
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter IV. DIY vs Re-Use: In Search of Balance from
upcoming book “Design&Development of MMOG”
posted November 16, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter IV from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

In any sizable development project there is always a question:
“What should we do ourselves, and what we should reuse?”
Way too often this question is answered as “Let’s re-use
whatever we can get our hands on”, without understanding all
the implications of re-use (and especially about the
implications of improper re-use, see, for example,

[NoBugs2011]). On the other hand, an opposite approach of “DIY Everything” can
easily lead to the projects which cannot possibly be completed on one person’s life
time, which is usually “way too long” for games. In this chapter we will try to discuss
this question in detail.

DIY
Initialism of do

it yourself
— Wiktionary —

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
https://en.wiktionary.org/wiki/DIY

On the one
end of the
spectrum, there
are games
w hich are
nothing more
but “skins” of
somebody-else’s
game. In this
case, you’re
essentially
counting on
having better
marketing than
your
competition

In the game realm the answers to “DIY vs Re-Use” question
reside on a pretty wide spectrum, from “DIY pretty much
nothing” to “DIY pretty much everything”. On the one end of
the spectrum, there are games which are nothing more but
“skins” of somebody-else’s game (in such cases, you’re usually
able to re-texture and re-brand their game, but without any
changes to gameplay; changes to meshes and/or sounds may
be allowed or disallowed). In this case, you’re essentially
counting on having better marketing than your competition (as
everything else is the same for you and your competition). This
approach may even bring some money, but if you’re into it,
you’re probably reading the wrong book (though if you’re
running your own servers, some tricks from Part [[TODO]]
might still be useful and may provide some additional
competitive advantage, but don’t expect miracles in this
regard).

On the other end of the spectrum, there are game development
teams out there which try to develop pretty much everything,
from their own 3D engine, their own TCP replacement, and
their own channel security (using algorithms which are “much
better” than TLS), to their own graphics and sounds
(fortunately, cases when the developers are trying to develop
their own console and their own OS are very few and far
between). This approach, while may be fun to work on, may

“

/wp-content/uploads/BB_part065_BookChapter004_v2.png

have problems with providing results within reasonable time, so your project may
easily run out of money (and as the investors understand it too, running out of
money will happen sooner rather than later).

Therefore, it is necessary to find a good balance between the parts which you need
to re-use, and the parts you need to implement yourself.

Business Perspective: DIY Your Added V alue
First of all, let’s take a look at “DIY vs Re-Use” question from the business point of
view. While business perspective is not exactly the point of this book, in this case is
way too intertwined with the rest of our discussion to set it aside.

From the business point of view, you should always understand what “added value”
your project provides for your customers. In other words – what is that thing which
differentiates you from your competition? What is the unique expertise you
provide to your players?

When speaking about “DIY vs 3rd party reuse” question, it is safe to say that

At least, you should develop your Added V alue
yourself

The motivation behind the rule above is simple: if you’re re-using everything
(including gameplay, world map, and meshes), with only cosmetic differences (such
as textures) then your game won’t be really different from the other games which
are doing the same thing. To succeed commercially, you need a distinguishing
factor (sometimes ‘pure luck’ qualifies as such, but luck is not something you can
count on).

The rule of Added Value is normally taken care of at a business level. However, even
after this rule is taken into consideration, you still need to make “DIY vs reuse”
decisions for those things which don’t constitute the added-value-for-end-users
(or at least are not perceived to constitute the added value at the first glance). In
this regard, usually it more or less boils down to one of three approaches
described below.

Engine-Centric Approach: an Absolute Dependency a.k.a.
V endor Lock-In
Probably the most common approach to game development is to pick a game
engine, and to try building your game around that engine. Such game engines
usually don’t implement all the gameplay (instead, they provide you with a way to
implement your own gameplay on top of the engine), so you’re fine from the Added

The biggest
problem w ith
building your
game around

3rd-party game
engine is that in

this case, the
game engine

becomes your
Absolute

Dependency

Value point of view. For the sake of brevity, let’s refer to this “3rd-party engine will
do everything for us” approach as a much shorter “Engine-Centric” Approach.

