
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter I: “Business Requirements” from upcoming book
“Development and Deployment of MMOG”
posted October 26, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter I from the upcoming book
“Development&Deployment of Massively Multiplayer Online
Games”, which is currently being beta-tested. Beta-testing is
intended to improve the quality of the book, and provides free
e-copy of the “release” book to those who help with
improving; for further details see “Book Beta Testing“. All the
content published during Beta Testing, is subject to change
before the book is published.

Please note that this Chapter I may look boring for some of
the developers; don’t worry, there will be a lot of code-related
stuff starting from Part B, but at the moment we need to
describe what we’re dealing with.

To navigate through the book, you may want to use Development&Deployment of MMOG: Table
of Contents.]]

Preface
So, you have got a Great Idea for your Next Big Thing massively multi-player game,
and know every tiny detail about gameplay and graphics which you want your game to
have. Now the only tiny thing you need to do is to program it. Unfortunately for you
(and fortunately for me as an architect and the author of this book) game
development and subsequent deployment is not that simple. There are lots of details
you need to take into account to have your game released, to be able to cope with
millions of simultaneous players having very different last-mile connections, and to
make the game work with 0.01% of unplanned downtime while being able to add new
game features twice a month.

Part A. Conception: Before the V ery Beginning

You don’t “make” a violin. It is barrels and benches which are “made”. And violins, just like
bread, grapes, and children – are born and raised.

— Nicola Amati character from “Visit to Minotaur” movie —

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
https://en.wikipedia.org/wiki/Nicola_Amati

A game being
developed is
pretty much

like your baby.

A game being developed is pretty much like your baby. It will go
through all the stages which are typical for baby development,
from conception to a newborn and then to a toddler. While
development of your game certainly doesn’t stop at that point, in
this book we won’t discuss how to raise your game beyond
toddler; child and teen issues (both with games and with real
children) are too often of psychological nature, and are beyond
mostly-physical issues which we’re about to discuss.

“You” as used throughout this book, actually means “parents of
your game baby”; it will usually be a small team, but can be a 100-
developer team on one side of the spectrum, or a single

developer on another one. What is really important is not the size of the team, but how
the team feels about the project.

If you (as a future parent) don’t feel that your future game is your baby – think twice
before conceiving it. Doing such a challenging development with only money in mind
might not be the best decision in your life. If you’re starting to develop only for money
without any feelings for the project – then there are two possible outcomes. In the
first case you will gradually become attached to the project, and eventually will have
certain positive feelings about its development, greatly increasing the chances for
success. In the second case, you keep doing it for money; while making a great game is
still possible this way, it is much much more difficult to achieve. Success if doing-it-
for-money-only becomes even more elusive if this is your first massively multiplayer
game project, and you need to keep this in mind.

In Part A, we will discuss activities which need to be performed even before the
coding can be started; let’s name this stage project conception. It includes many
things which need to be done, from formulating business requirements to setting up
your source control and issue tracking systems, with lots of critical decisions in
between.

Chapter I. Understanding Business Requirements

“

The very f irst
step should be
to understand
w hat exactly
you're going to
achieve.

As mentioned above, we’re working under assumption that you’ve got a Great Game
Idea (with as full understanding of planned user experience as it is possible at this
time), you’re really passionate about it, and are really eager to start development.

What should be your very first step on this way? Start coding?
Nope. Choose the programming language? By the tiniest of the
margins closer, but still no. The very first step should be to
understand what exactly you’re going to achieve.

With any game, there are quite a few things which are dictated by
your future players (and other project stakeholders). Even if your
project is entirely non-commercial, just for the sake of being
consistent with the rest of the world, let’s name these things
“Business Requirements”.

Project Stakeholders
Every project has project stakeholders. A stakeholder can be an
investor, a manager, and/or a customer. For games, it is often translated into game
designers, producers, marketing/monetizing guys, customer service representatives
(CSRs), and, of course, players. If you’re developing the game in your spare time, it can
even be yourself. In any case, every project out there has project stakeholders. For
games, one extremely important type of the stakeholder is the future player (usually
as a “focus group”).

One thing which is paramount for the game to be successful, is to

“

/wp-content/uploads/BB_part61_v4.png

For your
game to

survive, most
likely you w ill

need some kind
of

monetization.

Have Project Stakeholders, including Future Players,
Take Part in Development Process

If your project stakeholders don’t participate in your development process (this
should apply to all the development stages, from specifying requirements to
alpha/beta testing) – the project is doomed almost for sure. And for games, project
stakeholders MUST include future players of your game.

On the other hand, having only future players as project
stakeholders is not enough. For your game to survive, most likely
you will need some kind of monetization. And those people
who’re responsible for monetization (marketing etc.) are also
very important project stakeholders, and MUST be involved in
game development.

The reason behind can be roughly described as follows. Each
game tends to create a separate world, with its own rules, which
are not obvious to the outsiders (and developers are outsiders
for the game world despite intimate involvement with game
mechanics). While we as developers can try to guess what is the
best from the stakeholder’s point of view – these guesses are
usuallyway off, that makes the game unplayable (if players’
opinions are not asked for), or non-monetizable (if other

stakeholders are not asked). For the project to be successful, we DO need to have a
stakeholder available during all the stages of the game development process. In other
words, if we (as developers) have any doubts on any issue related to business
requirements – we SHOULD have somebody on hand to ask for their authoritative
opinion.

BTW, don’t think that if you’re going to play the game, your opinion as a future
player’s will be sufficient. Unfortunately, when we (as developers) are writing code, it
affects our judgments about the game a lot; in other words, we know too much about
the game internals (and on efforts we need to spend to develop this or that particular
feature) to represent opinion of “an average player out there”. While our suggestions
(based on this knowledge) can be very valuable, all the decisions about gameplay
SHOULD be made by those future players who are not developers.

To summarize:

Participation of both future-players and other
stakeholders (such as people responsible for

monetization) in developing (and later in amending)
Business Requirements is absolutely necessary.

“

During these
business-
requirement-
w riting
sessions, our
role as
developers is

No stakeholders – no Business Requirements – no development, it is that simple.
Doing it any other way is a foolproof way right into disaster.

Stakeholders and Business Requirements
In some cases your stakeholders will give you a specification which says what you need
to do. More often than not, however, you will just get a vague description of the Great
Game Idea. It’s fine as a first step, but to get a clearer understanding of what is
needed, you have to get your project stakeholders to sit down together with you and
to write down your real Business Requirements.

This will involve at least one session dedicated just to this purpose (and probably
much more than just one such session); ideally, these sessions should be in person
rather than some kind of a conference (video)-call. I do know that in the XXI century
there are ultra-cheap conference calls and video conferences available, but they still
fall short compared to in-person meetings. While most of ongoing communication
can be made over the phone/Skype/chat/email/…, at a few important points during
game development process, such IRL meetings are necessary, and one of these points
is certainly those Business-Requirements-writing sessions.

Much more important, however, is to make sure that

Business Requirements are written by Project
Stakeholders

(and not by Developers)

During the session, by all means, note down all the things-you-think-are-stupid and
raise concerns (preferably in a bit more polite form than “are you guys crazy or
what?”), but be ready to accept decisions by stakeholders when they insist (as long as
they’re staying away from implementation details, see below).

During these business-requirement-writing sessions, our role as
developers is generally not to suggest business requirements, but
to make sure that all our questions to project stakeholders are
answered. Also it is very important to remember that Business
Requirements is not about “how we will do it” , and to concentrate
on “what is the thing which we will do”. While it is perfectly ok to
say “implementing this feature will take us extra 3 months” (which
in turn does need you to understand – but not explain – how to do
it), a decision “if having this feature worth these extra 3 months”,
lies entirely in stakeholder’s domain.

It should be also understood that (exactly because the session is
about what? and not about how?) it is entirely possible that at
later stages (but still before the coding is started) it may happen

“

generally not to
suggest
business
requirements,
but to make
sure that all our
questions to
project
stakeholders
are answ ered.

If you w rite
dow n a Bad

business
requirement

“We MUST w rite
our app in Java”

that Business Requirements cannot be satisfied. It is even more
important to emphasize that this is a part of normal iterative
development process, and in this case another Business
Requirement session may be necessary (though the second and
subsequent sessions usually simple enough and don’t normally
need to be in-person; that is, if you’re not too unlucky and didn’t
skip too much of this book).

Requirements vs Implementation Details
What are these “Business Requirements” for a typical game?
Basically, they include everything your players will be able to
observe. However, we need to distinguish between the things that
the player cares about, and their respective implementation details.

For example, players do care about the platforms where they will be able to run your
game, so “which platforms are to be supported?” is certainly one of your business
requirements, but on the other hand players don’t care about the programming
language you will be using (as long as it can run on all those platforms). In another
example players do care about response times and may care about how-your-app-
works-over-firewalls, but they don’t care if you achieve those response times and
working over firewalls via TCP or via UDP, as long as the whole thing does work.

It can be summarized as follows:

Business Requirements SHOULD be expressed
exclusively in Player’s Terms

Or the other way around, using terms which are not familiar to the majority of players
(or monetization people) SHOULD be prohibited for your business requirements
document.

Why is this so important? Because writing requirements down in
implementation terms rather than in player terms may severely
hurt your ability to choose an optimal way to implement your
game. Just as an example, if you write down a Bad business
requirement “We MUST write our app in Java” (instead of the
Good one “Our app MUST run on Windows, iPhone, and
Android”), you won’t even start to think about writing your app
in C++ and porting it to Android using NDK (with a rather
minimal Java UI, as described in Chapter [[TODO]]).

In another example, if you write a Bad business requirement “We
MUST use UDP” (instead of Good one “In 99.99% of cases, we
need at most 3sec delay between the user pressing a button and
it showing up to the other users”), you won’t even start to learn

“

(instead of the
Good one “Our
app MUST run

on Window s,
iPhone, and

Android”), you
w on't even start

to think about
w riting your

app in C++ and
porting it to

Android via
NDK.

about the ways to improve TCP interactivity (described in
Chapter [[TODO]]), and may miss on an opportunity to make your
app more firewall-friendly and to simplify your development by
using TCP. Or the other way around, you may write a Bad
business requirement “We MUST use TCP” (instead of a Good
one “We MUST have TLS-class security”), and may miss on an
opportunity to make your app more responsive via
implementing it over UDP (using DTLS and/or TLS-over-
reliable-UDP for security purposes, as described in Chapter
[[TODO]]).

In short:

Writing Business Requirements in Player
Terms allows you to Keep your Options Open

and keeping your options open is a Good Thing in general.

This separation between business requirements and implementation details means
that if your project stakeholder (future player, marketing guy, manager, investor, etc.)
says “we have a business requirement to write it in Java” (or “to use TCP” etc.) – you
need to explain that this is an implementation detail, and to ask for a definition in
terms which are obvious to the player.

Moreover, if the stakeholder is a manager and after all the explanations he is still
insisting that using UDP is a business requirement – you really need to think if you
want to work on this project, as such a deep misunderstanding is often a symptom of
super-micro-management and upcoming deep conflicts with this specific manager.

 While “we need to use UDP” (or TCP for that matter) may be a valid business
requirement in some cases (for example, when you’re writing a communication
library, and your user is a programmer, so she knows about UDP), it doesn’t apply to
games. You MAY need to use UDP for your game – it is just not a business
requirement, but a technical decision on “how to implement these business
requirements”

Subject to Change, Seven Days a Week
It is to be understood that in the real world Business Requirements tend to change
very often, and are certainly not carved in stone. This is to be expected for most
software projects out there, and applies to game development in spades. Therefore:

Expect Business Requirements to Change and Leave

1

1

There is of ten
a temptation to
w rite a system-
w hich-is-able-
to-handle-
everything and
w hich

Lots of Room for These Changes

Even if you’re told that a certain thing will “never ever” change, keep in mind that
“never ever” can come up much earlier than you expect. This is not to tell that you
should write an “absolutely universal” system able to deal with any change (see about
dangers of being over-generic below); this is to tell not to be too upset when you’re
forced to rewrite 50% of the system when a thing-that-you-were-told-will-never-
change does change overnight. Oh, and do keep records of these assurances, so when
the requirement changes, you can explain why such a simple thing (from the point of
view of stakeholder) requires rewriting half the system.

One important thing to understand is that business requirement being agile doesn’t
imply that you don’t need to write them down. While each of requirements may change
later, at every point it should be very clear (and agreed by both stakeholders and
developers) what you’re trying to achieve right now. When (not “if” !) business
requirements change – fine, you will update them.

Treat business requirements as one of the documents under your source control
system (whether you really put business requirements document under source
control – is up to you, but IMHO it is a good thing to do). In any case, business
requirements tend to have effects similar to those of an extremely high-level header
file in C/C++: as with changing a high-level header file, changing business
requirements can be very expensive, but in a majority of cases it doesn’t mean
rewriting everything out there – especially if you have prepared for it (see Chapter [[TODO]]
for discussion on how to do it).

The Over-Generic Fallacy
Sculpting is Easy. You just chip away the stone that doesn’t look like David.

— (Mis)attributed to Michelangelo —

When speaking about agility and taking “be ready to changing
requirements” adage to the extreme, there is often a temptation
to write a system-which-is-able-to-handle-everything and which
therefore will never change (and handling “everything” will be
achieved by some kind of configuration/script/…). While as a
developer, I perfectly understand the inclination to “writing
Good Code once so we won’t need to change it later”,
unfortunately, it doesn’t work this way. The issues with this over-
generic approach start with the time it takes to implement, but
the real problems start later, when your over-generic framework
is ready. When your over-generic code is finally completed, it
turns out that either that (a) “everything” as it was implemented
by this system, is too narrow for practical purposes (i.e. it cannot
be really used, and often needs to be started from scratch), or

“

theref ore w ill
never change

that (b) the configuration file/script are at best barely usable
(insufficient, overcomplicated, cumbersome, etc.). In the extreme
case of an over-generic software, its configuration file/script is a
fully fledged programming language in itself, so after doing all that work on the over-
generic system we need to learn how to program it, and then to program our game, so
we’re essentially back to the square one.

In fact, systems-which-can-handle-everything already exist; any Turing-complete
programming language can indeed handle absolutely everything; in a sense, Turing-
complete programming language, represents an absolute freedom. However, as
writing a Turing-complete programming language is normally not in the game
development scope, our role as game developers should be somewhat different from
just copying compiler executable from one place to another and saying that our job is
done.

What we as developers are essentially doing, is restricting the absolute freedom
provided by our original Turing-complete language (just like a sculptor restricts the
absolute freedom provided to him by the original slab of stone), and saying that “our
system will be able to do this, at the cost of not being able to do that”. Just as the art of
sculpting is all about knowing when to stop chipping away the stone, the art of the
software design is all about feeling when to stop taking away the freedoms inherent to
programming languages.

Coming back to the Earth from the philosophical clouds:

When developing a game, it is important to strike the
Right Balance

between being over-generic and being over-specific

 Creating domain-specific programming language optimized for a game, may make
perfect sense; the point here is not aimed against developing scripting languages
where they make sense and provide additional value specific to the game domain, but
against being over-generic just for the sake of writing-it-once-and-forgetting-
about-it
 and I don’t know of any practical programming language which is not Turing-

complete,

Keeping Quality under Time-To-Market Pressure: Priorities,
MV P, and Planning
When developing a game (or any other software for that matter), it is very important
to deliver it while it still makes sense market-wise. If you take too long to develop, the
whole subject can disappear or at lease become much less popular, or your graphics
can become outdated. For example, if you started developing a game about
dinosauri during dinosaur craze of 1990’s but finished it only by 2015, chances are that

2

3

2

3

4

We w ill
inevitably be

pushed to
deliver our
game ASAP

(w ith a common
target date

being
'yesterday'),

there is no w ay
around it.

your target audience has shrank significantly (not to mention that they’ve changed a
lot).

That’s why (unfortunately to us developers) we will inevitably be
pushed to deliver our game ASAP (with a common target date
being “yesterday”), there is no way around it. If leaving this
without proper attention, it will inevitably lead to a horrible rush
at the end, dropping essential features (while already a lot of
time was spent on non-essential ones), skipping most of testing,
and to a low-quality game in the end.

Dealing with this time-to-market problem is not easy, but is
possible. To avoid the rush in the end, there are two things which
need to be done.

The first such thing is defining a so-called Minimum Viable
Product (a.k.a. MVP). You need to define what exactly you need to
be in your first release. The common way to do it is to do about
the same thing which you’re doing when packing for a camping
trip. Start with things-which-you-may-want-to-have, which will
make your first list. Then, go through it and throw away
everything except things which are absolutely necessary. Note
that you may face resistance from stakeholders in this regard; in

this case be firm: setting priorities is vital for the health of the project.

The second endeavour you need to undertake to avoid that rush-which-destroys-
everything, is as much obvious as it is universally hated by developers. It is planning.
You do need to have schedule (with an appropriate time reserves), and milestones,
and more or less keep to the schedule. A bit more on planning will be discussed in
Chapter [[TODO]].

 this is not to mention that you can simply run out of money for the project

Limited-Life-Span vs Undefined-Life-Span Games
One of the requirements for your upcoming game is extremely important, but is not
too-well known, so I’ll try to explain it a bit. It is all about projected lifespan of your
game. As we will see further down the road, game lifespan has profound implications
on the game architecture and design.

Starting from the times of the Ancient Gamers (circa 1980), most games out there
were intended to be sold. It has naturally limited their life time (for one simple
reason: to get more money, the producer needed to release another game and charge
for it). This is a classical (not to say it is necessarily outdated) game business model,
and massively multiplayer games which are intended to have a limited life span, share

“

4

Indeed,
games such as
stock markets,
poker sites, or
MMORPGs such
as World of
Warcraf t are
not designed to
disappear af ter
a predef ined
time f rame.

quite a bit with traditional game development. In particular, limited-life-span games
are normally built around one graphics engine. Moreover, very often such an engine is
very tightly coupled with the rest of the game.

As games were developing from Ancient Gamer Times towards more modern
business approaches, game producers have come up with a brilliant idea of writing a
game once and exploiting it pretty much forever. Therefore, these days quite a few
multi-player games are intended to have a potentially-unlimited life-span. The idea
behind is along the following lines:

“Let’s try to make a game and get as much as we can
out of it, keeping it while it is profitable and

developing it along the road”

Indeed, games such as stock markets, poker sites, or MMORPGs
such as World of Warcraft are not designed to disappear after a
predefined time frame. Most of them are intended to exist for a
while (providing jobs to developers and generating profits to
owners), and this fact makes a very significant difference for
some of the architectural choices.

Most importantly, for unlimited-life-span games, there is a risk
with relying on one single graphics engine. If your engine is not
100% your own, a question arises: “Are you 100% sure that the
engine will be around and satisfy your crowd in 5-10 years time?”
This, in turn, has several extremely important implications,
shifting the balance towards DYI (see Chapter [[TODO]]) and/or
going for ability to switch the engines, severely reducing coupling
with the engine (this will be discussed in Chapter [[TODO]]).

Your Requirements List
So, after reading all the stuff above about “how to write your
business requirements”, you’ve finished your business-
requirements session, and got your list of business requirements for your game. While
your list is unique for your game, there are some things that need to be present there
for sure:

A very detailed description of the user experience (including game logic, UI,
graphics, sounds, etc.). This is what is often referred to as a “Game Design”
document; it is going to take most of your Business Requirements document, but
it is game-specific so we cannot really elaborate on it here. However, there are
lots of much-less-obvious (and MMO-specific) things which need to be written
down, see below.

Game projected life span (is it “Release, then 3 DLCs over 2 years, and that’s it” ,

“

5

or “running forever and ever – until the death will us part”?). For further
discussion, see [[TODO]] section above

Do you need some kind of “invite your Facebook friend” feature (or anything
similar)?

Is your game supposed to be 3D or 2D? Note that at least in theory, dual 2D/3D
interface can be implemented, especially for those games with “forever” lifespan

List of platforms you would like to support for the client-side app
List of platforms you want to support in the very first release

Note that the list of platforms for the server-side is normally an
implementation detail, and as such doesn’t belong to the business
requirements. Neither do programming languages, frameworks etc.

Timing requirements (how long it should take for the player to see what is going
on). These are very important for our network programming, so you need to
insist on specifying them. “As fast as possible” is not really useful, but “at least as
fast as such and such game” is much better (if you can get “at most X
milliseconds delay between one user presses a button and another one sees the
result”, it’s even better, but don’t count on getting it).

closely related to timing requirements is a question about your game being
“synchronous” or “asynchronous”. In other words, do you players need to be
simultaneously online when they’re playing? At least most of the time, fast-
paced games will be “synchronous” (it doesn’t make much sense to play
MMOFPS via e-mailing “I’m shooting at you, what will be your response?”),
while really slow-paced ones (think chess by snail mail) will be
“asynchronous”.

What types of connection do you need to support? Do you
need to support dial-up (hopefully not)? But what about
connection-over-3G? What about working over GPRS?

What is your target geographical area? While “worldwide”
always sounds as a good idea, for some very-fast-paced
games it might be not an option (this will be discussed in
Chapter [[TODO]]). Also considerations “when most of the
players are available” can affect some types of gameplay too
(for example, if in your game one player can challenge
another one, with a loser losing by default, you most likely
will need to have “time windows” where such challenges are
allowed, with timing of these “time windows” tied to real-
world clock in the relevant time zone).

Are you planning to have Big Finals shown in real-time to
thousands and hundreds-of-thousands of observers? NB:
we’ll see why it is important techically, in Chapter [[TODO]]

Do you need to implement i18n in the very first release or it
can be postponed?

Client update requirements. There is a part of it that is

6

i18n
Internationalization
(f requently
abbreviated as
i18n) is the
process of
designing a
sof tw are
application so
that it can
potentially be
adapted to
various
languages and
regions w ithout
engineering
changes.

— Wikipedia —

https://en.wikipedia.org/wiki/Internationalization_and_localization

Even if it is
“the game w ill
be f ree f orever
and ever”, or
“all the
payments w ill
be done via
Apple AppStore”
- it needs to be
w ritten dow n.

(almost) universal for all the games: “we do need a way to
update the client automatically, simply when the player starts the app” – still,
make sure to write it down. However, there are two more subtle questions:

is it acceptable to stop the game world at all while the clients are being
updated? How long this stop-the-world is allowed to take?

Is it acceptable to force-update client apps (or at least not to allow playing
with an out-of-date client)?

If not – for how long (in terms of “months back” or “versions back”) do
you need to support backward compatibility?

