
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter II: “Game Entities and Interactions” from
upcoming book “Development and Deployment of
MMOG”
posted November 2, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter II from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

Please note that this Chapter II may look boring for some
of the developers; don’t worry, there will be a lot of code-
related stuff starting from Part B, but at the moment we
need to describe what we’re dealing with.

To navigate through the book, you may want to use Development&Deployment of MMOG:
Table of Contents.]]

So, after universally-hated unacceptably-long 2-hour meeting (the one where you
discussed your business requirements) you’ve got your very first idea about what
you’re going to do. With luck (or if you’ve read previous Chapter on what you’ll
need from the network perspective) it contains answers to all the questions we
need. Of course, these answers are subject to change, but at least you know what
you will be dealing with at the moment. Now, you may think that you know enough
to start architecting the game; however, it is not the case (yet). The next step after
specifying business requirements is not about drawing an architecture diagram, or
(Stroustrup forbid!) a class diagram. This next step should be a thorough
understanding of game entities and their interactions.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

While your
game is likely to

have a 3D
engine, and

very likely to
have some DB to

provide

On Importance of Holding Your Horses
After you’ve got your Business Requirements, it is often tempting to say “hey, we
will be using such-and-such game engine, so all we need is to implement our game
around this engine”. Or (especially if you’re coming from web development) to say
the same thing, but building the game around the database. Or to build your game
around some protocol (TCP or UDP). However, at this stage you still don’t really
have sufficient information to make architectural decisions. All these engines,
databases, and protocols are nothing more than implementation details, and we’re
not at the implementing stage yet.

While your game is likely to have a 3D engine, and very likely to
have some DB to provide persistence, and will certainly need
to run on top of some IP-based protocol, it is too early to
make any of them a center of your game universe. In
particular, even decision whether your game should be game-
engine-centric, or 3D-engine-centric, or DB-centric, or
protocol-centric, requires more thorough understanding of
the game mechanics, that usually arises right after reading
Business Requirements.

Making these decisions (and actually any architectural
decisions for that matter) before you have Entities&Relations
diagram described in this Chapter, can severely restrict your
choices, and if you have made a mistake in making such a

“

/wp-content/uploads/BB_part62_v1.png

persistence,
and w ill

certainly need
to run on top of

some IP-based
protocol, it is

too early to
make any of

them a center of
your game

universe.

decision (and when you’re deciding without having sufficient
information, mistakes are more than likely), it may easily lead
to grossly inefficient and even completely unworkable
implementations.

For example, if you decide that “our system should be DB-
centric, with 100% of the state being written to DB at all
times”, and your system happens to be a blackjack site, your
implementation will cause about 10x more DB load than an
alternative one, plus you will get a bunch of issues with
implementing rollback in case if your site has crashed (which
causes many games to be interrupted in the middle, and with
a multiplayer site you do need some kind of rollback). Usually,
the most optimal implementation for many of casino multi-

player games is with state of the table being stored in-memory only (and
synchronized with DB only when one single game is completed), but this won’t
become obvious until you draw your Entities&Relations diagram.

In an another example, if you decide that “our system should be game-engine-
centric”, and your game engine of choice doesn’t support a concept of zones (and
doesn’t have another way to calculate set of players-who-need-to-know-what-this-
player-does, assuming that everybody-interacts-with-everybody instead), you may
end up with a system which works reasonably well for small virtual worlds, but
which is completely unscalable to larger ones due to O(N^2) traffic which pretty
much inevitably arises from everybody-interacts-with-everybody assumption.

TL;DR:

DON’T Start w ith A rchitecting A round Game Engine

DON’T Start w ith A rchitecting A round DB

DON’T Start w ith A rchitecting A round Protocol

Ov erall, it is still too early to start architecting your game.

Instead,

What you need before architecturing is a diagram
showing all the game entities, and all their

interactions

Whether this step needs to involve project stakeholders, depends on the nature of
the game and on the level of details in your business requirements. However, in any
case it is advisable to have project stakeholders available during this stage, as

Even more
importantly,
you need to be
reasonably sure
that you have
listed all the
interactions
w hich you can
think of at the
moment.

questions on interactions such as “is entity A allowed to interact with entity B?” are
very likely to arise.

Game Entities: What are You Dealing With?
In each and every game, you have some game entities, which you’ll be dealing with.
For example, in a MMORPG you’re likely to have PCs, NPCs, zones, and cells; in a
casino game you have lobbies, tables, and players; in a social farming game you have
players and player farms. Of course, every game will contain many more entities
than I’ve mentioned above, but they depend on specifics of your game, so you’re
certainly in much better position than myself to write them down. And if you feel
that you’re about to be hit by “not seeing forest for the trees” syndrome, you can
always replace your diagram with several ones (organized in a hierarchical
manner), so that each one contains only a manageable number of entities.

