written from scratch within about 8-10 man-
weeks for a single target platform; not too much if you ask me).

Alternatively, you can use one of the many available “2D game engines”; however,
you need to keep in mind the risk of becoming Locked-In (see section “On Using
Game Engines as Pure Graphics Engines, and Vendor Lock-In” above). In
particular, if you’re planning to replace your 2D game engine in the future, you
should stay away from using such things as “2D Physics” features provided by your
game engine, and limit it to rendering only. In practice, it is possible to avoid
Vendor Lock-In (and keep your options to migrate from this 2D engine, or to add
another 2D or even 3D one alongside it, etc.); however, it still requires you to be
extremely vigilant (see section “On Using Game Engines as Pure Graphics Engines,
and Vendor Lock-In” above), but at least it has been done and is usually doable.

One good example of 2D game engine (which is mostly a 2D
graphics engine), is [Cocos2D-X]. It is a popular enough cross-
platform (including iOS, Android, and WinPhone, and going
mobile is One Really Popular Reason for creating a 2D game
these days), and has API which is good enough for practical
use. If you’re developing only for iOS, [SpriteKit] is a good
choice too. BTW, if you’re vigilant enough in avoiding
dependencies, you can try making your game with Cocos2D-X,
and then to support SpriteKit for iOS only (doing it the other
way around is also possible, but usually more risky unless
you’re absolutely sure that most of your users are coming
from iOS). NB: if you’re serious about such development, make
sure to make Logic-to-Graphics layer as described in “Logic-
to-Graphics Layer” section below.

1

2

MVC
Model–view –

controller
(MVC) is a
sof tw are

architectural
pattern f or

implementing
user interf aces.

It divides a
given sof tw are

application into
three

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller


About using 2D functionality of the primarily 3D engines such
as Unity or Unreal Engine: personally, I would stay away from
them when it comes to 2D development (for my taste, they are
way too locking-in for such a relatively simple task as 2D).
Such engines would have a Big Advantage for quite a few
genres if they could support both 2D and 3D graphics for the
same world (kind of MVC for games, also similar to Logic-to-
Graphics layer as described below), but to the best of my
knowledge, none of the major game engines provides such
support. [[NOTE to BETA TESTERS: If you know about such
capabilities in these or other engines, please let me know]].

About toolchains. For 2D, artist’s toolchains are usually fairly
simple, with artists using their favourite animation editor (for
example, “Adobe After Effects”, but there are other options
out there; “Adobe Flash” has also been reported to support

“sprite sheets” starting from CS6 version). As a result of their work, they will
provide you with sprites (for example, in a form of series of .pngs-with-
transparency, or “sprite sheets”).

 Yes, I do know that nobody does raytracing for games (yet), but who said that we
cannot daydream a bit?
 Hey, isn’t it a good reason to scrap all 3D completely in the name of time to

market? Well, probably not
 

On pre-rendered 3D
Now, let’s discuss see what happens if your game is supposed to be a 3D game. In
this case, first of all, you need to think whether you really need 3D, or you will be
fine with so-called pre-rendered 3D.

When speaking about pre-rendered 3D, the idea is to create your 3D models, and
3D animations, but then, instead of rendering them (such as “render using
OpenGL”) in real-time, to pre-render these 3D models and animations into 2D
“sprites”, to ship these 2D sprites with your game instead of shipping full 3D
models, and then to render them as 2D sprites in your 2D graphics engine.

Fully 3D pre-rendered games  allow you to avoid having 3D
engine on clients, replacing it with much simpler (and much
more portable) 2D engine.

Usually, full 3D pre-rendering won’t work good for first-
person games (such as MMORPG/MMOFPS) but it may work

interconnected
parts, so as to

separate
internal

representations
of  inf ormation

f rom the w ays
that

inf ormation is
presented to or
accepted f rom

the user
— Wikipedia —

1

2

3



Fully 3D pre-
rendered games
allow  you to
avoid having 3D
engine on
clients,
replacing it
w ith much
simpler (and
much more
portable) 2D
engine.

pretty good even for (some kinds of) MMORTS, and for many
other kinds of popular MMO genres too. Full 3D pre-rendering
is quite popular for platforms with limited resources, such as
in-browser games, or games oriented towards mobile phones.