Server update requirements. Most of the server-side stuff qualifies as
“implementation details”; however, whenever the server is stopped, it’s certainly
visible to the players, so “how often we need to stop the server for software
upgrades” is a perfectly valid business-level question. Is it acceptable to stop the
game while server being updated? How often are server updates planned? With
the game being multi-player, stopping and then resuming the game world may
become Quite a Pain in the Neck for players. However, allowing for server
updates without stopping the game world can easily become a Much Bigger Pain
when developing your system (see [[TODO]] chapter for some hints in this
direction), so you need to think in advance whether the effort is worth the
trouble. Unless a non-stopping server requirement is Really Significant
business-wise – you may want to try dropping it from the requirements list, and
explicitly say that you can stop the server once-per-N-weeks (and also whenever
an emergency server update is required) to update server-side software (where
N depends on the specifics of your game).

In-game payment systems which may need to be supported
in the long run (these have implications on security, not to
mention that you need to have a place for them within your
architectured system). Even if it is “the game will be free
forever and ever”, or “all the payments will be done via Apple
AppStore” – it needs to be written down. Oh, and if it is “all
the payments will be done via Apple AppStore” and there is a
“Windows” in the list of the platforms to be supported –
there is a likely inconsistency in your requirements, so either
drop “Windows”, or think about specific AppStores for the
Windows platform, or be ready to support payments
yourself (which is doable, but is a Really Big Pain in the Neck,
so it’s better to know about it well in advance).

As we will see later, we will need all these things to make
decisions about network architecture. It means that if your list is
missing any of these – you need to go back to the drawing board
to the meeting room and get them out of the project
stakeholders.

 And hopefully agreeing with, as blindly following the advice won’t get you far enough

“

5

6

« Contents of “Dev elopment and Deployment of Massiv ely Multip…

 Chapter II: “Game Entities and Interactions” from upcoming boo… »

 I don’t want to go into lengthy splitting-hair discussion whether this property
should be named “temporal” or “synchronous”; let’s simply use the name
“synchronous” for the purposes of this book

[[To Be Continued…
This concludes beta Chapter I from the upcoming book
“Development and Deployment of Massively Multiplayer Games
(from social games to MMOFPS, with social games in between)”.
Stay tuned for beta Chapter II, “Games Entities and Interactions”

EDIT: Chapter II, “Game Entities and Interactions”, has been
published]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: business requirements, game, multi-player

Copyright © 2014-2015 ITHare.com

6

/chapter-ii-game-entities-and-interactions-from-upcoming-book-development-and-deployment-of-mmog/
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
http://ithare.com/chapter-ii-game-entities-and-interactions-from-upcoming-book-development-and-deployment-of-mmog/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/business-requirements/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter II: “Game Entities and Interactions” from
upcoming book “Development and Deployment of
MMOG”
posted November 2, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter II from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

Please note that this Chapter II may look boring for some
of the developers; don’t worry, there will be a lot of code-
related stuff starting from Part B, but at the moment we
need to describe what we’re dealing with.

To navigate through the book, you may want to use Development&Deployment of MMOG:
Table of Contents.]]

So, after universally-hated unacceptably-long 2-hour meeting (the one where you
discussed your business requirements) you’ve got your very first idea about what
you’re going to do. With luck (or if you’ve read previous Chapter on what you’ll
need from the network perspective) it contains answers to all the questions we
need. Of course, these answers are subject to change, but at least you know what
you will be dealing with at the moment. Now, you may think that you know enough
to start architecting the game; however, it is not the case (yet). The next step after
specifying business requirements is not about drawing an architecture diagram, or
(Stroustrup forbid!) a class diagram. This next step should be a thorough
understanding of game entities and their interactions.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

While your
game is likely to

have a 3D
engine, and

very likely to
have some DB to

provide

On Importance of Holding Your Horses
After you’ve got your Business Requirements, it is often tempting to say “hey, we
will be using such-and-such game engine, so all we need is to implement our game
around this engine”. Or (especially if you’re coming from web development) to say
the same thing, but building the game around the database. Or to build your game
around some protocol (TCP or UDP). However, at this stage you still don’t really
have sufficient information to make architectural decisions. All these engines,
databases, and protocols are nothing more than implementation details, and we’re
not at the implementing stage yet.

While your game is likely to have a 3D engine, and very likely to
have some DB to provide persistence, and will certainly need
to run on top of some IP-based protocol, it is too early to
make any of them a center of your game universe. In
particular, even decision whether your game should be game-
engine-centric, or 3D-engine-centric, or DB-centric, or
protocol-centric, requires more thorough understanding of
the game mechanics, that usually arises right after reading
Business Requirements.

Making these decisions (and actually any architectural
decisions for that matter) before you have Entities&Relations
diagram described in this Chapter, can severely restrict your
choices, and if you have made a mistake in making such a

“

/wp-content/uploads/BB_part62_v1.png

persistence,
and w ill

certainly need
to run on top of

some IP-based
protocol, it is

too early to
make any of

them a center of
your game

universe.

decision (and when you’re deciding without having sufficient
information, mistakes are more than likely), it may easily lead
to grossly inefficient and even completely unworkable
implementations.

For example, if you decide that “our system should be DB-
centric, with 100% of the state being written to DB at all
times”, and your system happens to be a blackjack site, your
implementation will cause about 10x more DB load than an
alternative one, plus you will get a bunch of issues with
implementing rollback in case if your site has crashed (which
causes many games to be interrupted in the middle, and with
a multiplayer site you do need some kind of rollback). Usually,
the most optimal implementation for many of casino multi-

player games is with state of the table being stored in-memory only (and
synchronized with DB only when one single game is completed), but this won’t
become obvious until you draw your Entities&Relations diagram.

In an another example, if you decide that “our system should be game-engine-
centric”, and your game engine of choice doesn’t support a concept of zones (and
doesn’t have another way to calculate set of players-who-need-to-know-what-this-
player-does, assuming that everybody-interacts-with-everybody instead), you may
end up with a system which works reasonably well for small virtual worlds, but
which is completely unscalable to larger ones due to O(N^2) traffic which pretty
much inevitably arises from everybody-interacts-with-everybody assumption.

TL;DR:

DON’T Start w ith A rchitecting A round Game Engine

DON’T Start w ith A rchitecting A round DB

DON’T Start w ith A rchitecting A round Protocol

Ov erall, it is still too early to start architecting your game.

Instead,

What you need before architecturing is a diagram
showing all the game entities, and all their

interactions

Whether this step needs to involve project stakeholders, depends on the nature of
the game and on the level of details in your business requirements. However, in any
case it is advisable to have project stakeholders available during this stage, as

Even more
importantly,
you need to be
reasonably sure
that you have
listed all the
interactions
w hich you can
think of at the
moment.

questions on interactions such as “is entity A allowed to interact with entity B?” are
very likely to arise.

Game Entities: What are You Dealing With?
In each and every game, you have some game entities, which you’ll be dealing with.
For example, in a MMORPG you’re likely to have PCs, NPCs, zones, and cells; in a
casino game you have lobbies, tables, and players; in a social farming game you have
players and player farms. Of course, every game will contain many more entities
than I’ve mentioned above, but they depend on specifics of your game, so you’re
certainly in much better position than myself to write them down. And if you feel
that you’re about to be hit by “not seeing forest for the trees” syndrome, you can
always replace your diagram with several ones (organized in a hierarchical
manner), so that each one contains only a manageable number of entities.

Interactions Between Game Entities
Those game entities from the previous chapter, usually need to
interact with each other. Players reside within cells which in
turn reside within zones, PCs interact with NPCs, players sit
and play on casino tables, and players interact with other
player’s farms. All these interactions are very important for the
game architecture, and need to be written down as a part of
your Entities diagram. Even more importantly, you need to be
reasonably sure that you have listed all the interactions which
you can think of at the moment.

What Should You Get? Entities&Interactions
Diagram
As a result of the process of identifying your game entities, you
should get a diagram (let’s name it “Entities&Interactions
Diagram”) showing all the major game entities and, even more
importantly, all possible interactions between these entities.

One thing which MUST be included into the Entities&Interactions Diagram
(alongside with gameplay-related entities), is entities related to monetization
(payments, promotions) and entities related to social interactions. In other words,
if you’re going to rely on viral marketing via social networks, better know about it
in advance; as discussed below, the impact of social interactions on architecture
can be much more significant and devastating than simple “we’ll add that Facebook
gateway later”.

Examples of Entities and Interactions

“

To give you a bit of idea on entities and interactions, I’ ll try to describe typical
entities for some of popular game genres. Note that (as with any other advice, in
this book or elsewhere), YOUR MILEAGE MAY VARY, and you need to think about
specifics of your game rather than blindly copying typical entities mentioned below! Also note
that example diagrams provided here illustrate only a few aspects of the game; in practice,
your diagrams will usually be much more complicated.

Social Farming and Farming-Like Games

While social games genre is very wide and is difficult to generalize, one sub-genre,
social farming games, is straightforward enough to describe. In farming and
farming-like games number of different entities and especially interactions
between them are quite limited. Entities are usually limited to players and their
farms (the latter including everything-which-can-be-found-on-the-farm).
Interactions (beyond player interacting with their own farm) are also traditionally
very limited (though they are important from the social point of view).

NB: On all our example Entities&Interactions Diagrams, we will draw external (to our game)
entities as dotted; feel free to use any other convention, the idea here is not to create yet
another formal-and-unusable diagram language, but for you to visualize what your game is
about.

You should keep in mind that in most cases there is one
significant caveat to remember about: it is a mistake to think
that you can arbitrarily separate players onto different servers
and allow only interactions within one such server. This
“interactions are allowed only within one player server” model
would work only until you introduce “Play with your Facebook

1

/wp-content/uploads/Fig-II-1.png

Introducing
“play w ith real-
w orld f riends”
concept af f ects
arbitrarily
separated
player servers
dramatically:
you no longer
know w hich
players w ant to
play together,
and inter-
server
interaction is
no longer non-
existent.

friends” feature (which will most likely be a Business
Requirement, if not now, then a little bit later, see more on it in
“On Arbitrary Player Separation” section below). And
introducing “play with real-world friends” concept affects
arbitrarily separated player servers dramatically: you no
longer know which players want to play together, and inter-
server interaction is no longer non-existent (and in fact the
inter-server interaction has been observed to cause severe
problems to some of the social games).

Overall, you should not rely on arbitrary
player separation, even for social games

 at architecture stage, we’ll need to insert appropriate
gateways to communicate with these external entities, but
we’re not there yet

Casino Multiplayer Games

With casino multiplayer games, everything looks quite simple:
there are tables and players at these tables. However, in some of the casino games
(notably in poker), choosing an opponent is considered a skill, and therefore
players should be able to choose who they want to play against. It implies another
game entity – lobby, where the opponents can be selected. An example
Entities&Interactions Diagram for Multiplayer Blackjack is shown on Fig II.2:

“

1

/wp-content/uploads/Fig-II-2.png

Note that for this example diagram, we’ve omitted social interaction; you will need
to add it yourself, as it is appropriate for your specific game.

Stock Exchanges, Sports Betting and Auction Sites

In fact, stock exchanges and auction sites are so close to betting, that you’ll be
facing significant difficulties when trying to describe the difference between the
three (except, obviously, for social stigma traditionally attached to betting). With
stock exchanges, auction sites (think “eBay”) and betting sites, entities involved are
the same. It is players (though, of course, for a stock exchange you need to describe
them as “traders” or “dealers”), and stocks (or sporting events/products). Players
don’t interact directly; however, indirect interaction does exist via creating some
actions (“orders” or “bets”) related to stocks or events/products.

Fig II.3 shows an example Entities&Interactions diagram for a stock exchange:

V irtual W orld Games (MMOTBS/MMORTS/MMORPG/MMOFPS)

Despite all the differences (including those which affect architecture a lot, as it will
be described in Chapter [[TODO]]), from the point of view of the entities involved all
the virtual world games tend to be more or less similar. In particular, in these
games there are players (PCs), there are NPCs; also there are usually cells and zones
containing those cells, which represent a virtual world (VW) where interactions
between PCs and NPCs are occurring. What is important is that players in separate
cells usually can interact, but players in different zones cannot. The player option
of choosing who she wants to play with, may or may not be provided; however, even
if it is not provided, and you think that you can toss your players around your
virtual worlds as you wish, arbitrary player separation (assigning player to servers
without any inter-server interaction) becomes infeasible as soon as you introduce a

2

/wp-content/uploads/Fig-II-3.png

social feature such as “Recruit a Friend”. More on arbitrary player separation in
“On Arbitrary Player Separation” section below.

Fig. II.4 shows an example Entities&Interactions Diagram for an MMORPG:

 terms cells and zones may vary depending on the engine, but the idea is usually
pretty much the same

On Arbitrary Player Separation
As we’ll see in Chapter [[TODO]], implementation-wise it is often very tempting to
consider all your players as commodity, and to think that you can arbitrary assign
players to servers without any communication between those servers (one of the
things I’ve seen, was relying on limited “socializing” within a single server).
However, for vast majority of games out there, it is a really bad idea. In short: don’t
do it.

The reason behind is the following. Even if your game as such
seems to allow such arbitrary player separation (without any
interaction between player servers), there are Big Fat Chances
that you will need to implement some kind of interaction
between players sooner rather than later. Pretty much any
kind of IRL integration requires some kind of interaction
between players just because they want it (and not because
your rule engine decided that these two guys belong to the
same server). In other words: if you don’t think that
interaction of players just-because-they-want-it is a Business
Requirement – think again.

2

IRL
Abbreviation

f or 'In Real
Lif e.' Of ten used
in internet chat

rooms to let
people you are

talking about
something in

the real w orld

/wp-content/uploads/Fig-II-4.png
http://www.urbandictionary.com/define.php?term=IRL

« Chapter I: “Business Requirements” from upcoming book “Dev…

As just one simple example, even a simple “Play with your
Facebook friend” feature requires players to “know” about
each other, and to interact with each other. Moreover, you
cannot possibly predict in advance which of your players will
form a Facebook friendship some months later. In an another
simple example, most of payment processing will require you

to have some cross-server analysis to prevent fraudsters-who-cheated-one-server
to cheat on another one. And so on. And so forth. And we didn’t even start to speak
about support people, who will need to manage all this mess. Trying to ignore this
IRL integration is a pretty much sure way to a post-deployment disaster.

Think of your game as of one single planet with bunches of players living their, not
as of cluster of non-interacting asteroids with a few players on each. As a rule of
thumb, this stands even for such seemingly unconnected games as farming: as soon
as you add some socializing (and it is usually a very important part of business
strategy), you do need inter-player interactions, with no ability to control which
players are communicating with each other.

Entities&Relations Diagram as a Starting Point to
Architect Your Game
This Entities&Interactions Diagram you’ve just got is one of those things which will
affect your architecture greatly. In particular, it is a starting point to realize what
kinds of “implementation entities” (such as servers, OS processes, DB tables, rows, and
columns, etc.) you need to implement your “game entities”, and how to map game
entities to implementation entities. This “how to map game entities into
implementation entities” question will be discussed in Chapter [[TODO]].

[[To Be Continued…
This concludes beta Chapter II from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter III]]

EDIT: beta Chapter III. On Cheating, P2P, and [non-
]A uthoritativ e Serv ers, has been published.

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

and not in the
internet w orld.
— Urban Dictionary

—

/chapter-iii-on-cheating-p2p-and-non-authoritative-servers-from-dd-of-mmog-book/
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-i-business-requirements-of-development-and-deployment-of-mmog/

 Chapter III. On Cheating, P2P, and [non-]A uthoritativ e Serv er… »

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: game, multi-player

Copyright © 2014-2015 ITHare.com

http://ithare.com/chapter-iii-on-cheating-p2p-and-non-authoritative-servers-from-dd-of-mmog-book/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter III. On Cheating, P2P, and [non-]Authoritative
Servers from “D&D of MMOG” book
posted November 9, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter III from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

While developing an MMOG, there is one extremely important thing to remember
about. This thing is almost non-existent for non-multiplayer games, and is usually
of little importance for LAN-based multiplayer games. I’m speaking about player
cheating.

Player cheating is One Big Problem for all successful MMO games. The problem is
that ubiquitous for such games, that we can even say that if you don’t have players
cheating – it is either you’re not looking for cheaters thoroughly enough, or you are
not successful yet.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

The thing w as
that the players

w ere able to
push all their

“play chips” on
the table; w hile

If you’re popular enough, they Will find Reasons to Cheat

Two things are infinite: the universe and human stupidity; and I’m not sure about the universe.
— Albert Einstein —

You may think that players have no reason to cheat for your specific game. For
example, if your game has nothing which can be redeemed for money – you may
think that you’re safe regardless of your number of players. In practice, it is exactly
the other way around: if your game is popular enough, they will find a reason to
cheat regardless of direct redemption options.

Just one real-life example. Once upon a time, there was a
poker site out there, where players got “play chips” for free,
and were able to play with them. There was nothing which can
be done with that “play chips”, except for playing (so they
cannot be redeemed for anything-which-has-real-value). At
that time it seemed to the team that there was no reason to
cheat on the site, none whatsoever, right? The real life has
proven this assumption badly wrong.

The thing was that the players were able to push all their “play
chips” on the table; while doing it has made very little sense,
they were using the amount of their chips to imply “how good
the player I am”. And as soon as they started to brag about the

“

/wp-content/uploads/BB_part63_v1.png
https://en.wikipedia.org/wiki/Albert_Einstein

doing it has
made very little

sense, they
w ere using the

amount of their
chips to imply
“how good the

player I am”

play chips, one guy has thought “hey, I can sell these play chips
on eBay, and they will pay!” And as soon as eBay sales went on,
the cheating went rampant (with lots of multiple accounts to
get those free chips, and with lots of “chip dumping” to pass
them along).

While I (and probably you) cannot imagine spending 20 real
dollars to get two million of “play chips” with no other value
than being able to boast that you’re a Really Good Player
(while you’re not) – we know for sure that there is a certain

percentage of people out there who will do it. If you’re big enough, such things will
happen for sure, the only question is about your site popularity and probabilities.

BTW, exactly the same aspect of human nature is currently successfully being
exploited for monetization purposes by numerous modern games (especially social
games); however, at this point we’re not concerned about the exploiting human
vices ourselves (it is a job for monetization guys, and beyond the scope of this
book), but about technical aspects of preventing cheating.

The moral of the story:

Even if you think that players have zero reason to
cheat

Given your site is popular enough, they will find
such a reason

As soon as your game reaches 1’000 simultaneous players, you’re likely to have
singular cheaters. And when the number goes up to 100’000, you can be 100% sure
that cheaters are there (and if you don’t see them – it just means that you’re not
looking for them hard enough). While it depends on the kind of goodies you provide
to your players, and numbers above may easily vary by an order of magnitude, I
daresay that chances of you having a game with 100’000 simultaneous players and
not having any cheaters, are negligible, pretty much regardless of what exactly is
the game you’re playing.

The Big Fat Hairy Difference from e-commerce
One thing to be kept in mind is that game cheaters are very different from e-
commerce fraudsters. With e-commerce, those who’re trying to get around the
system, are either those trying to angle the promotions, or outright fraudsters.
When speaking about games, the reasons behind cheating are much more diverse.
For players, in addition to all the reasons to cheat described above, there are many
others.

1

dealing w ith
cheaters is not
all about
money, it is
about
preserving the
very substance
of your game.

For example, as it has happened with “play chips” (see [[TODO]] section above),
people can cheat just to claim that they’re better players than they really are. Or
they can cheat because they feel that the game rules are unfair. Or they can cheat
just because of (wrong) perception that “everybody else does it anyway”, so they
need to cheat just to level the field. Or they can just try to save some time by using
“bots” for “grinding”. Possibilities are really endless here.

This means that the line which separates “cheaters” from “honest players” is much
more blurred with games, than in e-commerce. Throw in the fact that e-commerce
fraud is an outright crime, and, say, using “bots” to avoid “grinding” is punishable
at most by the ban on the site (which can be bypassed rather easily, at least unless
the name on your credit cards is Rumpelstiltskin), and you will realize that

some of the people who would never ever cheat in e-
commerce, will easily cheat in online games

While the number of “honest players” in online games still exceeds the number of
“cheaters” by a wide margin, you cannot rely on your e-commerce experience of
“Oh, merely 1% of our customers are cheating”. Also you need to keep in mind that,
due to much more significant interaction between players in games than in e-
commerce,

unlike with e-commerce, even a small number of
game cheaters can easily ruin the whole game

ecosystem

Just as one example: if enough people are using bots to get an
unfair advantage with your game (for example, to react to
threats more quickly than a human can), your game will start
deteriorate to the point of being completely unplayable. In
other words: dealing with cheaters is not all about money, it is
about preserving the very substance of your game.

 There are also people who want to use your site as testing
grounds to improve their hacker skills or to brag about them
after breaking you, and hacktivists, but fortunately, they’re
relatively few and far between.

Dealing with Cheaters
So, cheaters are pretty much inevitable. The question is: what
can/should we do about it? In general, there are two things which need to be done.

“
1

First and foremost, you need to make sure that your architecture at least doesn’t
help cheaters. If it does – you will be in a Really Big Trouble as soon as your game
becomes popular.

The second aspect of dealing with the cheaters is a direct cheater fighting, and it
can usually (well, unless you’re a stock exchange) be postponed until you deploy
your game; then you need to start actively looking for cheaters, and to fix the
problems as they arise. Details of the direct fighting with cheaters will be described
in Chapters [[TODO]] and [[TODO]]; for now we just need to ensure that our
architecture will allow to perform such cheater fighting without rewriting the
whole thing.

Attacks: The Really Big Advantage of the Home Turf
When dealing with cheaters (in the realm of classical security they are usually
named “attackers”), it is very important to understand the fundamental
differences between two classes of the attack scenarios.

In the first class of scenarios, cheater/attacker tries to affect something which is
under your direct control. This “something” can be your server, or a
communication channel between the client and server. In this case you essentially
have an upper hand to start with; while attacks are always a possibility, for this first
class of attacks all of them are inevitably related to the bugs in your
implementation.

In other words, whenever you have something which is under your control, you’re
generally safe, saving for implementation problems. Of course, there are lots of
bugs to be exploited, but you do have a fighting chance, and as soon as a specific
bug is fixed, the attacker will need to find another bug, which is not that easy if
you’ve done your job properly.

The second class of the attack scenarios is related to those
cases when the attacker has your client software (or even
hardware device) under his full control, and can do whatever-
he-wants with it. In these cases, things are much much worse
for you. In fact, whatever you do with your client software, the
attackers are able to reverse engineer it and do whatever-
they-want with it from that point.