The biggest problem with building your game around 3rd-
party game engine is that in this case, the game engine
becomes your Absolute Dependency; in other words, it means
that “if the engine is discontinued, we won’t be able to add
new features, which will lead us to close sooner rather than
later”. Another way to see the very same thing, is in terms of
Vendor Lock-In: as soon as you have an Absolute Dependency,
you’re locked in to a specific 3d engine vendor, and vice versa.
Therefore, we will use terms Absolute Dependency and
Vendor Lock-In interchangeably.

While by itself Absolute Dependency a.k.a.
V endor Lock-In is not a show-stopper for

building around 3rd-party game engine
(and indeed, there are many cases when

you should do just that), you need to
understand implications of this Absolute

Dependency.

First of all, (as we will discuss in more detail in Chapter [[TODO]]), for “Games with
Undefined Life Span” (as defined in Chapter I), the risks of having 3rd-party
Absolute Dependency are much higher than for “Games with Limited Life Span”.
Having your game engine as a Vendor Lock-In for a limited-time project is often
fine even if your choice is imperfect; having the very same Absolute Dependency
“forever and ever till death do us part” is a much bigger deal, which can easily lead
you to a disaster if your choice turns out to be a wrong one.

Moreover, usually, for “Games with Undefined Life Span”, you shouldn’t count on
assumptions such as “Oh, it is a Big Company so they won’t go down” (while the
company might not go down, they still may drop this engine, or drop support for
those-features or those-platforms you cannot survive without). While for a limited
time, such risks can be estimated and are therefore manageable (in many cases, we
can say with enough confidence “they will support such-and-such feature in 3 years
from now”), relying on a 3 party doing something “forever and ever” is usually too
strong of an assumption.

Engine-Centric Approach: Pretty Much Inevitable for
MMORPG/MMOFPS

“

rd

In f uture
chapters w e
w ill keep in
mind three
specif ic game
engines, and
w ill discuss
their pros and
cons w ith
relation to the
issues w e are
raising. These
engines are
Unity 5, Unreal
Engine 4, and
CryEngine

In spite of the risks above, it should be noted that there are
several MMO genres where developing a game engine yourself
is rarely feasible. In particular, it applies to MMORPGs and
MMOFPS. The engines for these games tend to be extremely
complicated, and it will normally take much-more-time-than-
you-have to develop them. Fortunately, in this field there are
quite a few very decent engines with pretty good APIs
separating the engine itself and your game logic. In future
chapters we will keep in mind three specific game engines, and
will discuss their pros and cons with relation to the issues we
are raising. These engines are Unity 5, Unreal Engine 4, and
CryEngine (previously known as CryEngine 3). Apologies to fans
of other game engines, but I simply cannot cover all of the
engines in existence; still, principles behind are usually rather
similar, so you should be able to make your own judgements
based on general principles outlined in this book.

For MMORTS the situation is much less obvious; depending on
specifics of your game, there are much more options. For
example, (a) you may want to use 3rd-party 3D engine like one
of the above (though this will work only for relatively low
number of units, you need to study very carefully engine’s
capabilities in this regard), (b) you may use 2D graphics (or
pre-rendered 3D, see Chapter [[TODO]] for details), with your
own engine, (c) you may want to develop your own 3D engine
(optimized for large crowds but without features which are
not necessary for you), or (d) you may even make a game which runs as 2D on some
devices, and as 3D on some other devices (see Chapter [[TODO]] for further
discussion of dual 2D/3D interfaces).

For all the other genres, whether to use 3rd-party engine, is a completely open
question, and you will need to decide what is better for your game; often, for non-
MMORPG/non-MMOFPS games, and if your game is intended to have an
Undefined Life Span, it is better to develop game engine yourself than to re-use a
3rd-party game engine (even when you have your own game engine, you may use
3rd-party 3D rendering engine, or even several such 3D engines – see Chapter
[[TODO]] for further details).

And if you’re going to re-use a 3rd-party engine (for whatever reason), make sure
to read and follow “You Still Need to Understand How It Works” section below.

Engine-Centric Approach: You Still Need to Understand
How It Works

“

Eliminating
dependency on
your game
engine is pretty
much hopeless
w ithout
rew riting the
w hole thing.

When introducing 3rd-party game engine as an Absolute Dependency, you still
need to understand how the engine works under the hood. Moreover, you need to
know a lot about engine-you’re-about-to-choose before you make a decision to
allow the engine Vendor to Lock you In. Otherwise, 6 months down the road you can
easily end up in situation “oh, this engine apparently cannot implement this feature,
and we absolutely need it, so we need to scrap everything and start from scratch
using different game engine”.