Technically, fully pre-rendered 3D development flow consists
of:

3D design, usually made using readily available 3rd-party
3D toolchain. For this purpose, you can use such tools as
Maya, 3D Max, Poser, or – for really adventurous ones –
Blender. 3D design is not normally done by developers,
but by designers. It includes both models (including
textures etc.) and animations.

pre-rendering of 3D design into 2D sprites. Usually
implemented as a bunch of scripts which “compile” your
3D models and animations into 2D sprites, including animated sprite
sequences; the same 3D tools are usually used for this 3D-to-2D rendering

rendering of 2D sprites on the client, using 2D engine(s)

As an additional bonus, with 3D pre-rendering you don’t need to bother with
getting low-poly 3D models for your 3D toolchain, and can keep your 3D models in
as high number of polygons as you wish. Granted, mostly these high-poly models
won’t usually make any visual difference (as each of 2D sprites is commonly too
small to notice the difference, though YMMV), but at least you won’t need to bother
with polygon number reduction (and you can be sure that your artists will
appreciate it, as low-poly-but-still-decent-looking 3D models are known to be a
Big Headache).

3D pre-rendering is certainly not without disadvantages. Two biggest problems of
3D pre-rendering which come to mind, are the following. First of all, you can pre-
render your models only at specific angles; it means that if you’re showing a
battlefield in isometric projection, pre-rendering can be fine, but doing it for a
MMOFPS (or any other game with a first-person view) is usually not feasible.
Second, if you’re not careful enough, the size of your 2D sprites can easily become
huge. There are other less prominent issues related to 3D pre-rendering, which
we’ll discuss in Chapter [[TODO]], but for our purposes now these two things
should be enough (i.e. if you’re fine with them – you can keep considering 3D pre-
rendering).

“



If  you can
survive 3D pre-

rendering
w ithout making

your game
unview able

(and w ithout
making it too
huge in size),

you can make
your game run

on the
platf orms

w hich have no
3D at all (or

their 3D is
hopelessly

slow )

On the positive side, if you can survive 3D pre-rendering
without making your game unviewable (and without making it
too huge in size), you can make your game run on the
platforms which have no 3D at all (or their 3D is hopelessly
slow); I’m mostly speaking about smartphones here (while
smartphones have made huge improvements in 3D
performance, they are still light years away from PCs – and it
will probably stay this way for a long while).

Artist’s toolchains are usually not a problem for pre-rendered
3D. In this case, artists are pretty much free what to use
(though it is still advisable to use one tool across the whole
project) ; it can be anything ranging from Maya to Poser, with
3D Max in between. They can keep all their work within this
tool, and to provide you with ways to produce 2D sprites. In
most cases, your job in this regard is about making artists
backup their work on regular basis, and about writing the
scripts for automated “build” of their source files (those in 3D
Max or whatever-else-they’re-using) into 2D.

Bottom Line. Whether you want/can switch your game to 3D
pre-rendering – depends, but at least you should consider
this option (that is, unless your game is an
MMOFPS/MMORPG). While this technique is often frowned
upon (usually, using non-arguments such as “it is not cool”), it
might (or might not) work for you.

Just imagine – no need to make those low-poly models, no
need to worry that your models become too “fat” for one of your resource-stricken
target platforms as soon as you throw in 100 characters within one single area, no
need to bother with texture sizes, and so on. It does sound “too good to be true”
(and in most cases it will be), but if you’re lucky enough to be able to exploit pre-
rendering – you shouldn’t miss the opportunity.

If you manage to get away with pre-rendered 3D, make sure to read section on 2D
graphics above.

 in fact, partial 3D pre-rendering is also perfectly viable, and is used a lot in 3D
games which do have 3D engine on the client-side, but this is beyond the scope of
our discussion until Chapter [[TODO]]
 

Games with 3D Graphics

“

3



Making 3D
w ork is not easy
to start w ith,
but making it
look good is a
major
challenge.