The only protection you have in these attack scenarios, is
some kind of obfuscation, but given enough effort (and we’re
not speaking about “the time comparable with life time of our
sun”), any obfuscation can be broken. In terms of classical
security, in this second class of attack scenarios, all you have
at your disposal, is “Security by Obscurity”, which is

Security by
Obscurity

is the use of
secrecy of the

design or
implementation

to provide
security. A

system relying
on security

through
obscurity may

?https://en.wikipedia.org/wiki/Security_through_obscurity?

traditionally not considered security at all; while we will need
to resort to “Security by Obscurity” in some cases , we need to
realize that

“Security by Obscurity”,
while sometimes being the only protection

available,
cannot be relied on

To summarize: when speaking about cheaters, an advantage of
the “home turf” (having control over software/device) makes a
huge difference. In particular, you cannot really protect
software which you place into the attacker’s hands. The
situation in this regard is that bad, that even if you would be
able to give each player a device, these devices would also be

hacked (to see the spectrum of attack available, see, for example, [Skorobogatov]).
In general, whatever-you-give-to-player should be considered hackable; the only
thing we can do about it is to increase the cost of hacking, but preventing the
hacking completely is out of question.

 notably for bot fighting and for preventing duplicate accounts, where there are
very few other ways of protection, if any
 In particular, Skorobogatov (being one the top researchers in the field), says that

“given enough time and resources any protection can be broken”

Low-Impact and High-Impact Attacks
As mentioned above, we cannot really prevent 100% of the attacks on our games;
some of the attacks (such as bots and duplicate accounts) are protected mostly by
Security-by-Obscurity, and protection only by Security-by-Obscurity cannot be
considered reliable, so some attackers will be able to slip in, at least for some time.
Let’s try to see what types of attacks are the most typical in gaming environment,
and what is the impact of these attacks if they’re successful.

Stealing User DB
One of the worst things which can happen with your game security-wise, is an
attack on your user DB (the one which includes all the passwords, e-mails, etc.). It is
an extremely juicy target for competitors (to have all the e-mails and to discredit
your game at the same time), for disgruntled users , and for ordinary cheaters.
The impact of such an attack is very high. Fortunately, user DB can be protected
beyond “Security by Obscurity”. Some details related to protection from stealing

have
theoretical or

actual security
vulnerabilities,

but its ow ners
or designers

believe that if
the f law s are

not know n,
then attackers

w ill be unlikely
to f ind them.
— Wikipedia —

2

3

2

3

4

If your game
is a soccer
game, and
somebody is
able to ensure
that they score a
goal regardless
of actual things
happening on
the f ield, you're
in trouble.

of user DB will be described in Chapter [[TODO]].

 you can count on having your fair share of disgruntled users as soon as you have
millions of players, even if you’re 1000% fair and deliver on all your promises

DDoS
DDoS attacks are fairly easily to mount, and the battle really goes both on
attacker’s “home turf” and on your “home turf” at the same time. Fortunately,
DDoS, while painful, usually do not last too long to cause too much trouble.

Affecting Gameplay
If your game is a soccer game, and somebody is able to ensure
that they score a goal regardless of actual things happening on
the field, you’re in trouble. The very same thing applies to any
kind of fight (if cheater is able to score a hit when shooting in
the opposite direction, the things go pretty bad), and to any
other type of competitive game in general. Even not-exactly-
competitive games are subject to manipulation in this regard
(especially as competitiveness is routinely introduces as
different kinds of “leader boards” even to as non-competitive
games as social farming).

Cheating-to-affect-gameplay will become known among the
players pretty soon, and will break the trust to your game; in
the extreme cases your game will become completely
unplayable because of number of cheaters being too high.
Therefore, the impact of such an attack can be classified as
“high” (and becomes “extremely high” if the exploit is
published). Whether you can protect from this type of attacks
beyond “Security by Obscurity”, depends on your architecture.
We’ll discuss the attacks related to affecting gameplay, in this
chapter below.

Duplicate Accounts
Whatever your game is about, there is usually enough motivation for players to have
duplicate accounts. As protection from duplicate accounts is mostly based on
“Security by Obscurity” (except for paid accounts, where you can use credit card
number or equivalent to identify your player), preventing duplicate accounts
completely is not realistic, but we can still make it a bit more complicated for the
attacker (especially on non-jailbroken phones and consoles). Fortunately, while

4

“

Abuse
scenarios using

bots are
endless.

duplicate accounts are usually prohibited in T&C, and do affect gameplay in subtle
ways, their impact on the game is usually very limited. Some ways of dealing with
duplicate accounts will be described in Chapter [[TODO]].

Attacking Another User’s Device
One of less common scenarios is placing a keylogger or some other kind of
backdoor onto another player’s device (PC/phone). Usually the aim for such an
attack is to steal the user’s password, but things such as “being able to make an
action in the name of victim player while he’s playing” are not unheard of. While
technically this kind of attack is not our problem, from the user’s perspective it is
(“hey, somebody has logged in as me and lost that Great Artifact I had to somebody
else without me even knowing about it!”), so this may need to be addressed if value
of the things on player’s account is high enough. Fortunately, impact of these
attacks on the game ecosystem tends to be low. Dealing with them (if this is
deemed necessary) is usually done with so-called two-factor authentication, which
will be described in Chapter [[TODO]].

Bots
Bots (automated players) are well-known to be a part of any popular-enough
MMOG. As soon as you have “grinding”, there is an incentive to bypass the
“grinding” and get the end result without spending hours (yes, for a good game,
many people find that the “grinding” itself is fun, but this doesn’t mean that all the
players will agree with it). For the other games, reasons behind bots are different,
but they do exist pretty much regardless; hey, bots are known to represent a Big
Problem even for poker sites!

Abuse scenarios using bots are endless. Just as one example, if
there are goodies associated with new accounts, bots may
automatically register, play enough to get those goodies, and
then to pass them along to a consolidation account; then
consolidation account can be used, say, to sell the stuff on
eBay. Been there, seen that.

Bot fighting itself is a Big Task and if your game is really
successful, you’re likely to end up with a whole department
dealing with bots; this is especially true as bot fighting is
inherently in “Security-by-Obscurity” domain, so it is always
pretty much going back and forth between you and the bot

writers. Impact of bots on the game depends on them being published or not. For
the unpublished bots, the impact is usually fairly low; for the
published/commercially available bots, the impact is significantly higher.
Fortunately, when you’re fighting bots which are already published, it is you who
has a “home turf” advantage half of the time (as you can get/buy the bot and dissect

“

it’s logic pretty much in the same way as the bot writers have done with your
program when they wrote the bot).

Attack Type Summary
Let’s summarize the attacks mentioned above in one table:

A ttack Impact
“Home turf”

A dv antage

Chapter w here

ProtectionW ill Be Discussed

Stealing User

DB
Very High Yours [[TODO]]

DDoS Medium None [[TODO]]

Affecting

Gameplay

High to

Extremely High

Depends on

Architecture
This one

Duplicate

Accounts
Very Low Cheaters’ [[TODO]]

Another

User’s Device
Low None

[[TODO]] (only protecting

logins will be discussed)

Non-

published

Bots

Low Cheaters’ [[TODO]]

Published

Bots
High Back and Forth [[TODO]]

As we can see from this table, only one of the attack types heavily depends on the
architecture. Moreover, as it has one of the highest possible impacts on the game,
we’d better to take a look at it before making any decisions related to the game
architecture. Let’s take a look at three different approaches to MMOG from this
perspective.

 As usual, only typical values are provided, and your mileage may vary

5

5

As soon as
end-user
himself w ants
to break code
signing – it
becomes at best
“Security by
Obscurity”

Peer-to-Peer: Pretty Much Hopeless
From time to time, a question arises in various forums: why
bothering about servers, when we can have a SPOF-free,
perfectly scalable system using P2P (as in “peer-to-peer”)?
Moreover, there exists an article [Skibinsky] which argues (I
presume, with a straight face) that the client-server is not
scalable, and that the future lies with MMO games being P2P.

With P2P, each client performs its own calculations, which are
then used to determine the state of the game world. The way
how the state of the game world is determined based on the
results of individual computations, needs to be described in
detail when you define your P2P game; ironically, I didn’t
really see any specific architectures specifying “how it should

work”, not even in [Skibinsky].

Still, let’s take a look at P2P for gaming purposes, first of all from the point of view
of “Affecting Gameplay” type of attacks. With P2P, we’re essentially operating on
“attackers home turf”, making us to resort to “Security by Obscurity”. [Skibinsky]
recognizes it (albeit using different terminology), and proposes essentially three
techniques to address this security issue.

The first technique proposed in [Skibinsky] is code signing.
However, the problem with the code signing of the game (as
with any other code signing), is that as soon as end-user himself
wants to break code signing – it becomes at best “Security by
Obscurity”. This is a direct result of the fact that when we’re
operating on attacker’s “home turf”, then all the signing keys
(both private keys and root certificates) are under control of
the attacker, making them essentially useless. BTW, [Skibinsky]
also recognizes this weakness, stating “That still doesn’t
provide 100% security”.

The second technique proposed in [Skibinsky], is a kind of “web
of trust” system, with some of the nodes being trustworthy,
and some being untrustworthy. While the idea looks attractive
at the very first glance, there are two problems when applying
it to the MMOG. Without (a) a reliable way to identify nodes,
and with (b) not-really-tied-to-real-world-gaming-logins I expect any kind of
“web of trust” thing to fall apart very quickly when facing a determined adversary;
this is not to mention that those trusted nodes will quickly become a target for
“Another User’s Device” attack, which we cannot really do much about beyond
protecting user’s login.

SPOF
A single point

of f ailure
(SPOF) is a part

of a system that,
if it f ails, w ill

stop the entire
system f rom

w orking
— Wikipedia —

“

https://en.wikipedia.org/wiki/Single_point_of_failure

The third technique to address inherent vulnerability of P2P systems to “Affecting
Gameplay” attacks, is about cross-checking of the calculations-made-by-our-
potential-cheater by other peers. While the idea sounds nice, on this way there are
several Big Problems too.

First of all, the cross-checks are themselves vulnerable to cheating. Note that even
Bitcoin system (which solves only a singular problem which is extremely narrow
compared to general gaming) has an inherent 50% attack, and with inevitably
selective nature of the cross-checks for gaming worlds (we simply cannot perform
all the calculations on all the nodes), the number of nodes necessary to “take over
the gaming world” is going to be drastically lower.

Second, all these cross-checks inevitably lead either to additional delays (which is
unacceptable for the vast majority of the games), or to cross-checks being
performed not in real time, but “a bit later”. The latter approach raises another Big
Question: “What shall we do with the game world when the cheater is caught?” Sure,
we can ban the cheater for life (or more precisely, “until he opens a new e-mail
account and registers again”), but what should we do with consequences of his
cheating actions? This question, to the best of my knowledge, has no good general
answer: leaving cheater deeds within the world is at best unfair to the others (not
to mention that a cheater may cheat in the interests of another player), and rolling
the whole world back whenever the cheater is found, is usually impractical (not
to mention frustration of all the players not affected by cheating, but needing to
lose significant time of their play).

As a result,

as of now, I don’t see how peer-to-peer game (which
goes beyond closed communities where people can

trust each other), can provide reasonable protection
from the cheaters

And we didn’t even start to mention issues related to P2P complexity, which tends
to go far beyond any complications related to client-server systems (especially if
we’re considering “web of trust” and “cross-checks”).

That being said, I don’t mean that P2P MMOG is unfeasible in principle; what I
mean is that as of now, there is no good way to implement gaming over P2P (and
whether such a way will ever be found, is an open question).

Non-Authoritative Client-Server: Simpler but still
Hopeless

While simple
to implement,

essentially this
“non-

authoritative
server” model

is as much
vulnerable as

P2P model.

The whole idea of “non-authoritative server” has arisen when developers tried to
convert classical single-player 3D game into an MMO. And classical single-player
3D game is very often pretty much built around 3D engine (which usually also
performs some physics-related calculations).

To convert the classical-built-around-3D-engine game to an MMO, the simplest
way was to just send the data about player movements to the other players, which
then reflect these movements in their 3D engines. To send the data between the
players, a “non-authoritative server” was routinely used, which is usually nothing
more than taking the data from the clients and forwarding it pretty much “as is” to
the other clients interested in what’s going on in this part of the world.

While simple to implement (and also avoiding NAT problems
which tend to be quite unpleasant with P2P), essentially this
“non-authoritative server” model is as much vulnerable as P2P
model. With a non-authoritative server, you need to rely on
clients not cheating; for example, if your client controls all the
movements of your character, then it can say “hey, my
coordinates just changed to the ones being 5 meters back” to
avoid being hit, and server won’t prevent your client from
doing it. And if you try to detect this kind of cheating on the
other clients, you will inevitably (pretty much the same way as
described in section on P2P) get into need to a kind of “vote”
on “who’s good and who’s bad”, with different versions of the
worlds appearing on different clients and needing to be
consolidated, with a question “what to do if a cheater is
detected”, and so on.

Therefore, from a cheating prevention standpoint, non-
authoritative servers are pretty much the same as P2P systems; the difference is
that non-authoritative servers are simpler to implement, but at the cost of paying
significantly more for server traffic (and arguably worse scalability).

However, these differences are pretty much irrelevant from preventing-cheating
perspective, and

because of the cheating issues,
I don’t recommend using non-authoritative servers

While in theory, there might be games which can be protected using non-
authoritative servers (as in “I don’t have a formal proof that such games don’t
exist”), think more than twice when choosing to use non-authoritative servers. Oh,
and make sure to re-read the “If You’re Popular Enough, They Will Find Reasons to
Cheat” section above.

“

With
authoritative
server, it is the
server w hich
moves the
players (and
other stuf f)
around; it is
also the server
w ho makes all
the decisions
about
collisions, hits,
etc.

Authoritative Server: As Safe As They Go
The most popular approach when it comes to MMOG, is a so-
called “authoritative server”. In the usual approach to
authoritative servers for a virtual world game, clients usually
have a 3D engine, but this 3D engine is used purely for
rendering, and not for decision-making. On the other hand, all
the movements (not “coordinates resulting from movements”,
but more or less “player keypresses and mouseclicks
themselves”) are sent to the server, and it is the server which
moves the players (and other stuff) around; it is also the server
who makes all the decisions about collisions, hits, etc.
Moreover, with an authoritative server, it is the server who
makes all the changes in it’s own copy of the game world (and
the server’s copy is an authoritative copy of the game world,
which is then replicated to the clients to be rendered).

It means that for Virtual World games with an authoritative
server, it is the server (and not the clients) who needs to
implement the physics engine (though 3D rendering engines
are still on the clients).

However, for fast-paced games, the delays of going-to-server-
and-back-to-client with every keystroke are often not
acceptable. In such cases, client often implements some kind
of extrapolation (usually referred to as “client-side prediction”) based on it’s own
picture of the game world; in other words, client shows the game world assuming
that it’s own picture of the game world is the same as the server one. For example,
it may even show hits based on its own understanding of the game world. On the
other hand, the client copy is not authoritative, so if the vision of the server and the
vision of the client become different, it is server’s copy which always “wins” (i.e. in
such cases it is perfectly possible to see the hit which should have killed the
opponent, only to see that the opponent is well alive). More details on client-side
prediction for fast-paced games based on an authoritative servers will be provided
in Chapter [[TODO]].

From the point of view of cheaters trying to affect gameplay,
authoritative servers are by far the best thing you can have. If
you have enough checks on the server side, you always can
enforce game rules with a relative ease. And while when using
client-side prediction, temporary disagreements between
clients and server are possible, it is always clear how to
resolve the conflict; also these disagreements are always of a
very-limited time (of the order of magnitude of RTT), which
makes them not that noticeable in practice (except for first-

“

RTT
is the length of

time it takes f or
a signal to be
sent plus the

length of time it
takes f or an

acknow ledgement

https://en.wikipedia.org/wiki/Round-trip_delay_time

In practice
this O(W)

estimate doesn't
really stand

person shooters and fast-paced combat in RPGs).

It is worth noting that merely using authoritative server
doesn’t necessarily imply security; it merely provides means to

make your game secure, and you will need to work on actual security later;
fortunately, usually most of special work in this regard can be pushed down the
road, after your game becomes more-or-less popular.

Authoritative Servers: Scalability is Imperfect, But is
Workable

There is only one objection against this theory, and it is that the theory is wrong.
— C.N. Parkinson —

Before committing to go with authoritative servers, let’s consider one common
argument pushed by proponents of using-P2P-for-gaming; this is that client-
server systems are not scalable. In particular, such an argument is presented in
[Skibinsky].

The first line of the argument of alleged non-scalability of client-server games,
revolves around the “O(W) traffic estimate”. The idea behind the argument goes as
follows: first, let’s consider a game world with W players within; now let’s consider
each player making some kind of change every N seconds, and let’s assume that this
change needs to be communicated to all the W-1 of the other players. Hence (they
argue), for W players in the world, we need to push O(W) bytes of traffic per
second, making client-server non-scalable.

If O(W) would be indeed the case, then we’d indeed have quite
significant scalability problems. However, in practice this
O(W) estimate doesn’t really stand; let’s take a closer look at
it.

First, let’s note that in real-world the number of people we’re
directly interacting with, has no relation to the number of
people in the world. In virtual worlds it is normally exactly the
same thing – the number of people (or other entities) players
are interacting with, is limited not by the world population,
but by our immediate vicinity, which in most cases has nothing
to do with the world size. This is the point where T=O(W)

estimate falls apart (assuming reasonable implementation), and is replaced with
T=O(W)*C (when W->infinity), where C is the constant representing “Immediate
Vicinity” From this point, the estimate is no longer T=O(W), but just T=O(W) (with
mathematicians among us sighing in relief).

of that signal to
be received.
— Wikipedia —

2

2

“ 2

2

2

2

6 2

2

https://en.wikipedia.org/wiki/C._Northcote_Parkinson

Second, if T=O(W) would be the case, it would mean that limits on the bandwidth
of individual users would be hit pretty soon, so that even if somebody designs a
world with everybody-to-everybody direct interaction all the time, it still won’t run
regardless of architecture (i.e. it won’t run in client-server, but it won’t run in P2P
either).

These observations are also supported by practical experiences; while the
dependency of traffic from the world size is usually a bit worse than simple
T=O(W), it is never as bad as T=O(W). So, we can make an observation that

In a properly implemented Client-Server game, for
large enough world population W,

traffic T is much closer to O(W) than to O(W)

This observation has one very important consequence: as soon as T is close to
O(W), it means that your traffic is roughly proportional to world population W,
which means that your expenses E is also proportional to W. On the other hand,
within certain non-so-implausible assumptions, your income I is also more or less
proportional to W. If this stands, it means that both your income I and your
expenses E grow more or less proportional to W; this in turn means that if you were
making money with 10’000 players, you will still make money (and even more of it)
with 1’000’000 players.

 in [Skibinsky] this effect is referred to as immediate action/reaction manifold, and it is
relied on to ensure P2P scalability, though for some reason it is mentioned only in
the P2P context
 This effect is mentioned in [Skibinsky] too, though strangely enough, the way to

mitigate this problem is once again mentioned only in the P2P context

A V ery Example Calculation
To bring all the big-O notation above a bit more down to earth and to demonstrate
these effects from a more practical perspective, let’s consider the following
example.

Let’s consider a game where you can interact directly only with at most C=1000
other players, regardless of the world size and regardless of world population W.
Of course, architecting and implementing your game to make sure that you don’t
send your updates to those-players-who-don’t-really-need-them will be a
challenge, but doing it is perfectly feasible

Let’s take the traffic estimate per player-interacting-with-another-player, from

2

7

2

2

6

7

8

At the same
time, w ith your
subscription
f ees you'll be
making around
$100'000/month,
w hich means
that your
traf f ic costs are
negligible.

[Skibinsky], i.e. as 50/3 bytes/sec (in practice, your mileage will vary, but if you’re
doing things right, usually it won’t be off by more than an order of magnitude, so
we can take it as a rather reasonable estimate). Let’s also assume that all your
players are paying you $10/month as a subscription fee. And let’s further assume
that your servers are residing in the datacenter (not in your office, see Chapter
[[TODO]] why), and that you’re paying $1000 per Gbit/s per month in your
datacenter (once again, YMMV, but again, this number is not that far off – that is, if
you’re paying per GBit/s and have spent your time on finding a reasonably good
deal; there is no doubt you can get it for a lot more money than that).

Therefore, when you have 10’000 simultaneous players, you’ll
have traffic of at most 50/3*10000*1000 bytes/sec ~= 1.6e8
bytes/sec ~= 1.3 GBit/s; this will cost you around
$1300/month. At the same time, with your subscription fees
you’ll be making around $100’000/month, which means that
your traffic costs are negligible.

When you grow to 1’000’000 simultaneous players, then your
traffic per user will increase. As noted above, T won’t grow as
T~W , but there will be modest increase in per-user traffic
because while each part of traffic T ’ (with sum of all T ’s being
T) can be in most cases optimized to plain T ’~W, in practice
usually you’re too lazy (or have too little time) to optimize all
of them. For the purposes of our example let’s assume that the
traffic has grown 5-fold (you should be rather lazy – or busy –
to get to 5x per-user traffic increase, but well, it can happen).
Then, when you grow to 1’000’000 simultaneous players, your
traffic will grow 500-fold, bringing it to 650 GBit/s, costing
you $650000/month (in practice, the price will go lower for
this kind of traffic, but let’s ignore it for the moment). While this may sound as tons
of money, you should note that with your $10/month subscription fee and million of
users you’ll be making $10M/month, which is still much more than enough to cover
traffic bills (and note that if it becomes a problem, you still have that about-5x-
times overhead, most of which can be recovered given sufficient development
time).

 this has been demonstrated by numerous games-which-are-making-money out
there, all of which, to the best of my knowledge, are client-server.
 Don’t rush to buy that house on Bahamas though – while traffic costs are indeed

negligible, other costs, especially advertisement costs to keep new players coming,
are not

Summary: Authoritative Server is not ideal, but is The

“
9

2

8

9

Only Thing Workable
Let’s summarize our findings about three different approaches in the following
table:

Scalability
Resilience to

Cheating
Complexity

P2P Good Poor

from High (when not dealing

with cheating)

to Very High (Otherwise)

Non-

Authoritative

Server

Ok Poor

from Low (when migrating from

classical 3D game

and not dealing with cheating),

to High (if dealing with cheating)

Authoritative

Server
Ok Good Medium

Actually, this table is not that different from that of in [Skibinsky]; the main
difference between this book and [Skibinsky] is about estimating the impact of the
differences between the approaches, in the real world. In particular, I’m sure that
‘Poor’ resilience to cheating is bad enough to rule out the relevant models,
especially when there is an “Authoritative Server” model which has ‘Ok’ scalability
(which is explained above) and ‘Good’ resilience to cheating. This point of view
seems to be supported by MMOG developers around the world: as far as I know, as
of now there are no real MMOGs which are implemented as P2Ps, there are quite a
few of those based on non-authoritative servers, but the players are complaining
about it, and there are lots of MMOGs based on authoritative servers.