Of course, there will be tons of implementation details which you’re not able to
know right now. On the other hand, you should at least go through this book and see
how what-you-will-need maps into what-your-engine-can-provide, aiming to:

understand what exactly are the features you need

make sure that your engine provides those features you need
if some of the features you need, are not provided by your game engine
(which is almost for sure for an MMOG), at least that you should know
that you can implement those “missing” features yourself on top of your
game engine

While this may look time consuming, it will certainly save a lot of time down the
road. While introducing Absolute Dependency may be a right thing to do for you,
this is a Very Big decision, and as such, MUST NOT be taken lightly.

Engine-Centric Approach: on “Temporary” dependencies

Nothing is so permanent as a temporary government program
— Milton Friedman —

If you want to use 3rd-party game engine to speed up
development, and count on the approach of “we’ll use this
game engine for now, and when we’re big and rich, we will
rewrite it ourselves”, you need to realize that removing such a
big and fat dependency as game engine, is not realistic.
Eliminating dependency on 2D engine, sound engine, or any
other such engine may be possible (though requires extreme
vigilance during development, see “Modular Approach: on
“Temporary” dependencies” section below). On the other
hand, eliminating dependency on your game engine is pretty
much hopeless without rewriting the whole thing.

The latter observation is related to number of “interface
points” which arise when you integrate with your game engine;
for a typical game engine you have lots and lots of such points.
Moreover, these interface points tend to be of very different

“

1

https://en.wikipedia.org/wiki/Milton_Friedman

When your
code does

nothing beyond
dealing w ith
peculiarities
and outright

bugs of 3rd-
party libraries,

it cannot possibly

nature (ranging from mesh file formats to API callbacks with pretty much
everything else you can think of, in between). To make things worse, the better is
the game engine you’re using, the more perfectly legitimate uses you have for those
interface points, and the more locked-in you become as a result (while having all
the good reasons for doing it). Due to these factors, IMNSHO, the task of making
your program game-engine-agnostic is orders of magnitude more complicated
than making your program cross-platform (which is also quite an effort to start
with), so think more than twice before attempting it.

 let’s define an “interface point” as a point, where your program (and more
generally, your whole game development process) interacts with the game engine

“Re-Use Everything in Sight” Approach: An Integration
Nightmare
If you’ve decided not to make a 3rd-party engine your Absolute Dependency, then
the second approach often comes into play. Roughly it can be described as “we
need such-and-such feature, so what is the 3rd-party component/library/… we
want to borrow re-use to implement this feature?”

Unfortunately, way too many developers out there think that this is exactly the way
it should be done. (mis-)Perception along the lines of “hey, re-use is good, so there
can be nothing wrong with re-use” is quite popular with developers; for managers
it is “it saves on the development time” pro-reuse argument which usually hits
home.

However, in practice it is not that simple. Such “reuse
everything in sight” projects way too often become an
integration nightmare. As one of developers of such a project
(who was responsible for writing an installer) has put it: “Our
product is load of s**t, and my job is to carry it in my hands to
the end-user PC, without spilling it around”. As you can see, he
wasn’t too fond of the product (and the product didn’t work
too reliably either, so the product line was closed within a few
years). Even worse, such “reuse everything in sight” projects
were observed to become spaghetti code very quickly;
moreover, from my experience, when your code does nothing
beyond dealing with peculiarities and outright bugs of 3rd-
party libraries, it cannot possibly be anything but spaghetti. Oh,
and keep in mind that indiscriminate re-use has been
observed as a source of some of the worst software bugs in
the development history [NoBugs2011].

1

“

be anything but
spaghetti

The problem with reusing everything you can get your hands
on, can be explained as follows. With such an indiscriminate
re-use, some of modules/components you are using, will be

inevitably using less-than-ideal for the job; moreover, even if the component is
good enough now, it may become much-less-than-ideal when – the Business
Requirements change. And then, given that the number of your not-so-ideal
components is large enough, you find yourself in an endless loop of “hey, trying to
do this with Component A has broken something-else with Component B, and fixing
it in Component B has had such-and-such undesired implication in Component C,
and so on…” .