If you have found that your 3D game is not a good match for pre-rendered 3D, you
do need to have 3D engine on the client-side. This tends to unleash a whole lot of
problems, from weird exchange formats between toolchain and your engine, to the
inverse kinematics (if applicable); we’ll discuss some of these problems in Chapter
[[TODO]], for now let’s just write down that non-pre-rendered 3D is a Big Pain in
the Neck (compared to the other types of graphics). If you do need a 3D engine on
client side, you basically have two distinct options.

Option 1 is along “DIY” lines, with you writing your own
rendering engine over either OpenGL, or over DirectX. In this
case, be prepared to spend a lot of time on making your game
look anywhere reasonable. Making 3D work is not easy to start
with, but making it look good is a major challenge. In addition,
you will need to remember about the artist’s toolchain; at the
very least you’ll need to provide a way to import and use files
generated by popular 3D design programs (hint: supporting
wavefront .obj is not enough, you’ll generally need to dig much
deeper into specifics of 3D-program-you’re-supporting and
its formats).

On the plus side, if you manage to survive this ordeal and get a
reasonably looking graphics with your own 3D engine, you’ll
get a solid baseline which will give you a lot of flexibility (and
you may need this flexibility, especially if we’re speaking about the games with
Undefined Life Span).

Option 2 is to try using some “3D game engine” as your “3D engine”. This way,
unless you already decided that your game engine is your Absolute Dependency, is
a risky one. 3D game engines tend to be so complicated, and have so many points of
interaction with the game, that chances are that even if you’re Extremely Vigilant
when it comes to dependencies, you won’t be able to replace the engine later. Once
again – I am not saying that Vendor Lock-In is necessarily a bad thing, but you do
need to realize that you’re Locked In.

Logic-to-Graphics Layer
Unless you’ve already decided that you want to be 100% Locked In, it is usually a
good idea to have a separation layer between your logic and your graphics engine
(whether it is 2D engine or 3D engine). Let’s name this separation layer a Logic-to-
Graphics Layer; this layer resides completely on the client side, and doesn’t really
affect your communication protocols or the server side. In a sense, it can be seen
as a subset of a Model-View-Controller pattern (with game logic representing
Model, and graphics engine representing View).

Let me explain the idea on one simple example. If your game is a blackjack, client-

“



side game logic needs to produce rendering instructions to your graphics engine.
Usually, naive implementations will just have client-side game logic to issue
instructions such as “draw such-and-such bitmap at such-and-such coordinates”.
This approach works well, until you need to port your client to another device (in
the extreme case – from PC to phone, with the latter having much less screen real
estate).

With Logic-to-Graphics layer, your client-side blackjack game logic issues
instructions in terms of “place 9S in front of player #3 at the table” (and not in
terms of “draw 9S at the (234,567) point on screen”). Then, it becomes a job of
Logic-to-Graphics Layer to translate this instruction into screen coordinates. And
if your game is a strategy, client game logic should issue instructions in terms of
“move unit A to position (X,Y)” (with the coordinates expressed in terms of
simulated-world coordinates, not in terms of on-screen coordinates(!)), and again
the translation between the two should be performed by our Logic-to-Graphics
layer.

One example incarnation of a system built using Logic-to-Graphics approach, is
shown on Fig 1. Here, “Game Logic” doesn’t depend on a graphical engine (or a
platform) and can be developed separately (which is very important because it will
change very frequently). In contrast, two “Graphical Engines” are specific to the
respective platforms, but they don’t know/depend on game logic at all, and are
very-rarely changed. The “Logic-to-Graphics” layer is a “glue” layer which belongs
in between “game logic” and “graphical engine”; by design, it depends both on
game logic and graphical engine (ouch); however (provided that there is a
reasonably clean separation achieved, see examples above) it doesn’t change nearly
as often as “game logic” itself, so the whole thing becomes manageable. On Fig. 1,
there are three implementations of “Logic-to-Graphics” layer: one is for Android
and two for Windows; the reason for having two different implementations of
Logic-to-Graphics layer for the same Win32 graphics engine, is that PC and mobile
versions are usually quite different in terms of layout, and therefore it may be

/wp-content/uploads/Fig-V-1.png


First of  all,
you w ill have a
very clear
separation
betw een the
dif f erent layers
of  the program,
w hich tends to
help a w hole lot
in the long run.

simpler just to have two different implementations of Logic-to-Graphics layer
(which is responsible, among other things, for translation of coordinates into
screen coordinates).