Bottom Line: Yes, It is Going to Be Client-Server
TL;DR for Chapter III:

Cheating is One Big Problem for MMOGs

Players will cheat even if you’re sure they have a zero reason to

Gameplay cheating is one of the Big Potential Problems for your game

« Chapter II: “Game Entities and Interactions” from upcoming b…

 Chapter IV . DIY v s Re-Use: In Search of Balance from upcomi… »

P2P and non-authoritative servers provide very poor protection against
Gameplay Cheating

Despite some claims to the contrary, Client-Server (in particular,
authoritative servers) can be made scalable

Given the balance of pros and cons, Authoritative Servers look as the best
option as of now; some (including myself) will even argue that in most cases it
is the only viable option. While exceptions are theoretically possible, they are
quite unlikely.

BTW, when speaking about Client-Server, I’m not ruling out multiple datacenters
on the server side (this is referred to as “Grid Computing” in [Skibinsky]); on the
other hand, delegating any kind of authority and decision-making to the client
looks way too risky for practical MMO.

[[To Be Continued…
This concludes beta Chapter III from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter IV, “DIY vs Re-use”

EDIT: beta Chapter IV . DIY v s Re-Use: In Search of
Balance, has been published.

]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: authoritative server, client-server, game, multi-player

[–] References
[Skibinsky] Max Skibinsky, “The Quest for Holy Scale”, in “Massively Multiplayer
Game Development 2”, pp. 339-373.
[Skorobogatov] Sergey Skorobogatov, “Hardware Security of Semiconductor Chips:
Progress and Lessons”

/chapter-iv-diy-vs-re-use-in-search-of-balance/
http://www.cl.cam.ac.uk/~sps32/NCL_2011.pdf
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-ii-game-entities-and-interactions-from-upcoming-book-development-and-deployment-of-mmog/
http://ithare.com/chapter-iv-diy-vs-re-use-in-search-of-balance/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/authoritative-server/
http://ithare.com/tag/client-server/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/

Copyright © 2014-2015 ITHare.com

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter IV. DIY vs Re-Use: In Search of Balance from
upcoming book “Design&Development of MMOG”
posted November 16, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter IV from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

In any sizable development project there is always a question:
“What should we do ourselves, and what we should reuse?”
Way too often this question is answered as “Let’s re-use
whatever we can get our hands on”, without understanding all
the implications of re-use (and especially about the
implications of improper re-use, see, for example,

[NoBugs2011]). On the other hand, an opposite approach of “DIY Everything” can
easily lead to the projects which cannot possibly be completed on one person’s life
time, which is usually “way too long” for games. In this chapter we will try to discuss
this question in detail.

DIY
Initialism of do

it yourself
— Wiktionary —

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
https://en.wiktionary.org/wiki/DIY

On the one
end of the
spectrum, there
are games
w hich are
nothing more
but “skins” of
somebody-else’s
game. In this
case, you’re
essentially
counting on
having better
marketing than
your
competition

In the game realm the answers to “DIY vs Re-Use” question
reside on a pretty wide spectrum, from “DIY pretty much
nothing” to “DIY pretty much everything”. On the one end of
the spectrum, there are games which are nothing more but
“skins” of somebody-else’s game (in such cases, you’re usually
able to re-texture and re-brand their game, but without any
changes to gameplay; changes to meshes and/or sounds may
be allowed or disallowed). In this case, you’re essentially
counting on having better marketing than your competition (as
everything else is the same for you and your competition). This
approach may even bring some money, but if you’re into it,
you’re probably reading the wrong book (though if you’re
running your own servers, some tricks from Part [[TODO]]
might still be useful and may provide some additional
competitive advantage, but don’t expect miracles in this
regard).

On the other end of the spectrum, there are game development
teams out there which try to develop pretty much everything,
from their own 3D engine, their own TCP replacement, and
their own channel security (using algorithms which are “much
better” than TLS), to their own graphics and sounds
(fortunately, cases when the developers are trying to develop
their own console and their own OS are very few and far
between). This approach, while may be fun to work on, may

“

/wp-content/uploads/BB_part065_BookChapter004_v2.png

have problems with providing results within reasonable time, so your project may
easily run out of money (and as the investors understand it too, running out of
money will happen sooner rather than later).

Therefore, it is necessary to find a good balance between the parts which you need
to re-use, and the parts you need to implement yourself.

Business Perspective: DIY Your Added V alue
First of all, let’s take a look at “DIY vs Re-Use” question from the business point of
view. While business perspective is not exactly the point of this book, in this case is
way too intertwined with the rest of our discussion to set it aside.

From the business point of view, you should always understand what “added value”
your project provides for your customers. In other words – what is that thing which
differentiates you from your competition? What is the unique expertise you
provide to your players?

When speaking about “DIY vs 3rd party reuse” question, it is safe to say that

At least, you should develop your Added V alue
yourself

The motivation behind the rule above is simple: if you’re re-using everything
(including gameplay, world map, and meshes), with only cosmetic differences (such
as textures) then your game won’t be really different from the other games which
are doing the same thing. To succeed commercially, you need a distinguishing
factor (sometimes ‘pure luck’ qualifies as such, but luck is not something you can
count on).

The rule of Added Value is normally taken care of at a business level. However, even
after this rule is taken into consideration, you still need to make “DIY vs reuse”
decisions for those things which don’t constitute the added-value-for-end-users
(or at least are not perceived to constitute the added value at the first glance). In
this regard, usually it more or less boils down to one of three approaches
described below.

Engine-Centric Approach: an Absolute Dependency a.k.a.
V endor Lock-In
Probably the most common approach to game development is to pick a game
engine, and to try building your game around that engine. Such game engines
usually don’t implement all the gameplay (instead, they provide you with a way to
implement your own gameplay on top of the engine), so you’re fine from the Added

The biggest
problem w ith
building your
game around

3rd-party game
engine is that in

this case, the
game engine

becomes your
Absolute

Dependency

Value point of view. For the sake of brevity, let’s refer to this “3rd-party engine will
do everything for us” approach as a much shorter “Engine-Centric” Approach.

The biggest problem with building your game around 3rd-
party game engine is that in this case, the game engine
becomes your Absolute Dependency; in other words, it means
that “if the engine is discontinued, we won’t be able to add
new features, which will lead us to close sooner rather than
later”. Another way to see the very same thing, is in terms of
Vendor Lock-In: as soon as you have an Absolute Dependency,
you’re locked in to a specific 3d engine vendor, and vice versa.
Therefore, we will use terms Absolute Dependency and
Vendor Lock-In interchangeably.

While by itself Absolute Dependency a.k.a.
V endor Lock-In is not a show-stopper for

building around 3rd-party game engine
(and indeed, there are many cases when

you should do just that), you need to
understand implications of this Absolute

Dependency.

First of all, (as we will discuss in more detail in Chapter [[TODO]]), for “Games with
Undefined Life Span” (as defined in Chapter I), the risks of having 3rd-party
Absolute Dependency are much higher than for “Games with Limited Life Span”.
Having your game engine as a Vendor Lock-In for a limited-time project is often
fine even if your choice is imperfect; having the very same Absolute Dependency
“forever and ever till death do us part” is a much bigger deal, which can easily lead
you to a disaster if your choice turns out to be a wrong one.

Moreover, usually, for “Games with Undefined Life Span”, you shouldn’t count on
assumptions such as “Oh, it is a Big Company so they won’t go down” (while the
company might not go down, they still may drop this engine, or drop support for
those-features or those-platforms you cannot survive without). While for a limited
time, such risks can be estimated and are therefore manageable (in many cases, we
can say with enough confidence “they will support such-and-such feature in 3 years
from now”), relying on a 3 party doing something “forever and ever” is usually too
strong of an assumption.

Engine-Centric Approach: Pretty Much Inevitable for
MMORPG/MMOFPS

“

rd

In f uture
chapters w e
w ill keep in
mind three
specif ic game
engines, and
w ill discuss
their pros and
cons w ith
relation to the
issues w e are
raising. These
engines are
Unity 5, Unreal
Engine 4, and
CryEngine

In spite of the risks above, it should be noted that there are
several MMO genres where developing a game engine yourself
is rarely feasible. In particular, it applies to MMORPGs and
MMOFPS. The engines for these games tend to be extremely
complicated, and it will normally take much-more-time-than-
you-have to develop them. Fortunately, in this field there are
quite a few very decent engines with pretty good APIs
separating the engine itself and your game logic. In future
chapters we will keep in mind three specific game engines, and
will discuss their pros and cons with relation to the issues we
are raising. These engines are Unity 5, Unreal Engine 4, and
CryEngine (previously known as CryEngine 3). Apologies to fans
of other game engines, but I simply cannot cover all of the
engines in existence; still, principles behind are usually rather
similar, so you should be able to make your own judgements
based on general principles outlined in this book.

For MMORTS the situation is much less obvious; depending on
specifics of your game, there are much more options. For
example, (a) you may want to use 3rd-party 3D engine like one
of the above (though this will work only for relatively low
number of units, you need to study very carefully engine’s
capabilities in this regard), (b) you may use 2D graphics (or
pre-rendered 3D, see Chapter [[TODO]] for details), with your
own engine, (c) you may want to develop your own 3D engine
(optimized for large crowds but without features which are
not necessary for you), or (d) you may even make a game which runs as 2D on some
devices, and as 3D on some other devices (see Chapter [[TODO]] for further
discussion of dual 2D/3D interfaces).

For all the other genres, whether to use 3rd-party engine, is a completely open
question, and you will need to decide what is better for your game; often, for non-
MMORPG/non-MMOFPS games, and if your game is intended to have an
Undefined Life Span, it is better to develop game engine yourself than to re-use a
3rd-party game engine (even when you have your own game engine, you may use
3rd-party 3D rendering engine, or even several such 3D engines – see Chapter
[[TODO]] for further details).

And if you’re going to re-use a 3rd-party engine (for whatever reason), make sure
to read and follow “You Still Need to Understand How It Works” section below.

Engine-Centric Approach: You Still Need to Understand
How It Works

“

Eliminating
dependency on
your game
engine is pretty
much hopeless
w ithout
rew riting the
w hole thing.

When introducing 3rd-party game engine as an Absolute Dependency, you still
need to understand how the engine works under the hood. Moreover, you need to
know a lot about engine-you’re-about-to-choose before you make a decision to
allow the engine Vendor to Lock you In. Otherwise, 6 months down the road you can
easily end up in situation “oh, this engine apparently cannot implement this feature,
and we absolutely need it, so we need to scrap everything and start from scratch
using different game engine”.

Of course, there will be tons of implementation details which you’re not able to
know right now. On the other hand, you should at least go through this book and see
how what-you-will-need maps into what-your-engine-can-provide, aiming to:

understand what exactly are the features you need

make sure that your engine provides those features you need
if some of the features you need, are not provided by your game engine
(which is almost for sure for an MMOG), at least that you should know
that you can implement those “missing” features yourself on top of your
game engine

While this may look time consuming, it will certainly save a lot of time down the
road. While introducing Absolute Dependency may be a right thing to do for you,
this is a Very Big decision, and as such, MUST NOT be taken lightly.

Engine-Centric Approach: on “Temporary” dependencies

Nothing is so permanent as a temporary government program
— Milton Friedman —

If you want to use 3rd-party game engine to speed up
development, and count on the approach of “we’ll use this
game engine for now, and when we’re big and rich, we will
rewrite it ourselves”, you need to realize that removing such a
big and fat dependency as game engine, is not realistic.
Eliminating dependency on 2D engine, sound engine, or any
other such engine may be possible (though requires extreme
vigilance during development, see “Modular Approach: on
“Temporary” dependencies” section below). On the other
hand, eliminating dependency on your game engine is pretty
much hopeless without rewriting the whole thing.

The latter observation is related to number of “interface
points” which arise when you integrate with your game engine;
for a typical game engine you have lots and lots of such points.
Moreover, these interface points tend to be of very different

“

1

https://en.wikipedia.org/wiki/Milton_Friedman

When your
code does

nothing beyond
dealing w ith
peculiarities
and outright

bugs of 3rd-
party libraries,

it cannot possibly

nature (ranging from mesh file formats to API callbacks with pretty much
everything else you can think of, in between). To make things worse, the better is
the game engine you’re using, the more perfectly legitimate uses you have for those
interface points, and the more locked-in you become as a result (while having all
the good reasons for doing it). Due to these factors, IMNSHO, the task of making
your program game-engine-agnostic is orders of magnitude more complicated
than making your program cross-platform (which is also quite an effort to start
with), so think more than twice before attempting it.

 let’s define an “interface point” as a point, where your program (and more
generally, your whole game development process) interacts with the game engine

“Re-Use Everything in Sight” Approach: An Integration
Nightmare
If you’ve decided not to make a 3rd-party engine your Absolute Dependency, then
the second approach often comes into play. Roughly it can be described as “we
need such-and-such feature, so what is the 3rd-party component/library/… we
want to borrow re-use to implement this feature?”

Unfortunately, way too many developers out there think that this is exactly the way
it should be done. (mis-)Perception along the lines of “hey, re-use is good, so there
can be nothing wrong with re-use” is quite popular with developers; for managers
it is “it saves on the development time” pro-reuse argument which usually hits
home.

However, in practice it is not that simple. Such “reuse
everything in sight” projects way too often become an
integration nightmare. As one of developers of such a project
(who was responsible for writing an installer) has put it: “Our
product is load of s**t, and my job is to carry it in my hands to
the end-user PC, without spilling it around”. As you can see, he
wasn’t too fond of the product (and the product didn’t work
too reliably either, so the product line was closed within a few
years). Even worse, such “reuse everything in sight” projects
were observed to become spaghetti code very quickly;
moreover, from my experience, when your code does nothing
beyond dealing with peculiarities and outright bugs of 3rd-
party libraries, it cannot possibly be anything but spaghetti. Oh,
and keep in mind that indiscriminate re-use has been
observed as a source of some of the worst software bugs in
the development history [NoBugs2011].

1

“

be anything but
spaghetti

The problem with reusing everything you can get your hands
on, can be explained as follows. With such an indiscriminate
re-use, some of modules/components you are using, will be

inevitably using less-than-ideal for the job; moreover, even if the component is
good enough now, it may become much-less-than-ideal when – the Business
Requirements change. And then, given that the number of your not-so-ideal
components is large enough, you find yourself in an endless loop of “hey, trying to
do this with Component A has broken something-else with Component B, and fixing
it in Component B has had such-and-such undesired implication in Component C,
and so on…” .

To make sure that managers (who’re usually very fond of re-use, because of that “it
saves the development time” argument), also understand the perils of
indiscriminate re-use: you (as a manager) need to keep in mind that indiscriminate
re-use very frequently leads to “oh, we cannot implement this incoming Business
Requirement because our 3rd-party component doesn’t support such-and-such
feature” (which, if happens more than a few times over the life span of the project,
tends to have rather bad impact on the bottom line of the company). Or describing
it from a different perspective: if your developers are doing their own component,
it is them who’re responsible that this “we cannot implement Business
Requirement” thing never happens; at the moment when you force (or allow) them
to “use such and such library”, you give them this excuse on a plate .

BTW, to make it perfectly clear: I’m not arguing that any re-use is evil; it is only
indiscriminate re-use which should be avoided. What I am arguing for, is
“Responsible Re-use” (a.k.a. “Modular”) approach described a little bit below.

 it is indeed ‘when’, not ‘if’ ! – see Chapter I

“DIY Everything”: The Risk of Never-ending Story
Another approach (the one which I myself am admittedly prone to), is to write
everything yourself. Ok, very few developers will write OS themselves, but for most
of the other things you can usually find somebody who will be arguing that “this is
the most important thing in the universe, and you simply MUST do it this way, and
there is nothing which does it this way, so we MUST do it ourselves”.

There are people out there arguing for rewriting TCP over
UDP , there are people out there arguing that TLS is not good
enough, so you need to use your own security protocol, there
are people out there arguing for writing crypto-quality RNG
based their own algorithm , there are quite a few people out
there writing their own in-memory databases for your game,

2

2

3

4

There are
people out there
arguing f or
w riting crypto-
quality RNG
using their ow n
algorithm

and there are even more people out there arguing for writing
your own 3D engine.

Moreover, depending on your circumstances, some of these
things may even make sense; however, writing all of these things
together will lead to a product which will never be released,
almost inevitably.

As a result, with all my dislike to the 3rd-party dependencies, I
shall admit that we do need to re-use something. Now the next
question is: “What exactly we should re-use, and what should
we write ourselves?”

 I shall admit that I was guilty of such suggestion myself for one of the projects,
though it has happened at a later stage of game development, which I’m humbly
asking to consider as a mitigating circumstance
 once it took me several months to convince external auditor that implementing

RNG his way is not the only “right” RNG implementation, with the conflict eventually
elevated to The Top Authority on Cryptography (specifically, to Bruce Schneier)

“Responsible Re-Use” a.k.a. “Modular” Approach: Looking
for Balance
As it was discussed above (I hope that I was convincing enough), there are things
which you should re-use, and there are things which you shouldn’t. The key, of
course, is all about the question “What to Re-use and What to DIY?”. While the
answer to this question goes into realm of art (or black magic, if you prefer), and
largely follows from the experience, there are still a few hints which may help you in
making such a decision:

Most importantly, all decisions about re-use MUST NOT be taken lightly; it
means that no clandestine re-use should be allowed, and that all re-use decisions
MUST be approved by an architect (or by consensus of senior-enough
developers). Discussion on “to re-use or not to re-use” MUST include both
issues related to licensing, and issues related to reuse-being-a-good-thing-
in-the-long-run (you can be sure that arguments about it being a good thing
in the short run are brought forward).

To decide whether a specific re-use will be a good-thing-in-the-long-run, the
following hints may help:

“glue” code is almost universally DIY code; while it is unlikely that you will
have any doubts about it, for the sake of completeness I’m still
mentioning it here

“

3

4

https://en.wikipedia.org/wiki/Bruce_Schneier

If w riting
your ow n code
w ill provide
some Added
Value (w hich is
visible in the
player terms), it
is a really good
candidate f or
DIY

if writing your own code will provide some Added
Value (which is visible in the player terms), it is a
really good candidate for DIY. And even if it doesn’t
touch gameplay, it can still provide Added Value.
One example: if your own communication library will
provide properties which lead to better user-
observable connectivity (than the one currently used
by competition), it does provide Added Value (or a
competitive advantage, if you prefer), and therefore
may easily qualify for DIY (of course, development
costs still need to be taken into account, but at least
the idea shouldn’t be thrown away outright). In
another practical example, if you’re considering re-
using Windows dialogs (or MFC), and your own
library provides a way to implement i18n without the
need for translators to edit graphics (!) for each-
and-every dialog in existence – it normally qualifies
as an “Added Value” (at least compared to MFC, let’s
postpone further discussion about i18n until
Chapter [[TODO]]).

If you’re about to re-use something with a very well defined interface
(API/messages/etc.), and where the interface does what you want and is
not likely to change significantly in the future – it is a really good
candidate for re-use. Examples include TLS, JPEG library, TCP, and so
on.

If you’re about to re-use something which has much more non-trivial
logic inside than it exposes APIs outside – it might be a good candidate
for re-use. One such example is 3D engines (unless you’re sure you can
make them significantly better than the existing ones, see the item on
Added Value above). It is usually a good idea, however, to have your own
isolation layer around such things, to avoid them becoming an Absolute
Dependency. Such an isolation layer should be usually written in a
manner described in [[TODO]] section below (as described there,
dependencies are sneaky, so you need to be vigilant to avoid them).

If you’re about to re-use something for the client side (or for non-
controlled environment in general), and it uses a DLL-residing-in-
system-folder (i.e. even if it is a part of your installer, it is installed in a
place, which is well-known and can be overwritten by some other
installer) – double-check that you cannot make this DLL/component
private , otherwise seriously consider DIY. This also applies to re-use of
components, including Windows-provided components.
The reason for this rather unusual (but still very important in practice)
recommendation is the following. It has been observed for real-world
apps with install base in millions, that reliance on something-which-you-

“

5

Don't think
that such
f ailures “are
not your
problem” - f rom
the end-user
perspective, it is
your program
w hich crashes,
so it is you w ho
they w ill blame
f or the crash

don’t-really-control introduces a pretty nasty
dependency, with such dependencies failing for
some (though usually small) percentage of your
players. If you have 10 such dependencies each of
which fails for mere 1% of your users – you’re losing
about 1-(0.99)~=9% of your player base (plus also
people will complain about your game not working,
increasing your actual losses many-fold).
Real-world horror stories in this regard include such
things as:

program which used IE to render not really
necessary animation, failing with one specific
version of IE on player’s computer

some Win32 function (the one which isn’t really
necessary and is therefore rarely used) was
used just to avoid parsing .BMP file, only to be
found failing on a certain brand of laptops due
to faulty video drivers

some [censored] developer of a 4th party app
replaced stock mfc42.dll with their own
“improved” version causing quite a few
applications to fail (ok, this one has became more difficult starting
from Vista or so, but it is still possible if they’re persistent enough).

And don’t think that such failures “are not your problem” – from end-
user perspective, it is your program which crashes, so it is you who they
will blame for the crash. In general, the less dependencies-on-specific-
PC-configuration your client has – the better experience you will be able
to provide to your players, and all the theoretical considerations of “oh,
having a separate DLL of 1M in size will eat as much as 1M on HDD and
about the same size of RAM while our app is running” are really insignificant
compared to your players having better experience, especially for
modern PCs with ~1T of HDD and 1G+ of RAM.

Keep in mind that “reuse via DLLs” on the client side introduces well-
defined points which are widely (ab)used by cheaters (such as bot
writers); this is one more reason to avoid re-using DLLs and COM
components (even if they’re private). This also applies to using standard
Windows controls (which are very easy to extract information from); see
Chapter [[TODO]] for further discussion of these issues. Re-use via
statically linked libraries is usually not affected by this problem.