To make sure that managers (who’re usually very fond of re-use, because of that “it
saves the development time” argument), also understand the perils of
indiscriminate re-use: you (as a manager) need to keep in mind that indiscriminate
re-use very frequently leads to “oh, we cannot implement this incoming Business
Requirement because our 3rd-party component doesn’t support such-and-such
feature” (which, if happens more than a few times over the life span of the project,
tends to have rather bad impact on the bottom line of the company). Or describing
it from a different perspective: if your developers are doing their own component,
it is them who’re responsible that this “we cannot implement Business
Requirement” thing never happens; at the moment when you force (or allow) them
to “use such and such library”, you give them this excuse on a plate .

BTW, to make it perfectly clear: I’m not arguing that any re-use is evil; it is only
indiscriminate re-use which should be avoided. What I am arguing for, is
“Responsible Re-use” (a.k.a. “Modular”) approach described a little bit below.

 it is indeed ‘when’, not ‘if’ ! – see Chapter I

“DIY Everything”: The Risk of Never-ending Story
Another approach (the one which I myself am admittedly prone to), is to write
everything yourself. Ok, very few developers will write OS themselves, but for most
of the other things you can usually find somebody who will be arguing that “this is
the most important thing in the universe, and you simply MUST do it this way, and
there is nothing which does it this way, so we MUST do it ourselves”.

There are people out there arguing for rewriting TCP over
UDP , there are people out there arguing that TLS is not good
enough, so you need to use your own security protocol, there
are people out there arguing for writing crypto-quality RNG
based their own algorithm , there are quite a few people out
there writing their own in-memory databases for your game,

2

2

3

4

There are
people out there
arguing f or
w riting crypto-
quality RNG
using their ow n
algorithm

and there are even more people out there arguing for writing
your own 3D engine.

Moreover, depending on your circumstances, some of these
things may even make sense; however, writing all of these things
together will lead to a product which will never be released,
almost inevitably.

As a result, with all my dislike to the 3rd-party dependencies, I
shall admit that we do need to re-use something. Now the next
question is: “What exactly we should re-use, and what should
we write ourselves?”

 I shall admit that I was guilty of such suggestion myself for one of the projects,
though it has happened at a later stage of game development, which I’m humbly
asking to consider as a mitigating circumstance
 once it took me several months to convince external auditor that implementing

RNG his way is not the only “right” RNG implementation, with the conflict eventually
elevated to The Top Authority on Cryptography (specifically, to Bruce Schneier)

“Responsible Re-Use” a.k.a. “Modular” Approach: Looking
for Balance
As it was discussed above (I hope that I was convincing enough), there are things
which you should re-use, and there are things which you shouldn’t. The key, of
course, is all about the question “What to Re-use and What to DIY?”. While the
answer to this question goes into realm of art (or black magic, if you prefer), and
largely follows from the experience, there are still a few hints which may help you in
making such a decision:

Most importantly, all decisions about re-use MUST NOT be taken lightly; it
means that no clandestine re-use should be allowed, and that all re-use decisions
MUST be approved by an architect (or by consensus of senior-enough
developers). Discussion on “to re-use or not to re-use” MUST include both
issues related to licensing, and issues related to reuse-being-a-good-thing-
in-the-long-run (you can be sure that arguments about it being a good thing
in the short run are brought forward).

To decide whether a specific re-use will be a good-thing-in-the-long-run, the
following hints may help:

“glue” code is almost universally DIY code; while it is unlikely that you will
have any doubts about it, for the sake of completeness I’m still
mentioning it here

“

3

4

https://en.wikipedia.org/wiki/Bruce_Schneier

If w riting
your ow n code
w ill provide
some Added
Value (w hich is
visible in the
player terms), it
is a really good
candidate f or
DIY

if writing your own code will provide some Added
Value (which is visible in the player terms), it is a
really good candidate for DIY. And even if it doesn’t
touch gameplay, it can still provide Added Value.
One example: if your own communication library will
provide properties which lead to better user-
observable connectivity (than the one currently used
by competition), it does provide Added Value (or a
competitive advantage, if you prefer), and therefore
may easily qualify for DIY (of course, development
costs still need to be taken into account, but at least
the idea shouldn’t be thrown away outright). In
another practical example, if you’re considering re-
using Windows dialogs (or MFC), and your own
library provides a way to implement i18n without the
need for translators to edit graphics (!) for each-
and-every dialog in existence – it normally qualifies
as an “Added Value” (at least compared to MFC, let’s
postpone further discussion about i18n until
Chapter [[TODO]]).