Interactions Between Game Entities
Those game entities from the previous chapter, usually need to
interact with each other. Players reside within cells which in
turn reside within zones, PCs interact with NPCs, players sit
and play on casino tables, and players interact with other
player’s farms. All these interactions are very important for the
game architecture, and need to be written down as a part of
your Entities diagram. Even more importantly, you need to be
reasonably sure that you have listed all the interactions which
you can think of at the moment.

What Should You Get? Entities&Interactions
Diagram
As a result of the process of identifying your game entities, you
should get a diagram (let’s name it “Entities&Interactions
Diagram”) showing all the major game entities and, even more
importantly, all possible interactions between these entities.

One thing which MUST be included into the Entities&Interactions Diagram
(alongside with gameplay-related entities), is entities related to monetization
(payments, promotions) and entities related to social interactions. In other words,
if you’re going to rely on viral marketing via social networks, better know about it
in advance; as discussed below, the impact of social interactions on architecture
can be much more significant and devastating than simple “we’ll add that Facebook
gateway later”.

Examples of Entities and Interactions

“

To give you a bit of idea on entities and interactions, I’ ll try to describe typical
entities for some of popular game genres. Note that (as with any other advice, in
this book or elsewhere), YOUR MILEAGE MAY VARY, and you need to think about
specifics of your game rather than blindly copying typical entities mentioned below! Also note
that example diagrams provided here illustrate only a few aspects of the game; in practice,
your diagrams will usually be much more complicated.

Social Farming and Farming-Like Games

While social games genre is very wide and is difficult to generalize, one sub-genre,
social farming games, is straightforward enough to describe. In farming and
farming-like games number of different entities and especially interactions
between them are quite limited. Entities are usually limited to players and their
farms (the latter including everything-which-can-be-found-on-the-farm).
Interactions (beyond player interacting with their own farm) are also traditionally
very limited (though they are important from the social point of view).

NB: On all our example Entities&Interactions Diagrams, we will draw external (to our game)
entities as dotted; feel free to use any other convention, the idea here is not to create yet
another formal-and-unusable diagram language, but for you to visualize what your game is
about.

You should keep in mind that in most cases there is one
significant caveat to remember about: it is a mistake to think
that you can arbitrarily separate players onto different servers
and allow only interactions within one such server. This
“interactions are allowed only within one player server” model
would work only until you introduce “Play with your Facebook

1

/wp-content/uploads/Fig-II-1.png

Introducing
“play w ith real-
w orld f riends”
concept af f ects
arbitrarily
separated
player servers
dramatically:
you no longer
know w hich
players w ant to
play together,
and inter-
server
interaction is
no longer non-
existent.

friends” feature (which will most likely be a Business
Requirement, if not now, then a little bit later, see more on it in
“On Arbitrary Player Separation” section below). And
introducing “play with real-world friends” concept affects
arbitrarily separated player servers dramatically: you no
longer know which players want to play together, and inter-
server interaction is no longer non-existent (and in fact the
inter-server interaction has been observed to cause severe
problems to some of the social games).

Overall, you should not rely on arbitrary
player separation, even for social games

 at architecture stage, we’ll need to insert appropriate
gateways to communicate with these external entities, but
we’re not there yet

Casino Multiplayer Games

With casino multiplayer games, everything looks quite simple:
there are tables and players at these tables. However, in some of the casino games
(notably in poker), choosing an opponent is considered a skill, and therefore
players should be able to choose who they want to play against. It implies another
game entity – lobby, where the opponents can be selected. An example
Entities&Interactions Diagram for Multiplayer Blackjack is shown on Fig II.2:

“

1

/wp-content/uploads/Fig-II-2.png

Note that for this example diagram, we’ve omitted social interaction; you will need
to add it yourself, as it is appropriate for your specific game.

Stock Exchanges, Sports Betting and Auction Sites

In fact, stock exchanges and auction sites are so close to betting, that you’ll be
facing significant difficulties when trying to describe the difference between the
three (except, obviously, for social stigma traditionally attached to betting). With
stock exchanges, auction sites (think “eBay”) and betting sites, entities involved are
the same. It is players (though, of course, for a stock exchange you need to describe
them as “traders” or “dealers”), and stocks (or sporting events/products). Players
don’t interact directly; however, indirect interaction does exist via creating some
actions (“orders” or “bets”) related to stocks or events/products.