“
10

6

7

The more
critical/central
the part of your
code is – the
more likely
related changes
w ill be
required,
leading to more
and more
integration
w ork, w hich
can easily lead
to the cost of
integration
exceeding the
value provided
by the
borrow ed code.

If nothing of the above applies, and you’re about to
write yourself something which is central/critical to
your game – it may be a good candidate for DIY. The
more critical/central the part of your code is – the
more likely related changes will be required, leading
to more and more integration work, which can easily
lead to the cost of integration exceeding the value
provided by the borrowed code. About the same
thing from a different angle: for the central/critical
code you generally want to have as much control as
you possibly can.

If nothing of the above applies, and you’re about to
re-use something which is of limited value (or is
barely connected) to your game – it may be a good
candidate for re-use. The more peripheral the part
of the code is – the less likely related changes will
have a drastic effect on the rest of your code, so
costs of the re-integration with the rest of your code
in the case of changes will hopefully be relatively
small.

Personally, if in doubt, I usually prefer to DIY, and it
works pretty well with the developers I usually have
on my team. However, I realize that I usually work
with the developers who qualify as “really really good
ones” (I’m sure that most of them are within top-1%),
so once again, your mileage may vary. On the other
hand, if for some functionality all the considerations
above are already taken into account and you’re still
in doubt (while being able to keep a straight face) on
“DIY vs re-use” question, probably this specific decision on this specific
functionality doesn’t really matter too much.

Note that as with most of the other things in real life, all the advice above should be
taken with a good pinch of salt. Your specific case and argumentation may be very
different; what is most important is to avoid making decisions without thinking, and to
take at least considerations listed above into account.

The approach presented above, can be seen as a “Responsible Re-Use”; on the other
hand, we’ll refer to it quite a lot in the subsequent chapters, so for the sake of
brevity, we’ll usually name it as “Modular Approach” (or “Modular Architecture”).

 roughly equivalent to “moving it to your own folder”
 why such a function has had anything to do with drivers – is anybody’s guess

“

5

6

7

Still, you
need to
consider ef f ects
related to bot
f ighting, so
using these f or
critical
inf ormation
might be not a
good idea

 Strictly speaking, statically linked well-known libraries can also make life of
cheater a bit easier, but this effect is usually negligible compared to the Big Hole
you’re punching in your own code when using DLLs

Modular Approach: Examples
Here are some examples of what-to-reuse and what-not-to-reuse (YMMV really
significantly) under the “Responsible Re-Use” (a.k.a. “Modular”) guidelines:

OS/Console: usually don’t really have choice about it. Re-use.

Game Engine: depends on genre, but for MMORPG/MMOFPS is pretty much
inevitable (see “Engine-Centric Approach: Pretty Much Inevitable for
MMORPG/MMOFPS” section above)

TCP/TLS/JPEG/PNG/etc.: usually a really good idea to re-use. One potential
(though quite rare!) exception is TCP, but see detailed discussion on it in
Chapter [[TODO]] first. On client-side it is much better to re-use them (and
pretty much everything else) as static libraries rather than as DLLs, due to the
reasons outlined above

3D Engine: an open question; see further discussion on it in Chapter [[TODO]].

Ever-changing shared controls such as IE HTML Control: many of them are
still error-prone, buggy, and are changed a lot depending on version of IE
installed on client PC. Hence, it is better to avoid re-using them if you can
(replacing them with much simpler 3rd-party libraries, which usually aren’t
that function-rich, but are much more predictable).

On the other hand, much simpler basic controls such as
text, don’t have the problem of being changed too often;
still, you need to consider effects related to bot fighting
as mentioned above and described in Chapter [[TODO]],
so using these for critical information might be not a
good idea; on the third hand , usually you will be able to
replace them later without too much hassle, so it might be
ok to use them to speed things up (aiming to replace
them later, when bots become a problem)

Core logic of your game. This is where your added value
is. DIY

Something which is very peripheral to your game. This is
what is not likely to cause too much havoc to replace. Re-
use (as long as you can be sure what exactly you’re re-
using on the client side, see above about DLLs etc.)

Modular Approach: on “Temporary”

7

“

dependencies
If you’re planning to use some module/library only temporary (to speed up first
release), and re-write it later, “when we’re big and rich”, it might work, but you
need to be aware of several major caveats on the way. First of all, you need to
realize that this won’t work for replacing the whole game engine (see “Engine-
Centric Approach: on “Temporary” dependencies” section above).

Second, you need to be extremely vigilant when writing your code. Otherwise, when
the “we’re big and rich” part comes, the 3rd-party module will become so much
intertwined with the rest of your code, that separating it will amount to rewriting
everything from scratch (which is rarely an option for an up-and-running MMOG).

So, if you’re going to pursue this approach, you should at least:

write in Big Bold Letters in your design documents, that your dependency on
Module X is only temporary, and that you plan to get rid of it later

make your own Module MyX with it’s own API. The closer
your own APIs to the needs of your game – the better;
dumb wrappers around the 3rd-party modules should be
avoided. Your Module MyX should do what-your-specific-
game-needs-to-do (and not what-3rd-party-module-is-
able-to-provide). The mapping between the two API sets
(“your own” one and “3rd-party” one) is what your own
module should do, however trivial it may seem at first
(don’t worry, if your APIs are centered around your game,
and not around the 3rd-party comphonent, the “meat” of
your own module will grow as you develop). As Peter Wolf
has aptly put it: “wrap and wrap some more”.

Use ONLY your-own-API for the rest of the code (i.e. in
the code beyond your Module MyX)

make sure that everybody on the team knows that you’re
NOT using API of the 3rd-party module directly

try to prohibit APIs of the 3rd-party module in your build
system

In C++ this can be achieved, for example, using pimpl
idiom for your own module and prohibiting direct
inclusion of 3rd-party header files by anybody-
except-for-your-own-engine

unless you have managed to prohibit 3rd-party APIs in
your build system (see above), you should have special
periodic reviews to ensure that nobody uses these prohibited APIs. It is much
much simpler to avoid these APIs at early stages, than trying to remove them

pimpl idiom
also know n as
an opaque
pointer, Bridge
pattern, handle
classes,
Compiler
f irew all idiom,
d-pointer, or
Cheshire Cat, is
a special case of
an opaque data
type, a datatype
declared to be a
pointer to a
record or data
structure of
some
unspecif ied
type.

— Wikipedia —

https://en.wikipedia.org/wiki/Opaque_pointer
https://ca.linkedin.com/in/peter-wolf-770a501

Dependencies
are sneaky, and
it takes extreme
vigilance to
avoid them.

later (which can amount to rewriting really big chunks of your code)

While these rules may look overly harsh and too time-
consuming, practice shows that without following them you
get over-95%-chance that you won’t be able to replace the
3rd-party module when you need it. Dependencies are sneaky,
and it takes extreme vigilance to avoid them. On the other
hand, if you don’t want to do these things – feel free to ignore
them, just be honest to yourself and realize that Module X is
one of your Absolute Dependencies forever with all the
resulting implications.

Summary
TL;DR of Chapter IV:

DON’T take “re-use vs DIY” question lightly; if you make Really Bad decisions
in this regard, it can easily kill your game down the road

Consider using Engine-Centric approach, but keep in mind that Absolute
Dependency (a.k.a. Vendor Lock-In) that you’re introducing. Be especially
cautious when using this way for Games with Undefined Life Span (as defined
in Chapter I). On the other hand, this approach is pretty much inevitable for
MMOFPS/MMORPG games. If going Engine-Centric way, make sure that you
understand how the engine of your choosing implements those things you
need.

If Engine-Centric doesn’t work for you (for example, because there is no
engine available which allows to satisfy all your Business Requirements), you
generally should use “Responsible Re-use” a.k.a. “Modular” approach as
described above. If going this way, make sure to read the list of hints listed in
““Responsible Re-use” a.k.a. “Modular” Approach: Looking for Balance”
section above.

[[To Be Continued…
This concludes beta Chapter IV from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter V, “Modular
Architecture: Client-Side”]]

EDIT: Chapter V (a). Modular A rchitecture. Client-Side. Graphics has been
published.

“

/chapter-v-a-modular-architecture-client-side-graphics/

« Chapter III. On Cheating, P2P, and [non-]A uthoritativ e Serv er…

 Due to Popular Demand: PDFs of Beta Chapters from “Dev elop… »

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: Code Reuse, game, multi-player

Copyright © 2014-2015 ITHare.com

[–] References
[NoBugs2011] 'No Bugs' Hare, “Overused Code Reuse”

/overused-code-reuse/
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-iii-on-cheating-p2p-and-non-authoritative-servers-from-dd-of-mmog-book/
http://ithare.com/due-to-popular-demand-pdfs-of-chapters-from-development-deployment-of-multiplayer-online-games/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/code-reuse/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter V(a). Modular Architecture: Client-Side.
Graphics from “D&D of MMOG” upcoming book
posted November 23, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter V(a) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

– How do you program an elephant? – One byte at a time!
— (almost) proverb —

As we’ve discussed in Chapter IV, there are basically only two viable approaches for
building your game: we named one of them an “Engine-Centric Architecture”, and
another a “Modular Architecture”. Which of these approaches is right for your
game, depends a lot on the genre and other Business Requirements; the choice
between the two was more or less explained in Chapter IV.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

In this chapter, we’ll discuss “Modular Architecture” in more detail. If you’re going
to implement your game as an “Engine-Centric” one, you still need to read this
chapter; while most of these decisions we’re about to discuss, are already made for
you by your game engine, you still need to know what these decisions are (and
whether you like what specific engine has chosen for you); and whatever-your-
engine didn’t decide for you, you need to make the right decisions yourself.
Applicability of the findings from this Chapter to “Engine-Centric Architecture”
and to specific popular game engines, will be discussed in the next Chapter
([[TODO]]).

Graphics
One of the first things you need when dealing with client-side, is graphics engine.
Here, depending on specifics of your game, there are significant differences, but
there are still a few things which are (almost) universal. Note that at this point
w e’re not about to describe subtle implementation details of graphics
engines (these w ill be discussed in Chapter [[TODO]]). For the time being, w e
only need to figure out a few v ery high-lev el things, w hich allow us to
describe the engine(s) w e need in v ery general terms (to filter out those
w hich are obv iously not a good fit for your game) and to know enough to be
able to draw an ov erall client-side architecture.

/wp-content/uploads/BB_part066_BookChapter005a_v5.png

Actually,
these toolchains

On Developers, Game Designers, and Artists
For most of the games out there, there is a pretty obvious separation between
developers and artists. There is usually a kind of mutual understanding, that
developers do not interfere in drawing pictures (making 3D models, etc. etc.), and
artists are not teaching developers how to program. This, however, raises a Big Fat
Question about a toolchain which artists can use to do their job. These toolchains
are heavily dependent on the graphics type, on the game you’re using, etc. etc.
When making decisions about your graphics, you absolutely need to realize which
tools your artists will use (and which file formats they will produce so that you can
use these formats within your game).

For some genres (notably FPS and RPG), there are usually also game designers.
These folks are sitting in between developers and artists, and are responsible for
creating levels, writing quests, etc. etc. And guess what – they need their own tools
too .

Actually, these toolchains are so important, that I would say
that at least half of the value that game engine provides to your
project, comes from these toolchains. If you’re going to write
your own engine – you need to think about these toolchains, as
they can easily make-or-break your game (and if you’re using
3rd-party game engine – make sure that the toolchain they’re
providing, is understandable for both your artists and your
developers – and for game designers too, if applicable). “

/wp-content/uploads/BB_part066_BookChapter005a_v4.png

are so
important, that
I w ould say that
at least half of
the value that
game engine
provides to
your project,
comes f rom
these
toolchains.

On Using Game Engines as Pure Graphics
Engines, and V endor Lock-In
These days, if you want to use a 3rd-party graphics engine,
most of the time you won’t find “graphics engine”, but will
need to choose between “game engines”. And “game engines”
tend to provide much more functionality than “graphics
engines”, which has many positives, but there is also one
negative too. Additional features provided by “game engines”
in addition to pure graphic rendering capabilities, may include
such things as processing user input, support for humanoid-
like creatures (which may include, for example, inverse
kinematics), asset management, scripting, network support,
toolchains, etc. etc. etc. And most of these features even work.

However, there is a dark spot in this overall bright picture. Exactly the same thing
which tends to help a lot, backfires. The thing is that the more features the engine
has – the more you will want to use (“hey, we can have this nice feature for free!”).
And the more features you use – the more you’re tied to a specific 3rd-party game
engine, and this process will very soon make it your Absolute Dependency (as
defined in Chapter IV), also known as a Vendor Lock-In.

It is not that Absolute Dependencies are bad per se (and, as mentioned in Chapter
IV, for quite a few games the advantages of having it outweigh the negatives), but if
you have an Absolute Dependency – it is Really Important to realize that you are
Locked In, and that you SHOULD NOT rely on throwing it away in the future.

Just one example where this can be important. Let’s consider you writing a game
with an Undefined Life Span (i.e. you’re planning your game to run for a really long
while, see Chapter I for further details); then you’ve decided (to speed things up) to
make a first release of your game using a 3rd-party game engine. Your game
engine of choice is very good, but has one drawback – it doesn’t support one of the
platforms which you do want to support (for example, it doesn’t support mobile,
which you want to have ASAP after the very first release). So you’re thinking that
“hey, we’ll release our game using this engine, and then we’ll migrate our game
from it (or will support another graphics engine for those platforms where it
doesn’t run, etc.)” .

In theory, it all sounds very good. In practice, however, unless
you’re extremely vigilant (see on it a bit below), and not taking
special measures to deal with dependencies, you’ll find
yourself in a hot water. By the time when you want to migrate
away, your code and game in general will be that much
intertwined and interlocked with the game engine, that
separating them will amount to a full rewrite (which is rarely

Unless you're
extremely

vigilant, and
not taking

special
measures to

deal w ith
dependencies,

you'll f ind
yourself in a

hot w ater.

Contrary to
the popular
belief , you can
build a game
w ithout any
graphics at all,
or w ith a very
rudimentary

possible within the same game without affecting too many
subtle gameplay-affecting issues which make or break your
game). It means that in our hypothetical example, you won’t be
able to support mobile devices, ever (well, unless you scrap the
whole thing and rewrite it from scratch, which will almost
inevitably require a re-release at least on a different set of
servers, if not under a different title). This situation tends to
be even worse for 3D game engines (to the point that I’m not
sure that it is possible at all to avoid your 3D game engine
Locking you In).

The only way to avoid this kind of (very unpleasant) scenarios,
is to be extremely vigilant and prohibit the use of all the game
features, unless their use is explicitly allowed (and before
allowing the use of a certain feature, you need to understand –
and document! – how you’re going to implement this feature

when you are migrating away from the engine). For further details on the measures
which you need to take to ensure that your component (such as graphics engine)
doesn’t become your Absolute Dependency – see Chapter IV.

Once again – having an Absolute Dependency is not necessarily evil, but if you have
one – you’d better realize that you’re pretty much at the mercy of the engine
developer (the one who has successfully locked you in).

Games with Rudimentary Graphics
Now, let’s start considering different types of graphics which you may need for
your game. First of all, let’s see what happens if your game requires only a minimal
graphics (or none at all).

Contrary to the popular belief, you can build a game without
any graphics at all, or with a very rudimentary one. When
speaking about rudimentary graphics, I mean static graphics,
without animation, just pictures with defined areas to click.
Such games-with-rudimentrary-graphics are not limited to
obvious examples such as stock exchanges, but also include
some of social games which are doing it with a great success
(with one such example being quite popular Lords&Knights).

If your graphics is non-existent or rudimentary, you can (and
probably should) write your graphics engine all by yourself. It
won’t take long, and having a dependency on a 3rd-party
engine merely to render static images is usually not worth the
trouble.

“

“

one.Artist’s toolchain is almost non-existent too; all artists need to
work with rudimentary graphics, is their favourite graphics
editor to provide you with bitmaps of sizes-which-you-need.

Games with 2D Graphics
The next step on the ladder from non-existent graphics to the holy grail of realistic
ray-traced 3D is 2D graphics. 2D graphics is still very popular, especially for games
oriented towards mobile phones, and for social games (which tend to have mobile
phone version, so there is a strong correlation between the two). This section also
covers 2D engines used by games with pre-rendered 3D graphics.

In general, if you’re making a 2D game, your development, while more complicated
than for games with rudimentary graphics, will be still much much simpler than
that of 3D game . First of all, 2D graphics (unlike 3D graphics) is rather simple, and
you can easily write a simple 2D engine yourself (I’ve seen a 2D engine with double-
buffering and virtually zero flickering written from scratch within about 8-10 man-
weeks for a single target platform; not too much if you ask me).

Alternatively, you can use one of the many available “2D game engines”; however,
you need to keep in mind the risk of becoming Locked-In (see section “On Using
Game Engines as Pure Graphics Engines, and Vendor Lock-In” above). In
particular, if you’re planning to replace your 2D game engine in the future, you
should stay away from using such things as “2D Physics” features provided by your
game engine, and limit it to rendering only. In practice, it is possible to avoid
Vendor Lock-In (and keep your options to migrate from this 2D engine, or to add
another 2D or even 3D one alongside it, etc.); however, it still requires you to be
extremely vigilant (see section “On Using Game Engines as Pure Graphics Engines,
and Vendor Lock-In” above), but at least it has been done and is usually doable.

One good example of 2D game engine (which is mostly a 2D
graphics engine), is [Cocos2D-X]. It is a popular enough cross-
platform (including iOS, Android, and WinPhone, and going
mobile is One Really Popular Reason for creating a 2D game
these days), and has API which is good enough for practical
use. If you’re developing only for iOS, [SpriteKit] is a good
choice too. BTW, if you’re vigilant enough in avoiding
dependencies, you can try making your game with Cocos2D-X,
and then to support SpriteKit for iOS only (doing it the other
way around is also possible, but usually more risky unless
you’re absolutely sure that most of your users are coming
from iOS). NB: if you’re serious about such development, make
sure to make Logic-to-Graphics layer as described in “Logic-
to-Graphics Layer” section below.

1

2

MVC
Model–view –

controller
(MVC) is a
sof tw are

architectural
pattern f or

implementing
user interf aces.

It divides a
given sof tw are

application into
three

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

About using 2D functionality of the primarily 3D engines such
as Unity or Unreal Engine: personally, I would stay away from
them when it comes to 2D development (for my taste, they are
way too locking-in for such a relatively simple task as 2D).
Such engines would have a Big Advantage for quite a few
genres if they could support both 2D and 3D graphics for the
same world (kind of MVC for games, also similar to Logic-to-
Graphics layer as described below), but to the best of my
knowledge, none of the major game engines provides such
support. [[NOTE to BETA TESTERS: If you know about such
capabilities in these or other engines, please let me know]].

About toolchains. For 2D, artist’s toolchains are usually fairly
simple, with artists using their favourite animation editor (for
example, “Adobe After Effects”, but there are other options
out there; “Adobe Flash” has also been reported to support

“sprite sheets” starting from CS6 version). As a result of their work, they will
provide you with sprites (for example, in a form of series of .pngs-with-
transparency, or “sprite sheets”).

 Yes, I do know that nobody does raytracing for games (yet), but who said that we
cannot daydream a bit?
 Hey, isn’t it a good reason to scrap all 3D completely in the name of time to

market? Well, probably not

On pre-rendered 3D
Now, let’s discuss see what happens if your game is supposed to be a 3D game. In
this case, first of all, you need to think whether you really need 3D, or you will be
fine with so-called pre-rendered 3D.

When speaking about pre-rendered 3D, the idea is to create your 3D models, and
3D animations, but then, instead of rendering them (such as “render using
OpenGL”) in real-time, to pre-render these 3D models and animations into 2D
“sprites”, to ship these 2D sprites with your game instead of shipping full 3D
models, and then to render them as 2D sprites in your 2D graphics engine.

Fully 3D pre-rendered games allow you to avoid having 3D
engine on clients, replacing it with much simpler (and much
more portable) 2D engine.

Usually, full 3D pre-rendering won’t work good for first-
person games (such as MMORPG/MMOFPS) but it may work

interconnected
parts, so as to

separate
internal

representations
of inf ormation

f rom the w ays
that

inf ormation is
presented to or
accepted f rom

the user
— Wikipedia —

1

2

3

Fully 3D pre-
rendered games
allow you to
avoid having 3D
engine on
clients,
replacing it
w ith much
simpler (and
much more
portable) 2D
engine.

pretty good even for (some kinds of) MMORTS, and for many
other kinds of popular MMO genres too. Full 3D pre-rendering
is quite popular for platforms with limited resources, such as
in-browser games, or games oriented towards mobile phones.

Technically, fully pre-rendered 3D development flow consists
of:

3D design, usually made using readily available 3rd-party
3D toolchain. For this purpose, you can use such tools as
Maya, 3D Max, Poser, or – for really adventurous ones –
Blender. 3D design is not normally done by developers,
but by designers. It includes both models (including
textures etc.) and animations.

pre-rendering of 3D design into 2D sprites. Usually
implemented as a bunch of scripts which “compile” your
3D models and animations into 2D sprites, including animated sprite
sequences; the same 3D tools are usually used for this 3D-to-2D rendering

rendering of 2D sprites on the client, using 2D engine(s)

As an additional bonus, with 3D pre-rendering you don’t need to bother with
getting low-poly 3D models for your 3D toolchain, and can keep your 3D models in
as high number of polygons as you wish. Granted, mostly these high-poly models
won’t usually make any visual difference (as each of 2D sprites is commonly too
small to notice the difference, though YMMV), but at least you won’t need to bother
with polygon number reduction (and you can be sure that your artists will
appreciate it, as low-poly-but-still-decent-looking 3D models are known to be a
Big Headache).

3D pre-rendering is certainly not without disadvantages. Two biggest problems of
3D pre-rendering which come to mind, are the following. First of all, you can pre-
render your models only at specific angles; it means that if you’re showing a
battlefield in isometric projection, pre-rendering can be fine, but doing it for a
MMOFPS (or any other game with a first-person view) is usually not feasible.
Second, if you’re not careful enough, the size of your 2D sprites can easily become
huge. There are other less prominent issues related to 3D pre-rendering, which
we’ll discuss in Chapter [[TODO]], but for our purposes now these two things
should be enough (i.e. if you’re fine with them – you can keep considering 3D pre-
rendering).