If you’re about to re-use something with a very well defined interface
(API/messages/etc.), and where the interface does what you want and is
not likely to change significantly in the future – it is a really good
candidate for re-use. Examples include TLS, JPEG library, TCP, and so
on.

If you’re about to re-use something which has much more non-trivial
logic inside than it exposes APIs outside – it might be a good candidate
for re-use. One such example is 3D engines (unless you’re sure you can
make them significantly better than the existing ones, see the item on
Added Value above). It is usually a good idea, however, to have your own
isolation layer around such things, to avoid them becoming an Absolute
Dependency. Such an isolation layer should be usually written in a
manner described in [[TODO]] section below (as described there,
dependencies are sneaky, so you need to be vigilant to avoid them).

If you’re about to re-use something for the client side (or for non-
controlled environment in general), and it uses a DLL-residing-in-
system-folder (i.e. even if it is a part of your installer, it is installed in a
place, which is well-known and can be overwritten by some other
installer) – double-check that you cannot make this DLL/component
private , otherwise seriously consider DIY. This also applies to re-use of
components, including Windows-provided components.
The reason for this rather unusual (but still very important in practice)
recommendation is the following. It has been observed for real-world
apps with install base in millions, that reliance on something-which-you-

“

5

Don't think
that such
f ailures “are
not your
problem” - f rom
the end-user
perspective, it is
your program
w hich crashes,
so it is you w ho
they w ill blame
f or the crash

don’t-really-control introduces a pretty nasty
dependency, with such dependencies failing for
some (though usually small) percentage of your
players. If you have 10 such dependencies each of
which fails for mere 1% of your users – you’re losing
about 1-(0.99)~=9% of your player base (plus also
people will complain about your game not working,
increasing your actual losses many-fold).
Real-world horror stories in this regard include such
things as:

program which used IE to render not really
necessary animation, failing with one specific
version of IE on player’s computer

some Win32 function (the one which isn’t really
necessary and is therefore rarely used) was
used just to avoid parsing .BMP file, only to be
found failing on a certain brand of laptops due
to faulty video drivers

some [censored] developer of a 4th party app
replaced stock mfc42.dll with their own
“improved” version causing quite a few
applications to fail (ok, this one has became more difficult starting
from Vista or so, but it is still possible if they’re persistent enough).

And don’t think that such failures “are not your problem” – from end-
user perspective, it is your program which crashes, so it is you who they
will blame for the crash. In general, the less dependencies-on-specific-
PC-configuration your client has – the better experience you will be able
to provide to your players, and all the theoretical considerations of “oh,
having a separate DLL of 1M in size will eat as much as 1M on HDD and
about the same size of RAM while our app is running” are really insignificant
compared to your players having better experience, especially for
modern PCs with ~1T of HDD and 1G+ of RAM.

Keep in mind that “reuse via DLLs” on the client side introduces well-
defined points which are widely (ab)used by cheaters (such as bot
writers); this is one more reason to avoid re-using DLLs and COM
components (even if they’re private). This also applies to using standard
Windows controls (which are very easy to extract information from); see
Chapter [[TODO]] for further discussion of these issues. Re-use via
statically linked libraries is usually not affected by this problem.

“
10

6

7

The more
critical/central
the part of your
code is – the
more likely
related changes
w ill be
required,
leading to more
and more
integration
w ork, w hich
can easily lead
to the cost of
integration
exceeding the
value provided
by the
borrow ed code.

If nothing of the above applies, and you’re about to
write yourself something which is central/critical to
your game – it may be a good candidate for DIY. The
more critical/central the part of your code is – the
more likely related changes will be required, leading
to more and more integration work, which can easily
lead to the cost of integration exceeding the value
provided by the borrowed code. About the same
thing from a different angle: for the central/critical
code you generally want to have as much control as
you possibly can.

If nothing of the above applies, and you’re about to
re-use something which is of limited value (or is
barely connected) to your game – it may be a good
candidate for re-use. The more peripheral the part
of the code is – the less likely related changes will
have a drastic effect on the rest of your code, so
costs of the re-integration with the rest of your code
in the case of changes will hopefully be relatively
small.