If doing it this way, you’ll get quite a few benefits.

First of all, you will have a very clear separation between
the different layers of the program, which tends to help a
whole lot in the long run.

Second, even if you’re supporting only one platform now,
you’re leaving the door open to adding support for all the
platforms you might want, in the future. This includes
such things as adding an option to have a 3D version to
your currently-2D-only game.

Third, you don’t have a strong dependency on any
graphical engine, so if in 5 years from now a new, much-
better engine will arise, you’ll be able to migrate there
without rewriting the whole thing.

Fourth, such a clean separation facilitates using
authoritative servers (which we’ll discuss in Chapter
[[TODO]], and which are extremely important for the
reasons described there).

Fifth, with Logic-to-Graphics layer, for quite a few genres
you’ll be able to produce a command-line client, which comes handy for
testing (including automated testing, and testing of game logic without being
affected by graphics), and also for development-of-the-new-features while
the graphics is not ready yet.

We’ve discussed the benefits of this Logic-to-Graphics layer, but what about the
costs? Is it all 100% positive, or there are some drawbacks? In fact, I can only think
of two realistic negatives for having it:

There is a certain development overhead which is necessary to achieve this
clean separation. I’m not talking about performance overhead, but about
development overhead. If the game logic developer needs to get something
from the graphics engine, he cannot just go ahead and call the graphics-
engine-function-which-he-wants. Instead, an interface to get whatever-he-
needs should be created, has to be supported by all the engines, etc. etc. It’s
all easily doable, but it introduces quite a bit of mundane work. On the other
hand, I contend that in the long run, such clean interfaces provide much more
value than this development overhead takes away; in particular, clean
interfaces have been observed as a strong obstacle to the code becoming
“spaghetti code”, which is already more-than-enough enough to justify them.

“



In such cases
of  dual

graphics, it is
paramount to
have Logic-to-

Graphics layer
as described

above.

A learning curve for those game developers coming from traditional limited-
life-span (and/or not-massively-multiplayer) 3D games. In these classical
games (I intentionally don’t want to use the term “old-fashioned” to avoid
being too blunt about it  ) everything revolves around the 3D engine, so for
these developers moving towards the model with clean separation between
graphics and logic will be rather painful. However, unless you decided your
game to be Engine-Centric, you need to move away from this approach
anyway, and even for those guys-coming-from-classical-3D-games this clean
separation model will be quite beneficial in the long run, so I wouldn’t say that
this drawback is that important.

Personally, for games with a potentially unlimited life span (and not having 3rd-
party game engine as an Absolute Dependency a.k.a. Vendor Lock-In), I almost
universally recommend to implement this Logic-to-Graphics Layer.

Dual Graphics, including 2D+3D Graphics
In quite a few cases, you may need to support two substantially different types of
graphics. One such example is when you need to support your game both for PC
and phone; quite often the difference between available screen real estate is too
large to keep your layout the same, so you usually need to redesign not only the
graphics as such, but also redesign layout.

In such cases of dual graphics, it is paramount to have Logic-
to-Graphics layer as described above. As soon as you have
Logic-to-Graphics layer, adding new type of graphics is a
breeze. You just need to add another implementation of
Logic-to-Graphics layer (using either the same graphical
engine, or different one, depending on your needs), and there
is no need to change game logic (!). These two different
implementations of Logic-to-Graphics layer may have
different APIs on the boundary with graphics engines, but they
always have the same API on the boundary with Game Logic.
The latter fact will allow you to keep developing your game
logic without caring about the specific engines you’re using.