“

If you can
survive 3D pre-

rendering
w ithout making

your game
unview able

(and w ithout
making it too
huge in size),

you can make
your game run

on the
platf orms

w hich have no
3D at all (or

their 3D is
hopelessly

slow)

On the positive side, if you can survive 3D pre-rendering
without making your game unviewable (and without making it
too huge in size), you can make your game run on the
platforms which have no 3D at all (or their 3D is hopelessly
slow); I’m mostly speaking about smartphones here (while
smartphones have made huge improvements in 3D
performance, they are still light years away from PCs – and it
will probably stay this way for a long while).

Artist’s toolchains are usually not a problem for pre-rendered
3D. In this case, artists are pretty much free what to use
(though it is still advisable to use one tool across the whole
project) ; it can be anything ranging from Maya to Poser, with
3D Max in between. They can keep all their work within this
tool, and to provide you with ways to produce 2D sprites. In
most cases, your job in this regard is about making artists
backup their work on regular basis, and about writing the
scripts for automated “build” of their source files (those in 3D
Max or whatever-else-they’re-using) into 2D.

Bottom Line. Whether you want/can switch your game to 3D
pre-rendering – depends, but at least you should consider
this option (that is, unless your game is an
MMOFPS/MMORPG). While this technique is often frowned
upon (usually, using non-arguments such as “it is not cool”), it
might (or might not) work for you.

Just imagine – no need to make those low-poly models, no
need to worry that your models become too “fat” for one of your resource-stricken
target platforms as soon as you throw in 100 characters within one single area, no
need to bother with texture sizes, and so on. It does sound “too good to be true”
(and in most cases it will be), but if you’re lucky enough to be able to exploit pre-
rendering – you shouldn’t miss the opportunity.

If you manage to get away with pre-rendered 3D, make sure to read section on 2D
graphics above.

 in fact, partial 3D pre-rendering is also perfectly viable, and is used a lot in 3D
games which do have 3D engine on the client-side, but this is beyond the scope of
our discussion until Chapter [[TODO]]

Games with 3D Graphics

“

3

Making 3D
w ork is not easy
to start w ith,
but making it
look good is a
major
challenge.

If you have found that your 3D game is not a good match for pre-rendered 3D, you
do need to have 3D engine on the client-side. This tends to unleash a whole lot of
problems, from weird exchange formats between toolchain and your engine, to the
inverse kinematics (if applicable); we’ll discuss some of these problems in Chapter
[[TODO]], for now let’s just write down that non-pre-rendered 3D is a Big Pain in
the Neck (compared to the other types of graphics). If you do need a 3D engine on
client side, you basically have two distinct options.

Option 1 is along “DIY” lines, with you writing your own
rendering engine over either OpenGL, or over DirectX. In this
case, be prepared to spend a lot of time on making your game
look anywhere reasonable. Making 3D work is not easy to start
with, but making it look good is a major challenge. In addition,
you will need to remember about the artist’s toolchain; at the
very least you’ll need to provide a way to import and use files
generated by popular 3D design programs (hint: supporting
wavefront .obj is not enough, you’ll generally need to dig much
deeper into specifics of 3D-program-you’re-supporting and
its formats).

On the plus side, if you manage to survive this ordeal and get a
reasonably looking graphics with your own 3D engine, you’ll
get a solid baseline which will give you a lot of flexibility (and
you may need this flexibility, especially if we’re speaking about the games with
Undefined Life Span).

Option 2 is to try using some “3D game engine” as your “3D engine”. This way,
unless you already decided that your game engine is your Absolute Dependency, is
a risky one. 3D game engines tend to be so complicated, and have so many points of
interaction with the game, that chances are that even if you’re Extremely Vigilant
when it comes to dependencies, you won’t be able to replace the engine later. Once
again – I am not saying that Vendor Lock-In is necessarily a bad thing, but you do
need to realize that you’re Locked In.

Logic-to-Graphics Layer
Unless you’ve already decided that you want to be 100% Locked In, it is usually a
good idea to have a separation layer between your logic and your graphics engine
(whether it is 2D engine or 3D engine). Let’s name this separation layer a Logic-to-
Graphics Layer; this layer resides completely on the client side, and doesn’t really
affect your communication protocols or the server side. In a sense, it can be seen
as a subset of a Model-View-Controller pattern (with game logic representing
Model, and graphics engine representing View).

Let me explain the idea on one simple example. If your game is a blackjack, client-

“

side game logic needs to produce rendering instructions to your graphics engine.
Usually, naive implementations will just have client-side game logic to issue
instructions such as “draw such-and-such bitmap at such-and-such coordinates”.
This approach works well, until you need to port your client to another device (in
the extreme case – from PC to phone, with the latter having much less screen real
estate).

With Logic-to-Graphics layer, your client-side blackjack game logic issues
instructions in terms of “place 9S in front of player #3 at the table” (and not in
terms of “draw 9S at the (234,567) point on screen”). Then, it becomes a job of
Logic-to-Graphics Layer to translate this instruction into screen coordinates. And
if your game is a strategy, client game logic should issue instructions in terms of
“move unit A to position (X,Y)” (with the coordinates expressed in terms of
simulated-world coordinates, not in terms of on-screen coordinates(!)), and again
the translation between the two should be performed by our Logic-to-Graphics
layer.

One example incarnation of a system built using Logic-to-Graphics approach, is
shown on Fig 1. Here, “Game Logic” doesn’t depend on a graphical engine (or a
platform) and can be developed separately (which is very important because it will
change very frequently). In contrast, two “Graphical Engines” are specific to the
respective platforms, but they don’t know/depend on game logic at all, and are
very-rarely changed. The “Logic-to-Graphics” layer is a “glue” layer which belongs
in between “game logic” and “graphical engine”; by design, it depends both on
game logic and graphical engine (ouch); however (provided that there is a
reasonably clean separation achieved, see examples above) it doesn’t change nearly
as often as “game logic” itself, so the whole thing becomes manageable. On Fig. 1,
there are three implementations of “Logic-to-Graphics” layer: one is for Android
and two for Windows; the reason for having two different implementations of
Logic-to-Graphics layer for the same Win32 graphics engine, is that PC and mobile
versions are usually quite different in terms of layout, and therefore it may be

/wp-content/uploads/Fig-V-1.png

First of all,
you w ill have a
very clear
separation
betw een the
dif f erent layers
of the program,
w hich tends to
help a w hole lot
in the long run.

simpler just to have two different implementations of Logic-to-Graphics layer
(which is responsible, among other things, for translation of coordinates into
screen coordinates).

If doing it this way, you’ll get quite a few benefits.

First of all, you will have a very clear separation between
the different layers of the program, which tends to help a
whole lot in the long run.

Second, even if you’re supporting only one platform now,
you’re leaving the door open to adding support for all the
platforms you might want, in the future. This includes
such things as adding an option to have a 3D version to
your currently-2D-only game.

Third, you don’t have a strong dependency on any
graphical engine, so if in 5 years from now a new, much-
better engine will arise, you’ll be able to migrate there
without rewriting the whole thing.

Fourth, such a clean separation facilitates using
authoritative servers (which we’ll discuss in Chapter
[[TODO]], and which are extremely important for the
reasons described there).

Fifth, with Logic-to-Graphics layer, for quite a few genres
you’ll be able to produce a command-line client, which comes handy for
testing (including automated testing, and testing of game logic without being
affected by graphics), and also for development-of-the-new-features while
the graphics is not ready yet.

We’ve discussed the benefits of this Logic-to-Graphics layer, but what about the
costs? Is it all 100% positive, or there are some drawbacks? In fact, I can only think
of two realistic negatives for having it:

There is a certain development overhead which is necessary to achieve this
clean separation. I’m not talking about performance overhead, but about
development overhead. If the game logic developer needs to get something
from the graphics engine, he cannot just go ahead and call the graphics-
engine-function-which-he-wants. Instead, an interface to get whatever-he-
needs should be created, has to be supported by all the engines, etc. etc. It’s
all easily doable, but it introduces quite a bit of mundane work. On the other
hand, I contend that in the long run, such clean interfaces provide much more
value than this development overhead takes away; in particular, clean
interfaces have been observed as a strong obstacle to the code becoming
“spaghetti code”, which is already more-than-enough enough to justify them.

“

In such cases
of dual

graphics, it is
paramount to
have Logic-to-

Graphics layer
as described

above.

A learning curve for those game developers coming from traditional limited-
life-span (and/or not-massively-multiplayer) 3D games. In these classical
games (I intentionally don’t want to use the term “old-fashioned” to avoid
being too blunt about it) everything revolves around the 3D engine, so for
these developers moving towards the model with clean separation between
graphics and logic will be rather painful. However, unless you decided your
game to be Engine-Centric, you need to move away from this approach
anyway, and even for those guys-coming-from-classical-3D-games this clean
separation model will be quite beneficial in the long run, so I wouldn’t say that
this drawback is that important.

Personally, for games with a potentially unlimited life span (and not having 3rd-
party game engine as an Absolute Dependency a.k.a. Vendor Lock-In), I almost
universally recommend to implement this Logic-to-Graphics Layer.

Dual Graphics, including 2D+3D Graphics
In quite a few cases, you may need to support two substantially different types of
graphics. One such example is when you need to support your game both for PC
and phone; quite often the difference between available screen real estate is too
large to keep your layout the same, so you usually need to redesign not only the
graphics as such, but also redesign layout.

In such cases of dual graphics, it is paramount to have Logic-
to-Graphics layer as described above. As soon as you have
Logic-to-Graphics layer, adding new type of graphics is a
breeze. You just need to add another implementation of
Logic-to-Graphics layer (using either the same graphical
engine, or different one, depending on your needs), and there
is no need to change game logic (!). These two different
implementations of Logic-to-Graphics layer may have
different APIs on the boundary with graphics engines, but they
always have the same API on the boundary with Game Logic.
The latter fact will allow you to keep developing your game
logic without caring about the specific engines you’re using.

The reason why it is so important to have Logic-to-Graphics
Layer is simple – for such a frequently changed piece of code
as a client-side game logic, maintaining two separate code

bases is usually not realistic. Pretty much any feature you’re adding, will require
some changes in game logic on the client side (hey, at least you need to receive that
new server message you’ve just introduced and parse it!), and having two code
bases for game logic will mean that you need to duplicate all such changes all the
time. I’ve observed much more than one competitor going the route of multiple
code bases, only to see that one of these code bases starts to lag behind the other,

“

and scrapping it 6 months down the road. It just illustrates the main point: you do
need to keep your frequently-changed portions of the code as a single code base.
And Logic-to-Graphics Layer allows to achieve it.

Of course, if you need to add a new instruction which comes from game logic to
Logic-to-Graphics Layer (for example, if you’re adding a new graphical primitive),
you will still need to modify both your implementations of the Logic-to-Graphics
Layer. However, if your separation API is clean enough, you will find that such
changes, while still happening and causing their fair share of trouble, are the
orders of magnitude more rare than the changes to game logic; this difference in
change frequencies is the difference between workable and unworkable one.

An extreme case of dual graphics is dual 2D+3D graphics. Not all the game genres
allow it (for example, first-person shooters usually won’t work too good in 2D), but
if your game genre is ok with it, and you have Logic-to-Graphics separation layer,
this becomes perfectly feasible. You just need to have 2 different engines, a 3D one
and a 2D one (they can be in separate clients, or even switchable in run-time), and
an implementation of Logic-to-Graphisc layer for each of them. As soon as you have
this, Bingo! – you’ve provided your players with a choice between 2D and 3D
graphics (depending on their preference, or platform, or whatever else). Even
better, when using a Logic-to-Graphics layer, you can start with the graphics which
is simpler/more important/whatever, and to add another graphics (or even
multiple ones) later.

[[To Be Continued…
This concludes beta Chapter V(a) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter V(b), “Modular
Architecture: Client-Side. Programming Languages”

EDIT: Chapter V (b). Modular A rchitecture: Client-Side. Programming
Languages for Games, including Resilience to Rev erse Engineering and
Portability, has been published

]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

[–] References
[Cocos2D-X] http://www.cocos2d-x.org/
[SpriteKit] https://developer.apple.com/spritekit/

/chapter-vb-modular-architecture-client-side-programming-languages-for-games-including-resilience-to-reverse-engineering-and-portability/
http://www.cocos2d-x.org/
https://developer.apple.com/spritekit/
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/

« Due to Popular Demand: PDFs of Beta Chapters from “Dev elop…

 Chapter V (b). Modular A rchitecture: Client-Side. Programmin… »

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: 2D, 3D, client, game, graphics, multi-player

Copyright © 2014-2015 ITHare.com

http://ithare.com/due-to-popular-demand-pdfs-of-chapters-from-development-deployment-of-multiplayer-online-games/
http://ithare.com/chapter-vb-modular-architecture-client-side-programming-languages-for-games-including-resilience-to-reverse-engineering-and-portability/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/2d/
http://ithare.com/tag/3d/
http://ithare.com/tag/client/
http://ithare.com/tag/game/
http://ithare.com/tag/graphics/
http://ithare.com/tag/multi-player/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter V(b). Modular Architecture: Client-Side. Programming
Languages for Games, including Resilience to Reverse
Engineering and Portability
posted November 30, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter V(b) from the upcoming book “Development&Deployment
of Massively Multiplayer Online Games”, which is currently being beta-
tested. Beta-testing is intended to improve the quality of the book, and
provides free e-copy of the “release” book to those who help with
improving; for further details see “Book Beta Testing“. All the content
published during Beta Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of Contents.]]

Programming Language for Game Client
Some of you may ask: “What is the Big Fat Hairy Difference between
programming languages for the game client, and programming language for any other
programming project?” Fortunately or not, in addition to all the usual language holy wars , there
are some subtle differences which make programming language choice for the game client
different. Some of these peculiarities are described below.

 between strongly typed and weakly typed programming languages, between compiled and
scripted ones, and between imperative and functional languages, just to name a few

One Language for Programmers, Another for Game Designers

1

1

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/wp-content/uploads/BB_part067_BookChapter005b_v2b.png

It is quite
common to

have tw o
dif f erent

programming
languages: one

(roughly)
intended f or

programmers,
and another

one (even more
roughly)

intended f or
game designers.

(MMORPG/MMOFPS etc.)
First of all, let’s note that in quite a few (or maybe even “most”) development
environments, there is a practice of separating game designers from
programmers (see “On Developers, Game Designers, and Artists” section in
this chapter). This practice is pretty much universal for MMORPG/MMOFPS,
but can be applicable to other genres too (especially if your game includes
levels and/or quests designed-by-hand).

In such cases, it is quite common to have two different programming
languages: one (roughly) intended for programmers, and another one (even
more roughly) intended for game designers. For example, Unreal Engine 4
positions C++ for developers, and Blueprint language for game designers.
CryEngine goes further and has three (!) languages: C++, Lua, and Flowgraph.
It is worth noting that while Unity 3D does support different languages, it
doesn’t really suggest using more than one for your game, so with Unity you
can get away with only, say, C# for your game client.

While having two programming languages in your game client is not fatal, it
has some important ramifications. In particular, you need to keep in mind
that whenever you have two programming languages, the attacker (for
example, bot writer/reverse engineer as discussed in “Different Languages
Provide Different Protection from Bot Writers” section below) will usually go
through the weakest one. In other words, if you have C++ and JavaScript, it is
JavaScript which will be reverse-engineered (that is, if JavaScript allows to

manipulate those things which are needed for the bot writer – and usually it does).

A word on CUDA and OpenCL
I wanna show you something. Look, Timon. Go on, look. Look out to the horizon, past the trees, over the

grasslands. Everything the light touches… [sharply] belongs to someone else!
— Timon's Mom, Lion King 1 1/2 —

If your game is an inherently 3D one, it normally means that you have a really
powerful GPU at your disposal on each and every client. As a result, it can be
tempting to try using this GPU as a GPGPU, utilizing all this computing power
for your purposes (for example, for physics simulation or for AI).

Unfortunately, on the client side, player’s GPU is usually already pushed to its
limits (and often beyond), just for rendering. This means that if you try using
GPU for other purposes, you’re likely to sacrifice FPS, and this is usually a Big
No-No in 3D game development. This is pretty much why while in theory CUDA
(and/or OpenCL) is a great thing to use on the game client, it is rarely used for
games (beyond 3D rendering) in practice. In short – don’t hold your breath
about available GPU power to use it as a GPGPU; not because this power is
small (it is not), but because it is already used.

On the other hand, for certain types of simulations, server-side
CUDA/OpenCL in an authoritative server environment might make sense; we’ll
discuss it in a bit more detail in Chapter [[TODO]].

Different Languages Provide Different Protection from

“

GPGPU
General-
purpose
computing on
graphics
processing
units (GPGPU,
rarely GPGP or
GP²U) is the use
of a graphics
processing unit
(GPU), w hich
typically
handles
computation
only f or
computer

https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units

Bot f ighting
is alw ays a tw o-
w ay battle w ith
bot w riters
inventing a w ay
around the
MMO def ences,
and then MMO
developers
striking back
w ith a new
def ence against
the most recent
attack; rinse
and repeat.

Bot Writers
As it was discussed in Chapter III, as soon as your MMO
game becomes successful, it becomes a target for
cheaters. And two common type of the cheaters are bot
writers and closely related bot users. For example, for an
MMORPG you can be pretty much sure that there will be
people writing bots; these bots will “grind” through your
RPG, will collect some goodies you’re giving for this
“grinding”, and will sell these goodies, say, on the eBay.
And as soon as there is a financial incentive for cheating,
cheaters will be abundant. For other genres, such as
MMOFPS or casino multiplayer games, bots are even
more popular. And if cheaters are abundant, and cheaters have significant
advantage over non-cheating players, your game is at risk (in the ultimate
case, your non-cheating players will become so frustrated that your game is

abandoned). As a result, you will find yourself in an unpleasant, but necessary role of a policeman,
who needs to pursue cheaters so that regular non-cheating users are not in a significant
disadvantage.

The problem of bot fighting is extremely common and well-known for MMOs;
unfortunately, there is no “once and for all” solution for it. Bot fighting is
always a two-way battle with bot writers inventing a way around the MMO
defences, and then MMO developers striking back with a new defence against
the most recent attack; rinse and repeat.

We’ll discuss bot fighting in more detail in Chapter [[TODO]], but at the
moment, we won’t delve into the details of this process; all we need at this
point is two observations:

for bot fighting, every bit of protection counts (this can be seen as a
direct consequence of the battle going back-and-forth between bot
writers and MMO developers)

reverse engineering is a cornerstone of bot writing

From these, we can easily deduce that

for the game client, the more resilient the
programming language against reverse engineering

– the better

Resilience to Reverse Engineering of Different Programming
Languages

Now let’s take a look at different programming languages, and their resilience to reverse
engineering. In this regard, most of practical programming languages can be divided into three
broad categories.

Compiled Languages. Whether you like compiled languages or not as a developer, they clearly
provide the best protection from reverse engineering.

graphics, to
perf orm
computation in
applications
traditionally
handled by the
central
processing unit
(CPU).

— Wikipedia —

Game Bot
is a type of

w eak AI expert
system

sof tw are w hich
f or each

instance of the
program

controls a
player

— Wikipedia —

“

2

https://en.wikipedia.org/wiki/Video_game_bot

f rom all the
popular

compiled
languages, C++

tends to
produce the
binary code
w hich is the

most dif f icult-
to-reverse-

engineer (that is,
provided that you

have turned all
the optimizations

on, disabled
debug info, and

are not using
DLLs)

And from all the popular compiled languages, C++ tends to produce the
binary code which is the most difficult-to-reverse-engineer (that is, provided
that you have turned all the optimizations on, disabled debug info, and are not using
DLLs). If you have ever tried to debug at assembly level your “release” (or “-
O3”) C++ code, compiled with a modern compiler, you’ve certainly had a hard
time to understand what is going on there, this is even with you being the author
of the source code! C++ compilers are using tons of optimizations which make
machine code less readable; while these optimizations were not intended to
obfuscate, in practice they’re doing a wonderful job in this regard. Throw in
heavy use of allocations typical for C++, and you’ve produced a binary code
which is among the most obfuscated ones out there.

One additional phenomenon which helps C++ code to be rather difficult to
reverse engineer, is that even a single-line change in C++ source code can
easily lead to vastly different executable; this is especially true when the
change is made within an inlined function, or within a template.

Compiled languages other than C++, tend to provide good protection too,
though the following observation usually stands. The less development time
has been spent on the compiler, the less optimizations there are in generated
binary code, and the more readable and more easy-to-reverse-engineer the
binary code is.

One last thing to mention with respect to compiled languages, is that while
C++ usually provides the best protection from reverse-engineering from
programming language side, it doesn’t mean that your code won’t be cracked.
Anything which resides on the client-side, can be cracked, the only question is
how long it will take them to do it (and there is a Big Difference between being

cracked in two days, and being cracked in two years). Therefore, making all the other precautions
against bot writers, mentioned in Chapter [[TODO]], is still necessary even if you’re using C++.
Moreover, even if you do everything that I’ve mentioned in this book to defend yourself from bot
writers – most likely there still will be bot writers able to make reverse engineering of your client
(or at least to simulate user behaviour on top of it); however, with bots it is not the mere fact of
their existence, but their numbers which count, so every bit of additional protection does make a
difference (fo further discussion on it, see Chapter [[TODO]]).

Languages w hich compile to Byte-Code. Compiling to a byte-code (with the runtime
interpreting of this byte-code in some kind of VM) is generally a very useful and neat technique.
However, the byte-code tends to be reverse engineered significantly more easily than a compiled
binary code. There are many subtle reasons for this; for example, function boundaries tend to be
better visible within the byte-code than with compiled languages, and in general byte-code
operations tend to have higher-level semantics than “bare” assembler commands, which makes
reverse engineering substantially easier. In addition, some of byte-code-executing VMs (notably
JVM) need to verify the code, which makes the byte code much more formalized and restricted
(which in turn limits options available for obfuscation).

It should be noted that JIT compilers don’t help to protect from the reverse-
engineering; however, so-called Ahead-of-Time Compilers (such as gcj or
Excelsior JET), which compile Java to binary instructions, do help against
reverse engineering. What really matters here is what you ship with your client
– machine binary code or byte-code; if you’re shipping machine code – you’re
better than if you’re shipping byte code. This also means that “compile to .exe”
techniques (such as “jar2exe”) which essentially produce .exe consisting of JVM

“
3

JIT
just-in-time
(JIT)
compilation,
also know n as
dynamic

https://en.wikipedia.org/wiki/Just-in-time_compilation

and byte-code, do not provide that much protection. Moreover, “byte-code
encryption” feature in such .exes is still a Security-by-Obscurity feature , and
(while being useful to scare some of bot writers) won’t withstand an attack by
a dedicated attacker (in short: as decryption key needs to be within the .exe, it
can be extracted, and as soon as it is extracted, all the protection falls apart).