Personally, if in doubt, I usually prefer to DIY, and it
works pretty well with the developers I usually have
on my team. However, I realize that I usually work
with the developers who qualify as “really really good
ones” (I’m sure that most of them are within top-1%),
so once again, your mileage may vary. On the other
hand, if for some functionality all the considerations
above are already taken into account and you’re still
in doubt (while being able to keep a straight face) on
“DIY vs re-use” question, probably this specific decision on this specific
functionality doesn’t really matter too much.

Note that as with most of the other things in real life, all the advice above should be
taken with a good pinch of salt. Your specific case and argumentation may be very
different; what is most important is to avoid making decisions without thinking, and to
take at least considerations listed above into account.

The approach presented above, can be seen as a “Responsible Re-Use”; on the other
hand, we’ll refer to it quite a lot in the subsequent chapters, so for the sake of
brevity, we’ll usually name it as “Modular Approach” (or “Modular Architecture”).

 roughly equivalent to “moving it to your own folder”
 why such a function has had anything to do with drivers – is anybody’s guess

“

5

6

7

Still, you
need to
consider ef f ects
related to bot
f ighting, so
using these f or
critical
inf ormation
might be not a
good idea

 Strictly speaking, statically linked well-known libraries can also make life of
cheater a bit easier, but this effect is usually negligible compared to the Big Hole
you’re punching in your own code when using DLLs

Modular Approach: Examples
Here are some examples of what-to-reuse and what-not-to-reuse (YMMV really
significantly) under the “Responsible Re-Use” (a.k.a. “Modular”) guidelines:

OS/Console: usually don’t really have choice about it. Re-use.

Game Engine: depends on genre, but for MMORPG/MMOFPS is pretty much
inevitable (see “Engine-Centric Approach: Pretty Much Inevitable for
MMORPG/MMOFPS” section above)

TCP/TLS/JPEG/PNG/etc.: usually a really good idea to re-use. One potential
(though quite rare!) exception is TCP, but see detailed discussion on it in
Chapter [[TODO]] first. On client-side it is much better to re-use them (and
pretty much everything else) as static libraries rather than as DLLs, due to the
reasons outlined above

3D Engine: an open question; see further discussion on it in Chapter [[TODO]].

Ever-changing shared controls such as IE HTML Control: many of them are
still error-prone, buggy, and are changed a lot depending on version of IE
installed on client PC. Hence, it is better to avoid re-using them if you can
(replacing them with much simpler 3rd-party libraries, which usually aren’t
that function-rich, but are much more predictable).

On the other hand, much simpler basic controls such as
text, don’t have the problem of being changed too often;
still, you need to consider effects related to bot fighting
as mentioned above and described in Chapter [[TODO]],
so using these for critical information might be not a
good idea; on the third hand , usually you will be able to
replace them later without too much hassle, so it might be
ok to use them to speed things up (aiming to replace
them later, when bots become a problem)

Core logic of your game. This is where your added value
is. DIY

Something which is very peripheral to your game. This is
what is not likely to cause too much havoc to replace. Re-
use (as long as you can be sure what exactly you’re re-
using on the client side, see above about DLLs etc.)

Modular Approach: on “Temporary”

7

“

dependencies
If you’re planning to use some module/library only temporary (to speed up first
release), and re-write it later, “when we’re big and rich”, it might work, but you
need to be aware of several major caveats on the way. First of all, you need to
realize that this won’t work for replacing the whole game engine (see “Engine-
Centric Approach: on “Temporary” dependencies” section above).

Second, you need to be extremely vigilant when writing your code. Otherwise, when
the “we’re big and rich” part comes, the 3rd-party module will become so much
intertwined with the rest of your code, that separating it will amount to rewriting
everything from scratch (which is rarely an option for an up-and-running MMOG).

So, if you’re going to pursue this approach, you should at least:

write in Big Bold Letters in your design documents, that your dependency on
Module X is only temporary, and that you plan to get rid of it later

make your own Module MyX with it’s own API. The closer
your own APIs to the needs of your game – the better;
dumb wrappers around the 3rd-party modules should be
avoided. Your Module MyX should do what-your-specific-
game-needs-to-do (and not what-3rd-party-module-is-
able-to-provide). The mapping between the two API sets
(“your own” one and “3rd-party” one) is what your own
module should do, however trivial it may seem at first
(don’t worry, if your APIs are centered around your game,
and not around the 3rd-party comphonent, the “meat” of
your own module will grow as you develop). As Peter Wolf
has aptly put it: “wrap and wrap some more”.