Fig II.3 shows an example Entities&Interactions diagram for a stock exchange:

V irtual W orld Games (MMOTBS/MMORTS/MMORPG/MMOFPS)

Despite all the differences (including those which affect architecture a lot, as it will
be described in Chapter [[TODO]]), from the point of view of the entities involved all
the virtual world games tend to be more or less similar. In particular, in these
games there are players (PCs), there are NPCs; also there are usually cells and zones
containing those cells, which represent a virtual world (VW) where interactions
between PCs and NPCs are occurring. What is important is that players in separate
cells usually can interact, but players in different zones cannot. The player option
of choosing who she wants to play with, may or may not be provided; however, even
if it is not provided, and you think that you can toss your players around your
virtual worlds as you wish, arbitrary player separation (assigning player to servers
without any inter-server interaction) becomes infeasible as soon as you introduce a

2

/wp-content/uploads/Fig-II-3.png

social feature such as “Recruit a Friend”. More on arbitrary player separation in
“On Arbitrary Player Separation” section below.

Fig. II.4 shows an example Entities&Interactions Diagram for an MMORPG:

 terms cells and zones may vary depending on the engine, but the idea is usually
pretty much the same

On Arbitrary Player Separation
As we’ll see in Chapter [[TODO]], implementation-wise it is often very tempting to
consider all your players as commodity, and to think that you can arbitrary assign
players to servers without any communication between those servers (one of the
things I’ve seen, was relying on limited “socializing” within a single server).
However, for vast majority of games out there, it is a really bad idea. In short: don’t
do it.

The reason behind is the following. Even if your game as such
seems to allow such arbitrary player separation (without any
interaction between player servers), there are Big Fat Chances
that you will need to implement some kind of interaction
between players sooner rather than later. Pretty much any
kind of IRL integration requires some kind of interaction
between players just because they want it (and not because
your rule engine decided that these two guys belong to the
same server). In other words: if you don’t think that
interaction of players just-because-they-want-it is a Business
Requirement – think again.

2

IRL
Abbreviation

f or 'In Real
Lif e.' Of ten used
in internet chat

rooms to let
people you are

talking about
something in

the real w orld

/wp-content/uploads/Fig-II-4.png
http://www.urbandictionary.com/define.php?term=IRL

« Chapter I: “Business Requirements” from upcoming book “Dev…

As just one simple example, even a simple “Play with your
Facebook friend” feature requires players to “know” about
each other, and to interact with each other. Moreover, you
cannot possibly predict in advance which of your players will
form a Facebook friendship some months later. In an another
simple example, most of payment processing will require you

to have some cross-server analysis to prevent fraudsters-who-cheated-one-server
to cheat on another one. And so on. And so forth. And we didn’t even start to speak
about support people, who will need to manage all this mess. Trying to ignore this
IRL integration is a pretty much sure way to a post-deployment disaster.

Think of your game as of one single planet with bunches of players living their, not
as of cluster of non-interacting asteroids with a few players on each. As a rule of
thumb, this stands even for such seemingly unconnected games as farming: as soon
as you add some socializing (and it is usually a very important part of business
strategy), you do need inter-player interactions, with no ability to control which
players are communicating with each other.

Entities&Relations Diagram as a Starting Point to
Architect Your Game
This Entities&Interactions Diagram you’ve just got is one of those things which will
affect your architecture greatly. In particular, it is a starting point to realize what
kinds of “implementation entities” (such as servers, OS processes, DB tables, rows, and
columns, etc.) you need to implement your “game entities”, and how to map game
entities to implementation entities. This “how to map game entities into
implementation entities” question will be discussed in Chapter [[TODO]].

[[To Be Continued…
This concludes beta Chapter II from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter III]]

EDIT: beta Chapter III. On Cheating, P2P, and [non-
]A uthoritativ e Serv ers, has been published.

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

and not in the
internet w orld.
— Urban Dictionary

—

/chapter-iii-on-cheating-p2p-and-non-authoritative-servers-from-dd-of-mmog-book/
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-i-business-requirements-of-development-and-deployment-of-mmog/

 Chapter III. On Cheating, P2P, and [non-]A uthoritativ e Serv er… »

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: game, multi-player

Copyright © 2014-2015 ITHare.com

http://ithare.com/chapter-iii-on-cheating-p2p-and-non-authoritative-servers-from-dd-of-mmog-book/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/

	Chapter II: “Game Entities and Interactions” from upcoming book “Development and Deployment of MMOG”
	On Importance of Holding Your Horses
	Game Entities: What are You Dealing With?
	Interactions Between Game Entities
	What Should You Get? Entities&Interactions Diagram
	Examples of Entities and Interactions
	Social Farming and Farming-Like Games
	Casino Multiplayer Games
	Stock Exchanges, Sports Betting and Auction Sites
	Virtual World Games (MMOTBS/MMORTS/MMORPG/MMOFPS)

	On Arbitrary Player Separation
	Entities&Relations Diagram as a Starting Point to Architect Your Game
	[[To Be Continued…
	Acknowledgement