Still, I would say that with an “encrypted”/”scrambled” byte-code within your
client, you do have a fighting chance against bot writers, though IMHO it is
going to be an uphill battle.

Interpreted Languages. From the reverse engineering point of view,
interpreted programming languages provide almost-zero protection. The
attacker essentially has your source code, and understanding what you’ve meant, is only a matter
of (quite little) time. Obfuscators, while improving protection a little bit against a casual observer,
are no match against dedicated attackers. Bummer. As a rule of thumb, if you have interpreted
language in your client, you shall assume that whatever interpreted code is there, will be reverse
engineered, and modified to the bot writer’s taste. Oh, and don’t think that “we will sign/encrypt
the interpreted code, so we won’t need to worry about somebody modifying it” – exactly as with
“byte-code encryption”, it doesn’t really provide more than a scrambling (and to make things
worse, this scrambling can be broken in one single point).

On Compilers-w ith-Unusual-Targets. In recent years, several interesting projects have arisen
(such as Emscripten, GWT, JSIL/Santarelle, and FlasCC), which allow to compile C++ into JS or into
Flash bytecode (a.k.a. “ABC”=”ActionScript Byte Code”). From resilience-to-reverse-engineering
point of view, a few things need to be kept in mind with regards of these compilers:

those compilers which are based on LLVM front-end (and just provide back-end), will
generate quite difficult-to-break code even for JS

this include at least Emscripten and FlasCC (I have no idea about the others)

on the other hand, as all the communication with the rest of the system will need to be kept in
JS (or in ActionScript), overall protection will suffer significantly compared to “pure”
generated code

if you have encrypted traffic (which itself serves as a quite strong protection from bot writers,
see discussion in Chapter [[TODO]]), you will face a dilemma: either to use system-provided
TLS (which will weaken your protection greatly), or to try compiling OpenSSL with these
compilers (no idea if it will work, and also performance penalties, especially on
connecting/reconnecting, can be Really Bad).

 technically, we’re speaking not about languages as such, but about compilers/interpreters. Still,
for the sake of keeping things readable, let’s use the term “language” for our purposes (with an
understanding that there is compiled-to-binary Java, and there is compiled-to-bytecode-Java,
etc.)
 in practice, it may be a good idea to throw in a randomized allocator, so that memory locations

differ from one run to another , more on this in Chapter [[TODO]]
 in fact, “scrambling” would be more fair name for such features
 I didn’t have a chance to test this theory myself, so take it as just my yet another educated guess

Summary. Observations above can be summarized in the following Table V.1 (numbers are
subjective and not to scale, just to give an idea some relations between different programming
languages):

translation, is
compilation
done during
execution of a
program – at
run time –
rather than
prior to
execution.

— Wikipedia —

4

5

2

3

4

5

Programming Language
Resilience to Rev erse Engineering

(Subjectiv e Guesstimate)

C++ (high-level optimization, no debug info, no

DLLs)
7.5/10

C (high-level optimization, no debug info, no

DLLs)
7/10

Java or C# (compiled to binary, no DLLs) 6.5/10

Java or C# (compiled to byte code, obfuscated,

and scrambled)
5.5/10

Java or C# or ActionScript (compiled to byte

code)
5/10

JavaScript (obfuscated) 2/10

JavaScript 1/10

Note that here I’m not discussing other advantages/disadvantages of these programming
languages; the point of this exercise is to emphasize one aspect which is very important for games,
but is overlooked way too often. Also note that I’m not saying that you MUST write in C++ no-
matter-what; what you should do, however, is to take this table into account when making your
choice.

 while it is supported by anecdotal evidence, gathering reliable statistics is next-to-impossible in
this field
 as discussed in Chapter [[TODO]], DLLs represent a weak point for reverse engineering

Language Availability for Game Client-Side Platforms

The next very important consideration when choosing programming language, is “whether it will
run on all the platforms you need”. While this requirement is very common not only for games, it
still has specifics in the game development world. In particular, list of the client platforms is not
that usual.

In the Table V.2 below, I’ve tried to gather as much information as possible about support of
different programming languages for different client game platforms. [[NOTE TO BETA TESTERS:
PLEA SE POINT OUT IF Y OU SEE SOMETHING W RONG W ITH THIS TA BLE]]

W indow s Mac OS X PS4
X Box

One
iOS A ndroid Facebook etc.

6

7

6

7

8
8

8

C/C++ Nativ e Nativ e Nativ e Nativ e Nativ e Nativ e

Emscripten,

Chrome

Nativ e Client

(Chrome

Only), FlasCC

Objectiv e C GNUStep Nativ e No No Nativ e No No

Jav a

Oracle, can

be

distributed

w ith the

game

Oracle, can

be

distributed

w ith the

game

Not

really

Not

really

Oracle

MA F,

Robo V M

Nativ e,

Oracle

MA F

Oracle,

usually

requires

separate

install, or

GW T(?)

C# Nativ e Mono Not yet Nativ e X amarin X amarin
JSIL(?) or

Saltarelle(?)

A ctionScript

(a.k.a.

“Flash”)

A dobe A IR

SDK

A dobe A IR

SDK
No No

A dobe

A IR SDK

A dobe

A IR SDK

A dobe, most

of the time

already

installed

HTML

5/Jav aScript
Nativ e Nativ e Nativ e Nativ e Nativ e Nativ e Nativ e

 not accounting for jail-broken devices
 Caution required, see Chapter [[TODO]]
 see Chapter [[TODO]]
 well, you can write your own JVM and push it there, but…
 see “Big Fat Browser Problem” section below
 Given developments in the 2H’2015 (see, for example, [TheVerge]), ActionScript’s future looks

very grim
 Compatibility and capabilities are still rather poor

Sprinkle with All The Usual Considerations
We’ve discussed several peculiarities of the programming languages when it comes to games. In
addition to these not-so-usual things to be taken into account, all the usual considerations still
apply. In particular, you need to think about the following:

9 10 10

11 11

12

12

13

14

8

9

10

11

12

13

14

Any (half -
)decent
programmer
w ith any real-
w orld
experience in
more than one
programming
language can
start w riting in
a new one in a
f ew w eeks
w ithout much
problems.

how w ill it
look on my

is your-language-of-choice used long enough to be reasonably mature (so you won’t find
yourself with fixing compiler bugs – believe me, this is not a task which you’re willing to do
while developing a game)?

are available tools/libraries/engines sufficient for your game?

is it readable? More specifically: “is it easily readable to the common developer out there?”
(the latter is necessary so that those developers you will hire later, won’t have too much
trouble jumping in)

how comfortable your team feels about it?

how difficult is to find developers willing to write in it? Note that I’m not
speaking about “finding somebody with 5 years of experience in the
language”; I’m sure from my own 15+ years experience as an architect and
a team lead, that any [half-]decent programmer with any real-world
experience in more than one programming language can start writing in
a new one in a few weeks without much problems. It is frameworks which
usually require more knowledge than languages, but chances of finding
somebody who is versed in your specific framework are usually small
enough to avoid counting on such miracles. On the other hand, if your
programming language of choice is COBOL, Perl, FORTRAN, or
assembler, you may have difficulties with finding developers willing to
use it.

do you have at least one person on the team with substantial real-world
experience in the language, with this person developing a comparable-
size projects in it? Right above I was arguing that in general language
experience is not really necessary, but this argument applies only when
developer comes to a well-established environment. And to build this
well-established environment, you need “at least one person” with an
intimate knowledge of the language, environments, their peculiarities,
and so on.

is it fast enough for your purposes? Here it should be noted that
performance-wise, there are only a very few tasks which are time-critical
on the client side. Traditionally, with games time-critical stuff is pretty
much restricted to graphics, physics, and AI. With MMO, however, most of physics and AI
normally need to be moved to the authoritative server, leaving graphics pretty much the only
client-side time critical thing. Therefore, it might (or might not) happen that all of your
game logic is not time-critical; if it isn’t – you can pretty much forget about performance of
your programming language (though you still need to remember not to do crazy things like
using O(N^3) algorithms on million-item containers).

Just for the sake of completeness, here is the list of questions which are NOT to be taken into
account when choosing your programming language:

is it “cool”?

how will it look on my resume after we fail this project?

is it #1 language in popularity ratings? (while popularity has some impact
on those valid questions listed above, popularity as such is still very much
irrelevant, and choosing programming language #6 over language #7
just because of the number in ratings is outright ridiculous)

is the code short? As code is read much more often than it is written, it is
“readability” that needs to be taken into account, not “amount of stuff
which can be fit into 10 lines of code”. Also note that way too often

“
15

16

17

“

18

resume af ter
w e f ail this
project?

“brevity” is interpreted as “expressiveness” (and no, they’re not the
same).

 BTW, feel free to pass this message on to your hiring manager; while they
might not trust you that easily, in certain not-so-bad cases a quote from a book might help

 that is, if it is not an exotic one such as LISP, PROLOG, or Haskell
 in case of client-side prediction, however, you may need to duplicate some or even most of

physics/AI on the client side, see Chapter [[TODO]] for details
 if you succeed with the MMO project, the project itself will be much more important for your

resume than the language you’ve used, so the only scenario when you should care about “language
looking good on resume” is when you’re planning for failure

C++ as a Default Game Programming Language
Given our analysis above, it is not at all surprising that C++ is frequently used for games. Just a few
years ago, it was pretty much the only programming language used for serious game development
(with some other language usually used at the game designer level). These days, there is a tendency
towards introducing other programming languages into game development; in particular, Unity is
pushing C#.

However, we should note that while C# may speed up your development, it comes with several
significant (albeit non-fatal) caveats. First, as noted above, C# apps (at least when they are shipped
as byte code) has lower resilience to bot writers. Second, you need to keep an eye on the platforms
supported by C#/Mono. Third, with automated memory management, And last but not least, many
of C# implementations out there are known to use so-called “stop-the-world” garbage collection;
in short – from time to time the whole runtime needs to be stopped for some milliseconds, causing
“micro-freezes”. While this is certainly not a problem for games such as chess or farming, it can
easily kill your MMOFPS or MMORPG. There are quite a few tricks to mitigate “stop-the-world”
issues, so you might be able to get away with it, but honestly, I don’t think that it is worth the
trouble for FPS-critical games.

Bottom line: C++ is indeed a default programming for games, and for a good reason. While your
team might benefit from using alternative languages such as C#, take a look at issues above to
make sure that they won’t kill your specific game.

On C++ and Cross-Platform Libraries

One common approach in cross-platform C++ development world is to find and use one single
cross-platform library to cover all your platforms; with this one-library-for-all-platforms
approach, you can have different libraries for different functionality (for example, one for graphics
and another for networking), but each of these libraries is very often chosen with an intention to
cover the whole spectrum of your target platforms; anything less than that is thrown away as
unacceptable. I am arguing (alongside with quite a few developers out there) that such an
approach is not necessary, and moreover, is usually detrimental, especially for Games with
Undefined Life Span. More precisely, it is not the libraries which are detrimental, it is dependency
on the library which is detrimental.

First of all, let’s show that relying on one single library is not necessary. To avoid relying on one
single library, there is one well-known tried-and-tested way: you can (and should) make an
isolation layer with your own API, which isolates your code from all the 3rd-party libraries. If your
own API is indeed about your own needs (and not just a dumb wrapper around 3rd-party library),
you will be able, when/if it becomes necessary, to write another isolation layer and to start using a

15

16

17

18

19

Option 1.
Drop Facebook
as a platf orm.
While very
tempting
technically,
business-w ise it
might be
unacceptable.

completely different library on a different platform. One example of such an approach was
described in “Logic-to-Graphics Layer” section above. [[TODO: elaborate?]]

Now, to the question why it is a Bad Idea to use API of a single library directly. This is because of
the same good old vendor lock-in, the very same which has caused us to write cross-platform
programs. The thing is that, using any API all over your code means that you won’t be able to switch
from it, hence whenever such using-some-API-all-over-your-code happens, you are locked-in. And
being locked-in to a cross-platform library is not necessarily any better than being locked in to a
single platform; not only nobody knows whether the library will be alive and kicking in the long run,
but also nobody knows whether they are the best for every target platform, and whether they will
support that new platform which everybody will be using in 5 years from now, soon enough after it
appears.

I certainly don’t mean that cross-platform libraries are in any way “evil”; what I mean is that you
should (whenever possible) to keep your own isolation layer (which is more than just a “dumb
wrapper”, and provides you with an API tailored to your needs), to avoid vendor lock-in on a cross-
platform library. Behind this isolation layer – feel free to use anything which you want, cross-
platform or platform-specific. This approach is good for many reasons; in particular, it allows to
resolve a dilemma “whether to use one single cross-platform library which is imperfect, or to use
different libraries which are better but time consuming”; with this isolation layer in place, you can
start with a single cross-platform library (hiding behind your isolation layer), and to rewrite
isolation layer (not touching anything else) for those platforms which are of particular importance
for you.

 and usually will, though many of C++ negatives can be avoided if you’re careful enough, see
Chapter [[TODO]] for details

Big Fat Browser Problem
As we can see from the Table V.2 above, if you need to have your game both for Facebook (read:
“browser”), and for some other platform, you’ll have quite a problem at your hands. As of now, I
don’t see any “fit-for-all” solution, so let’s just describe more-or-less viable options available in
this case.

Option 1. Drop Facebook as a platform. While very tempting technically
(“hey, we can stay with C++/C#/… then!”), business-wise it might be
unacceptable. Bummer.

Option 1a. Drop Ev erything-Except-Facebook as a platform. Also very
tempting technically, and also likely to be unacceptable business-wise.

Option 2. Use A dobe A IR SDK w ith or w ithout [Starling]/Citrus. One Big
Obstacle on the way of this (otherwise very decent) option is that whole future
of the ActionScript currently looks very grim; with even Adobe pushing its own
users towards HTML5+JS [TheVerge], chances of ActionScript being
developed further in 5 years from now, look negligible. Another problem with
using ActionScript (as if the first one is not enough) is that resilience of your
code to hacking will be not-so-good (see Table V.1 above for “ActionScript”);
while not fatal, this is one thing to remember about.

Option 3. Other-Language plus A ctionScript (2 code bases). This will

19

“

Despite all
the
improvements
in this f ield, JS
is still one big
can of w orms
w ith lots of
programming
problems trying
to get out of the
can right in the
f ace of your
unf ortunate
player.

require to keep two separate code bases for “Other-Language” and ActionScript. And clients with
two code bases are known to fail pretty badly. You may still try it, but don’t tell that I didn’t warn
you. Also, keep in mind that as with Option 2 above, resilience of your code to reverse engineering
will be that of ActionScript (according to “the weakest link” security principle).

Option 3a. Other-Language plus Line-by-Line manual translation to A ctionScript (1.5 code
bases). Details of line-by-line conversion will be described in [[TODO]] section below. For now,
let’s take it as granted that such a thing might work, and results in “1.5 code bases” to be
maintained. Maintaining of these 1.5 code bases tends to be much easier than maintaining 2 code
bases, and it might work for you. This option will represent a significant headache maintenance-
wise, but at least it won’t hurt performance on mobiles, which might make it viable, especially if
mobile is more important for your game business-wise than Facebook.

Option 4. so-called “HTML5” (actually, JS). This is the option which I’d try to
avoid even for a game as simple as AngryBirds (and anything beyond it would
only make things worse). Despite all the improvements in this field, JS is still
one big can of worms with lots of programming problems trying to get out of
the can right in the face of your unfortunate player. While low-weight games
along this way may be viable (see, for example, [Bergström]), as the complexity
of your game grows, problems will mount exponentially. While HTML5 might
become a viable technology for larger games at some point, right now it is not
there, by far. And even when it does – you’ll need to keep in mind that
protection of JS from being hacked tends to be very low (see Table V.1 above).

Option 5. Other-Language w ith a “Client-on-Serv er” trick and Flash
front-end (1.5 code bases). Details of this approach will be discussed in
[[TODO]] section below. Disadvantages of this approach are mostly related to
scalability (and these issues MUST NOT be taken lightly, as described below);
however, on the plus side – you can stay with single-code-based Other-
Language for your game logic, and you can keep your Other-Language
reasonably protected from bot writers (that is, if you are not too concerned
about bots coming from Flash clients, which may happen if player capabilities
for Facebook and for non-Facebook versions are different, so that Facebook
version is actually just a “teaser” for the main one).

Option 5a. Other-Language w ith a “Client-on-Serv er” trick and
HTML5/JS front-end. A variation of Option 4, replacing Flash front-end with HTML5/JS one.
Might work even for larger games, but no warranties of any kind (and the issue with JS being easily
hackable, is still present). For further discussion, see [[TODO]] section below.

Option 6. Compile-to-JS: Emscripten, Jav a w ith GW T, or C# w ith JSIL/Santarelle. It seems to
be possible to compile game logic from C++ to JS using Emscripten, (or from Java to JS using GWT,
or from C# to JS using JSIL or Santarelle), and then to have Logic-to-Graphics Layer, as well as
graphics engine, in JS/HTML5. Performance-wise, LLVM-based Emscripten claims performance
which is merely 3-to-10x worse compared to native C++,[GDC2013] which is not too bad for at least
95% of the client-side code. On the other hand, I have no experience with these technologies, and
have no idea whether they work in practice (even less idea if they work for games); if you have any
experience about this route (either positive or negative) – please let me know. IMHO, this option is
one of the most promising ones in the long run, but I am not sure if it is production-ready yet.

Option 7. Chrome Nativ e Client. This thing will work only for Chrome browsers, but given the
growing market share of Chrome , you might be able to get away business-wise with supporting
only Chrome for Facebook-oriented games. If it is the case, and if your primary language of choice

“

20

« Chapter V (a). Modular A rchitecture: Client-Side. Graphics from “D&D of M…

 Chapter V (c). Modular A rchitecture: Client-Side. On Debugging Distribute… »

is C/C++, you can try to run C++ game logic within Chrome’s “sandboxed” [GoogleNativeClient]. I
have no idea if you succeed on this way, but IMHO it looks quite promising (that is, if Google will
keep supporting it, which in turn depends on the number of developers using it).

Option 8. FlasCC/Crossbridge. As LLVM guys were able to compile C++ into JS, I am not surprised
that they were also able to compile it into ABC (ActionScript Byte Code). Originally, FlasCC was an
Adobe project, and then they released it as an open-source project known as Crossbridge.
Unfortunately, as of the end of 2015, neither FlasCC nor Crossbridge seem to be actively
maintained. A pity.

Which of the options above suits your game better – is your decision, and it heavily depends on
specifics of your game. A few hints though (no warranties of any kind, batteries not included): if
Facebook is your primary platform – take a look at Option 3a (most reliable, but with lots of extra
maintenance and with only limited protection from bot writers), and Option 6 with Emscripten
(the most promising in the long run, but probably a bit too immature now); if other platforms are
of more interest than Facebook – take a look at Option 3a, Option 5/5a (ugly, but might work for
you), Option 6, and Option 7 (the easiest one and the best protection, but Chrome-only).

 As of the end of 2015, Chrome market share is about 50% and is still growing
[UsageShareOfWebBrowsers]

[[To Be Continued…
This concludes beta Chapter V(b) from the upcoming book “Development and
Deployment of Massively Multiplayer Games (from social games to MMOFPS,
with social games in between)”. Stay tuned for beta Chapter V(c), “Modular
Architecture: Client-Side. On Debugging Distributed Systems, Deterministic
Logic, and Finite State Machines”]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: client, game, multi-player

Copyright © 2014-2015 ITHare.com

20

[–] References
[Bergström] Sven Bergström, “Real T ime Multiplayer in HTML5”
[Starling] “Starling, The Cross Platform Game Engine”
[GoogleNativeClient] Wikipedia, “Google Native Client”
[GDC2013] “Fast C++ on the Web using Emscripten and asm.js”
[TheVerge] Jacob Kastrenakes, “Adobe is telling people to stop using Flash”
[UsageShareOfWebBrowsers] Wikipedia, “Usage share of web browsers”

http://www.htmlgoodies.com/html5/client/real-time-multiplayer-in-html5.html
http://gamua.com/starling/
https://en.wikipedia.org/wiki/Google_Native_Client
https://kripken.github.io/mloc_emscripten_talk/gindex.html#/
http://www.theverge.com/2015/12/1/9827778/stop-using-flash
https://en.wikipedia.org/wiki/Usage_share_of_web_browsers
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-v-a-modular-architecture-client-side-graphics/
http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter V(c). Modular Architecture: Client-Side. On
Debugging Distributed Systems, Deterministic Logic,
and Finite State Machines
posted December 7, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter V(c) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

Distributed Systems: Debugging Nightmare
Any MMOG is a distributed system by design (hey, we do need to have a server and
at least a few thousands of clients). While distributed systems tend to differ from
non-distributed ones in quite a few ways, one aspect of distributed systems is
especially annoying. It is related to debugging.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

The problem with debugging of distributed systems is that it is
usually impossible to predict all the scenarios which can
happen in real world. In short, we’re speaking about race
conditions. While it is usually possible to answer “What will
happen if such a packet arrives at exactly such and such
moment”, making an exhaustive list of such questions is
unfeasible for any distributed system which is more
complicated than a stateless HTTP request-response “Hello,
Network”. If you didn’t try creating such an exhaustive list
yourself for a non-trivial system – you may want to try doing it,
but it will be much cheaper to believe my experience in this
field – for any non-trivial stateful system it won’t work, period.

This automatically means that even the best possible unit
testing (while still being useful) inevitably fails to provide any
guarantees for a distributed system. Which in turn means that
in many cases you won’t be able to see the problem until it
happens in simulation testing, or even in real world. To make
things even worse, in simulation testing it will happen every
time at a different point. And when it happens in real world,
you usually won’t be able to reproduce it in-house. Sounds
grim, right? It certainly does, and for a reason too.

As a result, I am going to make the following quite bold statement:

Race
condition
A race
condition or
race hazard is
the behavior of
an electronic,
sof tw are or
other system
w here the
output is
dependent on
the sequence or
timing of other
uncontrollable
events.

— Wikipedia —

/wp-content/uploads/BB_part068_BookChapter005c_v1.png
https://en.wikipedia.org/wiki/Race_condition

If you don’t design your distributed system for
testing and post-mortem analysis, you will find

yourself in lots of trouble

Fortunately, it is possible to design your system for distributed testing, and it is not
that difficult, but it requires certain discipline and is better to be done from the
very beginning; we’ll discuss one of the ways to do it a little bit later.