Use ONLY your-own-API for the rest of the code (i.e. in
the code beyond your Module MyX)

make sure that everybody on the team knows that you’re
NOT using API of the 3rd-party module directly

try to prohibit APIs of the 3rd-party module in your build
system

In C++ this can be achieved, for example, using pimpl
idiom for your own module and prohibiting direct
inclusion of 3rd-party header files by anybody-
except-for-your-own-engine

unless you have managed to prohibit 3rd-party APIs in
your build system (see above), you should have special
periodic reviews to ensure that nobody uses these prohibited APIs. It is much
much simpler to avoid these APIs at early stages, than trying to remove them

pimpl idiom
also know n as
an opaque
pointer, Bridge
pattern, handle
classes,
Compiler
f irew all idiom,
d-pointer, or
Cheshire Cat, is
a special case of
an opaque data
type, a datatype
declared to be a
pointer to a
record or data
structure of
some
unspecif ied
type.

— Wikipedia —

https://en.wikipedia.org/wiki/Opaque_pointer
https://ca.linkedin.com/in/peter-wolf-770a501

Dependencies
are sneaky, and
it takes extreme
vigilance to
avoid them.

later (which can amount to rewriting really big chunks of your code)

While these rules may look overly harsh and too time-
consuming, practice shows that without following them you
get over-95%-chance that you won’t be able to replace the
3rd-party module when you need it. Dependencies are sneaky,
and it takes extreme vigilance to avoid them. On the other
hand, if you don’t want to do these things – feel free to ignore
them, just be honest to yourself and realize that Module X is
one of your Absolute Dependencies forever with all the
resulting implications.

Summary
TL;DR of Chapter IV:

DON’T take “re-use vs DIY” question lightly; if you make Really Bad decisions
in this regard, it can easily kill your game down the road

Consider using Engine-Centric approach, but keep in mind that Absolute
Dependency (a.k.a. Vendor Lock-In) that you’re introducing. Be especially
cautious when using this way for Games with Undefined Life Span (as defined
in Chapter I). On the other hand, this approach is pretty much inevitable for
MMOFPS/MMORPG games. If going Engine-Centric way, make sure that you
understand how the engine of your choosing implements those things you
need.

If Engine-Centric doesn’t work for you (for example, because there is no
engine available which allows to satisfy all your Business Requirements), you
generally should use “Responsible Re-use” a.k.a. “Modular” approach as
described above. If going this way, make sure to read the list of hints listed in
““Responsible Re-use” a.k.a. “Modular” Approach: Looking for Balance”
section above.

[[To Be Continued…
This concludes beta Chapter IV from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter V, “Modular
Architecture: Client-Side”]]

EDIT: Chapter V (a). Modular A rchitecture. Client-Side. Graphics has been
published.

“

/chapter-v-a-modular-architecture-client-side-graphics/

« Chapter III. On Cheating, P2P, and [non-]A uthoritativ e Serv er…

 Due to Popular Demand: PDFs of Beta Chapters from “Dev elop… »

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: Code Reuse, game, multi-player

Copyright © 2014-2015 ITHare.com

[–] References
[NoBugs2011] 'No Bugs' Hare, “Overused Code Reuse”

/overused-code-reuse/
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-iii-on-cheating-p2p-and-non-authoritative-servers-from-dd-of-mmog-book/
http://ithare.com/due-to-popular-demand-pdfs-of-chapters-from-development-deployment-of-multiplayer-online-games/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/code-reuse/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/

	Chapter IV. DIY vs Re-Use: In Search of Balance from upcoming book “Design&Development of MMOG”
	Business Perspective: DIY Your Added Value
	Engine-Centric Approach: an Absolute Dependency a.k.a. Vendor Lock-In
	Engine-Centric Approach: Pretty Much Inevitable for MMORPG/MMOFPS
	Engine-Centric Approach: You Still Need to Understand How It Works
	Engine-Centric Approach: on “Temporary” dependencies

	“Re-Use Everything in Sight” Approach: An Integration Nightmare
	“DIY Everything”: The Risk of Never-ending Story
	“Responsible Re-Use” a.k.a. “Modular” Approach: Looking for Balance
	Modular Approach: Examples
	Modular Approach: on “Temporary” dependencies

	Summary
	[[To Be Continued…
	[–]References
	Acknowledgement