The reason why it is so important to have Logic-to-Graphics
Layer is simple – for such a frequently changed piece of code
as a client-side game logic, maintaining two separate code

bases is usually not realistic. Pretty much any feature you’re adding, will require
some changes in game logic on the client side (hey, at least you need to receive that
new server message you’ve just introduced and parse it!), and having two code
bases for game logic will mean that you need to duplicate all such changes all the
time. I’ve observed much more than one competitor going the route of multiple
code bases, only to see that one of these code bases starts to lag behind the other,

“



and scrapping it 6 months down the road. It just illustrates the main point: you do
need to keep your frequently-changed portions of the code as a single code base.
And Logic-to-Graphics Layer allows to achieve it.

Of course, if you need to add a new instruction which comes from game logic to
Logic-to-Graphics Layer (for example, if you’re adding a new graphical primitive),
you will still need to modify both your implementations of the Logic-to-Graphics
Layer. However, if your separation API is clean enough, you will find that such
changes, while still happening and causing their fair share of trouble, are the
orders of magnitude more rare than the changes to game logic; this difference in
change frequencies is the difference between workable and unworkable one.

An extreme case of dual graphics is dual 2D+3D graphics. Not all the game genres
allow it (for example, first-person shooters usually won’t work too good in 2D), but
if your game genre is ok with it, and you have Logic-to-Graphics separation layer,
this becomes perfectly feasible. You just need to have 2 different engines, a 3D one
and a 2D one (they can be in separate clients, or even switchable in run-time), and
an implementation of Logic-to-Graphisc layer for each of them. As soon as you have
this, Bingo! – you’ve provided your players with a choice between 2D and 3D
graphics (depending on their preference, or platform, or whatever else). Even
better, when using a Logic-to-Graphics layer, you can start with the graphics which
is simpler/more important/whatever, and to add another graphics (or even
multiple ones) later.

[[To Be Continued…
This concludes beta Chapter V(a) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter V(b), “Modular
Architecture: Client-Side. Programming Languages”

EDIT: Chapter V (b). Modular A rchitecture: Client-Side. Programming
Languages for Games, including Resilience to Rev erse Engineering and
Portability, has been published

]]

Acknowledgement
Cartoons by Sergey Gordeev  from Gordeev Animation Graphics, Prague.

[–] References
[Cocos2D-X] http://www.cocos2d-x.org/
[SpriteKit] https://developer.apple.com/spritekit/

/chapter-vb-modular-architecture-client-side-programming-languages-for-games-including-resilience-to-reverse-engineering-and-portability/
http://www.cocos2d-x.org/
https://developer.apple.com/spritekit/
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/


« Due to Popular Demand: PDFs of Beta Chapters from “Dev elop… 

 Chapter V (b). Modular A rchitecture: Client-Side. Programmin… »

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: 2D, 3D, client, game, graphics, multi-player

Copyright © 2014-2015 ITHare.com

http://ithare.com/due-to-popular-demand-pdfs-of-chapters-from-development-deployment-of-multiplayer-online-games/
http://ithare.com/chapter-vb-modular-architecture-client-side-programming-languages-for-games-including-resilience-to-reverse-engineering-and-portability/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/2d/
http://ithare.com/tag/3d/
http://ithare.com/tag/client/
http://ithare.com/tag/game/
http://ithare.com/tag/graphics/
http://ithare.com/tag/multi-player/

	Chapter V(a). Modular Architecture: Client-Side. Graphics from “D&D of MMOG” upcoming book
	Graphics
	On Developers, Game Designers, and Artists
	On Using Game Engines as Pure Graphics Engines, and Vendor Lock-In
	Games with Rudimentary Graphics
	Games with 2D Graphics
	On pre-rendered 3D
	Games with 3D Graphics
	Logic-to-Graphics Layer
	Dual Graphics, including 2D+3D Graphics

	[[To Be Continued…
	[–]References
	Acknowledgement