The Holy Grail of Post Mortem

In practice, whatever amount of testing you do, test cases produced by real life and
by your inventive players, will inevitably go far beyond everything you were able to
envision in your tests. It means that from time to time your program will fail. While
reducing time between failures is very important, another thing is arguably even
more important than that: it is the time which takes you to fix the bug after it was
reported. And for reducing number of times which the program needs to fail
before you can fix it, post-mortem analysis is of paramount importance. The holy
grail of post-mortem, of course, is when you can fix any bug using the data from
one single crash, so it doesn’t affect anybody anymore. This holy grail (as well as
any other holy grail) is not achievable in practice. However,

I’ve seen systems which, using techniques similar to
those described in this book, were able to fix around

75% of all the bugs after a single post-mortem

 here we’re speaking about post-mortem analysis after program failure, core
dump or otherwise, and not about “project post-mortem”

Portability: Platform-Independent Logic as “Nothing But
Moving Bits Around”
Now let’s set aside all the debugging for a moment, and speak a little bit about
platform independent stuff. Yes, I know I am jumping to quite a different subject,
but we do need it, you will see how portability is related to debugging, just half a
page later.

In most cases graphics, input, and network APIs on different platforms will be
different. Even if all your current platforms happen to have the same API for one of
the purposes, chances are that your next platform will be different in this regard.

1

1

It is
necessary to

separate your
code into tw o

very-w ell-
def ined parts:

platf orm-
dependent one
and platf orm-

independent
one.

The idea here

As a result, it is necessary to separate your code into two
very-well-defined parts: platform-dependent one and
platform-independent one. Moreover, similar to what we’ve
discussed with regards to Logic-to-Graphics Layer (see
“Logic-to-Graphics Layer” section above), your platform-
dependent code needs to be very-rarely-changing, and your
frequently-changing game logic needs to be platform-
independent.

When speaking about platform-independent logic, a friend
and colleague of mine, Dmytro Ivanchykhin, likes to describe it
as “nothing more then moving bits around”. Actually, this is
quite an accurate description. If you can isolate a portion of
your program in such a way that it can be described as mere
“taking some bunches of bits, processing them, and giving
some other bunches of bits back”, all of this while making only
those external calls which are 100% cross-platform (ok, “100%
cross-platform for all the platforms you need”), you’ve got
your logic platform-independent.

Having your game logic on the client side as a platform-independent logic, is
absolutely necessary for any kind of cross-platform development. There is no way
around it, period; any attempts to have your game logic interspersed with the
platform-dependent calls will doom your code sooner rather than later. This is just
a common wisdom of cross-platform development, and not really specific to
games or distributed systems.

Stronger than Platform-Independent: Strictly-
Deterministic
The approach described above, is very well-known and is widely accepted as The
Right Way to achieve platform-independence. However, having spent quite a bit of
time with debugging of distributed systems, I’ve became a strong advocate of
making your logic part not only platform-independent, but also strictly-deterministic.
While strictly speaking, one is not a superset of the other one, in practice these two
concepts are very closely interrelated.

The idea here is to have your game logic consisting of the
functions, which are 100% defined by their-input-data plus by
internal-game-logic-state; as we’ll see below, strict
determinism can be achieved when you call system-dependent
functions inside, though it comes with some caveats and
should be usually avoided. For most of the well-written code
out there, a large part your game logic is already written more

“

“

is to have your
game logic
consisting of
the f unctions,
w hich are 100%
def ined by
their-input-
data plus by
internal-game-
logic-state

or less around these lines, and there are only a few relatively
minor modifications to be made. In fact, modifications can be
that minor, that if your code is reasonably well-written and
platform-independent, you may even be able to introduce
strict determinism as an afterthought. I’ve done such things
before, and it is not that much of a rocket science, but honestly,
it is still much better to go for strict determinism from the
very beginning, especially as the cost is very limited.

Strictly-Deterministic Logic: Benefits

At this point, you should have two very reasonable questions.
The first one is “What’s in this strict determinism for me?”, and
the second one is “How to implement it?”

To answer the first question and to explain why you should undertake this effort, all
the benefits of implementing your logic this way actually result from one single
word: determinism. When all the outputs of your logic are completely defined by
its internal state plus its inputs, your program module (class, etc.) becomes
perfectly deterministic. And while you may think that this is a purely theoretical
advantage, determinism provides several very practical benefits. Most of these
benefits result from one all-important property of a strictly deterministic system:

if you record all the inputs of a strictly deterministic
system, and re-apply these inputs to another

instance of the same strictly deterministic system in
the same initial state, you will obtain exactly the

same results

For practical purposes, let’s assume that we have mechanics to write an inputs-log,
recording all the inputs to our strictly-deteministic logic (see “Implementing
Strictly-Deterministic Logic: Definitions” section below for implementation
details):

Your testing becomes deterministic, reproducible, and reversible
it means that as soon as you’ve got a failure, you can repeat the whole
thing, and get the failure at exactly the same place in code. Such 100%
reproducibility, in particular, allows things such as “let’s stop our
execution at 5 iterations before the failure.” If you have ever debugged a
distributed program with a difficult-to-reproduce bug, you will
understand that one this single item is worth all kinds of trouble.

in addition, your testing becomes more meaningful; without 100%
determinism, any testing has a chance to fail depending on certain

“

2

Af ter your
logic has f ailed
in production,
you can
“replay” this
inputs-log on
your
f unctionally
identical in-
house system,
and the bug w ill
be reproduced
at the very same
point w here it
has originally
happened.

conditions, and having your tests failing randomly from time to time is
the best way I know to start ignoring such sporadic failures (which often
indicate race-related and next-to-impossible-to-figure-out bugs). On
the other hand, with 100% determinism, each and every test failure
means that there is a bug in your code, that cannot be ignored and needs
to be fixed (and can be fixed too, improving quality of your production
code significantly)

100% reproducible bugs during post-mortem, both
client-side and server-side

if you can log all the inputs to your logic in
production (and quite often you can, at least on
circular basis, see “EventProcessor Variations:
Circular Buffers” section below for details), then
after your logic has failed in production, you can
“replay” this inputs-log on your functionally identical
in-house system, and the bug will be reproduced at
the very same point where it has originally happened.
Even better, your in-house system needs be only
functionally identical to production one (i.e.
performance is a non-issue, and any PC will do); also
you are not required to replay the whole system, you
can replay only suspicious module instead.
Moreover, during such inputs-log replay it is not
necessary to run it on the same time scale as it was
run in production; it can be run either faster (for
example, if there were many delays, and delays can
be ignored during replay), or slower (if your test rig
is slower than the production one).

Regression testing using production data
if you’ve got your inputs-log just once, you can
“replay” it to make sure that your code changes are
still working. In practice, it comes handy in at least
two all-important cases:

when your new code just adds new functionality, and unless this
new functionality is activated, the system should behave exactly as
before

when your new code is a pure optimization of previous one; when
dealing with many thousands of simultaneous users, such
optimizations can be Really Complicated (including major rewrites
of certain pieces), and having an ability to make sure that new code
works exactly as the old one (just faster), is extremely important.

Keeping code bases in sync
If you’re unlucky enough to have 2 code bases (or even “1.5 code bases”,
see Chapter [[TODO]] for details), then running the same inputs-log over

“

the two code bases provides an easy way to test whether the code bases
are equivalent. Keep in mind that it requires cross-platform
determinism, which has some additional issues, discussed in “Cross-
Platform Issues” section below.

User Replay, see discussion in “On User Replay” subsection below.

Last but not least – determinism may allow you to run exactly the same logic
(or even physics) both on client and server, feeding them with the same data
and obtaining the same results. This will allow to save A LOT on network
traffic (we’ll discuss it in more detail in Chapter [[TODO]]); on the other hand,
it requires cross-platform determinism across all your platforms, which is
much more difficult to achieve than a single-platform one (and is more
difficult to achieve than cross-platform determinism for two selected
platforms).

Keeping in mind that:

if you have a good development team, any reproducible bug is a dead bug

the most elusive and by far time-consuming bugs in distributed systems tend
to be race-related

the race-related bugs are very difficult to reproduce, we can easily conclude
that

having deterministic testing makes a Really Big
Difference when it comes to distributed systems.

With strictly deterministic systems (and appropriate testing framework), all those
elusive and next-to-impossible-to-locate race-related bugs are brought to you on
a plate.

There are also additional benefits of being deterministic , but these are beyond the
scope of this book.

 to be fair, similar things in non-production environments are reportedly possible
with GDB reverse debugging; however, it is platform-dependent, and is out of
question for production, as running production code in reverse-enabled debug
mode is tantamount to a suicide for performance reasons
 I don’t want to say that you’re like Pumba or Timon from Lion King series
 examples include, for example, an ability to perform incremental backup just by

recording all the inputs (will work if you’re careful enough), and an additional
ability to apply an existing inputs-log to a recently fixed code base; the latter, while
being quite esoteric, may even save your bacon in some cases, though admittedly
rather exotic ones

3

4

2

3

4

Strictly-Deterministic Logic: On User Replay

With traffic being cheap and YouTube videos ubiquitous, User Replay is not that
important these days, but still deserves being mentioned. When your game logic is
fully deterministic, it will be possible for the player to record the game as it was
played, get a very small (!) file with the record, and then share this file with the other
players. Which in turn may help to build your community, etc. etc. As mentioned
above, it is not that attractive these days, but you might still want to think about
User Replay (which is coming to you more or less “for free”, as you need
determinism for other reasons too). If you add some interactive features during
replay (such as changing viewing angle and commenting features such as labels
attached to some important units, etc.), it might (or might not) have business
sense.

A few points about implementing User Replay via deterministic replay:

Usually, you need to record (and replay) only one entity – the one which is
most close to the graphics. In other words, in terms of Generic QnFSM
Architecture described below, you need to record/replay only
“Animation&Rendering” FSM (and “Game Logic FSM” doesn’t need to be
recorded to enable User Replay)

Keep in mind that User Replay will normally require you to adhere to the most
stringent version of determinism, including cross-platform issues (see
“Cross-Platform Issues” section below)

As a bit of relief, you MIGHT (or might not) be able to get away with not-
that-strict determinism when it comes to floating-point issues (see
“Cross-Platform Issues” section below); however, there is a big open
question whether these really subtle differences will accumulate into
some kind of macroscopic effects.

When implementing User Replay as deterministic replay, you’ll need to deal
with the “version curse”. The problem here is that strictly speaking, replay
won’t run correctly on a different version of FSM . So you will need to add
FSM version number to all of these files, and then:

either to anayse track which version of replay file will run on which of the
FSMs. I don’t think is realistic (as analysis is too complicated)

or to keep all the different publicly-released versions of the FSM in the
client, so all of them are available for replay. This one might fly, because
FSM code size is usually fairly small (at most of the order of hundreds of
kilobytes), and updates to post-Logic-to-Graphics Layer are relatively
rare.

even in this case, your Animation&Rendering FSM will have external
dependencies (such as DirectX/OpenGL), which can be updated

5

I hope I've
managed to
convince you
that strictly-
deterministic
systems are a
Good Thing™

and cause problems. However, as long as external dependencies are
100% backward-compatible – you should be fine (at least in theory)

while adding meshes/textures isn’t a problem, replacing them is.
For most of the purely cosmetic texture updates, you may be fine
with using newer versions of textures on older replays, but for
meshes/animations – probably not, so you may need to make them
versioned too (ouch!)

Ultimately, this is still a business decision, so even if you like the idea of User
Replay a lot, but business guys say that they don’t need this kind of stuff –
don’t bother with implementing it; while seemingly trivial, it will require quite
a bit of time to implement in a way which makes it both replayable and
interesting for your players.

On the other hand, decision whether you want to have determinism for
testing/post-mortem purposes – is not a business decision, and you may
(and IMNSHO should) do it pretty much regardless of Business
Requirements (that is, unless Business Requirements state “crash for
each user at least twice a day”); at the very least you should go for
determinism for most of the games with Undefined Life Span.

 personally, I’ve never faced these things, so I cannot provide any real-world
comments

Implementing Strictly-Deterministic Logic: Definitions

I hope I’ve managed to convince you that strictly-deterministic
systems are a Good Thing™, and that now we can proceed to
the second question: how to implement these strictly-
deterministic systems?

First, let’s define what we want from our strictly-deterministic
system. Practically (and to get all those benefits above) we
want to be able to run our code in one of three modes:

Normal Mode. The system is just running, not actively
using any of its strictly-deterministic properties

Recording Mode. The system is running exactly as in
Normal Mode, but is additionally producing inputs-log

Replay Mode. The system is running using only
information from inputs-log (and no other information), reproducing exact
states and processing sequences which have occurred during Recording
Mode

5

“

it is much
more important
to encapsulate
your
serialization
f ormat f rom
your state
machine logic

Note that Replay Mode doesn’t require us to replay the whole system; in fact, we
can replay only one part of the whole thing, the one which we suspect to be guilty. If
after analysis we find that it was behaving correctly and that we have another
suspect – we can replay that suspect from its own inputs-log (which hopefully has
been written too during the same session which has caused failure).

Implementing Inputs-Log

Implementation-wise, inputs-log is usually organized as a sequence of “frames”, with
each “frame” depending on the type of data being written. Each of the “frames”
usually consists of a type, and serialized data depending on type.

Let’s discuss how it can/should be done in C++ (other languages are usually
simpler, or MUCH simpler), and which caveats need to be avoided. Below are a few
hints in this regard:

don’t serialize your data as plain C structures; use serialization library
instead.

it is often a good idea to use your marshalling library (see Chapter
[[TODO]]) for serialization purposes too

it doesn’t really make much difference which serialization
format (binary or text-based) you use; it is much more
important to encapsulate your serialization format from
your state machine logic (i.e. to have serialization library
which takes care of all the formatting stuff)

as a part of this encapsulation, I strongly suggest to
define your own (and opaque!) stream class , using
this your-own-and-opaque-class as a parameter to
your serialization functions. The only thing which
you’re allowed to do with an object of this class, is to
pass it to a function from your serialization library.
This approach will save you quite a lot of trouble
down the road.

despite exact format being more or less irrelevant,
make sure that your serialization format is portable
between your plaftorms

while we’re speaking about inputs-log, most of the time your data will be plain
and without any pointers; however, in some cases (and when state
serialization becomes necessary, see, for example, “EventProcessor
Variations: Circular Buffers” below), the need to serialize more complicated
data structures may arise.

In such cases, usually, you fill find that your data (whether for inputs-log
frames or for states) is still simple enough to be described by levels 1 to 3
on the sophistication scale as defined by [ISOCPP]. You may want to use

“

suggestions described there.

Implementing Strictly-Deterministic Logic: Original Non-Strictly-
Deteministic Code

Now as we have our inputs-log, let’s see how we can implement our logic which will
record/replay it. Let’s start with a simple example: a class, which implements a
“double-hit” logic. The idea is that if the same NPC gets hit twice within certain
pre-defined time, something nasty happens to him. Usually, such a class would be
implemented along the following lines:

While this example is intentionally trivial, it does illustrate the key point. Namely,
while being trivial, function DoubleHit::hit() it is NOT strictly-deterministic. When
we’re calling hit(), the result depends not only on input parameters of hit() and on
members of DoubleHit class, but also on the time when it was called.

 while such logic normally belongs to server-side in MMOs, it may need to be
duplicated on the client-side (for example, due to the client-side prediction, see
Chapter [[TODO]] for details), so it is relevant for client-side too

Implementing Strictly-Deterministic Logic: Strictly-Deteministic Code
via Intercepting Calls

6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

class DoubleHit {
 private:
 const int THRESHOLD = 5;//in MyTimestamp units
 MyTimestamp last_hit;
 //actual type of MyTimestamp may vary
 // from time_t to microseconds, and is not important for our purposes

 public:
 DoubleHit() {
 last_hit = MYTIMESTAMP_MINUS_INFINITY;
 }

 void hit() {
 MyTimestamp now = my_get_current_time();
 if(now – last_hit < THRESHOLD)
 on_double_hit();

 last_hit = now;
 }

 void on_double_hit() {
 //do something nasty to the NPC
 }
};

6

The f irst
approach is to
“intercept” all
the calls to the

f unction
my_get_current_time().

Now let’s see what we can possibly do to make our DoubleHit::hit() deterministic. In
general, I know two and a half approaches to achieve it.

The first approach is to “intercept” all the calls to the function
my_get_current_time(). “Intercepting calls” here is meant as
changing behaviour of the function depending on the mode in
which the code is running, adding/changing some
functionality in “Recording” or “Replay” modes. “Intercepting”
my_get_current_time() can be done, for example, as follows:
whenever the system is running in “recording” mode,
my_get_current_time() would run as normal, but would
additionally store each returned value to the inputs-log. And
whenever the system is running in “replay” mode,
my_get_current_time() would read the next value from the
inputs-log, and would return that value regardless of actual
time (and without making any system calls). This is possible
exactly because of 100% determinism: as all sequences of calls

during Replay are exactly the same as they were during Recording, it means that
whenever we’re calling my_get_current_time(), at the “current position” within
our inputs-log we will always have exactly a record which was made by
my_get_current_time() during Recording.

Therefore, “interception” of the function my_get_current_time() may be
implemented, for example, as follows:

Bingo! This approach would make our implementation strictly-deterministic, and
without any code changes too! Actually, this is pretty much what [liblog] replay tool

“

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

MyTimestamp my_get_current_time() {
 if(Mode == REPLAY_MODE) {
 MyTimestamp ret =
 //read next frame from global inputs-log into 'ret'
 // this frame MUST be a my_get_current_time() frame
 ;
 return ret;
 }

 MyTimestamp ret =
 // code for my_get_current_time() before “call interception”
 ;

 if(Mode == RECORDING_MODE) {
 //write my_get_current_time() as a 'frame'
 // to a global inputs-log
 }

 return ret;
}

7

did.

However, there is a significant caveat with this way of making your logic strictly
deterministic. If we add (or remove) any calls to my_get_current_time() (or more
generally, to any of the functions-which-record-to-inputs-log), the replay will fall
apart. While replay will still work for exactly the same code base, things such as
replay-based regression testing will become pretty much unusable in practice, and
existing real-world inputs-logs (which are an important asset, helping to test things)
will be invalidated too frequently.

 not to be confused with other tools with the same name; as of now, I wasn’t able to
find an available implementation of liblog

Implementing Strictly-Deterministic Logic: “Pure Logic”

An alternative way (the one which I usually prefer) of making the class strictly-
deterministic, is to change the class DoubleHit itself so that it becomes strictly
deterministic without any interception trickery. For example, we could change our
DoubleHit::hit() function to the following:

If we change our class DoubleHit in this manner, it becomes strictly deterministic
without any need to “intercept” any calls; let’s name such classes “pure logic”
classes.

In general, whenever there is a choice, I usually prefer this “Pure Logic” approach;
it is more explicit than intercepting calls, more easily readable, and has better
resilience to modifications. However, it has some implications to keep in mind:

with “pure logic”, it becomes a responsibility of the caller to provide stuff
such as timestamps

this passing parameters may (and usually will) go through multiple levels
of calls

at some level, however, some caller-of-caller-… needs to call
my_get_current_time() and pass obtained value as parameter

it is a responsibility of whoever-calls-my_get_current_time(), to record data
to inputs-log (and to handle replay too). See class EventProcessor below for an
example.

7

1
2
3
4
5

void hit(MyTimestamp now) {
 if(now – last_hit < THRESHOLD)
 on_double_hit();
 last_hit = now;
}

the whole chunk of processing (while caller-which-has-called-
my_get_current_time() passes parameter around) is deemed to happen at
the same point in time. While this is exactly what is desired for 99.9% of game
logic, you need to be careful not to miss remaining 0.1%.

Implementing Strictly-Deterministic Logic: TLS-based Compromise

As an alternative to passing parameters around, you might opt
to pass parameters via TLS instead of stack.The idea is to
store MyTimestamp (alongside with any other parameters of
similar nature) to the TLS, and then whenever
my_current_get_time() is called, merely read the value from
TLS.

In practice, it means doing the following:

keep your original logic code intact, with
my_get_current_time() calls within

rename my_get_current_time() to
my_real_get_current_time()

at those points where you’d call my_get_current_time() (for passing result as
a parameter) in “pure logic” model, call my_real_get_current_time() and
write the result to TLS

implement my_get_current_time() as simply reading of the value from TLS

This model is a kind of compromise between the two approaches above; it is less
verbose (and less explicit) then “pure logic”, but it is functionally equivalent to
“pure logic”, and therefore it doesn’t suffer when somebody inserts yet another
my_get_current_time(). If you prefer this model to “Pure Logic” – it is fine, but
you’ll need to figure out fine details of TLS yourself, as I will describe things mostly
in terms of “Pure Logic” (though it can be converted to TLS-based Compromise
Model in a very straightforward manner).

In TLS-based Compromise Model, handling of the recording/replay is exactly the
same as in “pure logic” model (see also class EventProcessor below); the only thing
which TLS-based Compromise changes compared to the “pure logic”, is how the
data is passed from caller to callee; everything else (including the data written to
the inputs-log) is exactly the same.

 for C++, see C++11’s thread_local storage duration specifier, but there are usually
other platform-dependent alternatives

TLS
Thread-local
storage (TLS) is
a computer
programming
method that
uses static or
global memory
local to a
thread.

— Wikipedia —

8

8

https://en.wikipedia.org/wiki/Thread-local_storage

Implementing Strictly-Deterministic Logic: Passing Input Parameters
as Data Members

Yet another way to handle it is to put all the input parameters as data members of
your class DoubleHit:

While it again is functionally equivalent to “Pure Logic”, and will work, I shall say
that I don’t like it on readability grounds. Perceptionally, members of class
DoubleHit clearly represent “current state” of class DoubleHit, and putting
now (which is an “input parameter”, and is semantically very different from
“current state”) there will be too confusing as soon as you give the code to
somebody not familiar with your conventions.

 Implementing Strictly-Deterministic Logic: W hich Model to Choose?

Personally, I usually prefer “Pure Logic” approach described above. However, I
admit that “TLS-based Compromise” is functionally equivalent to “Pure Logic” one,
and that a discussion about being explicit vs being brief in this case is pretty much
about personal preferences.

Therefore, I think that any of these two models is fine, just stay away from
“intercepting calls” and “passing parameters as data members”; actually, even
“intercepting calls” and “passing parameters as data members” are light years
ahead of having no strict determinism at all, but why settling for something worse
when you can have something better at the same price?

Implementing Strictly-Deterministic Logic: W hich system functions
we’re speaking about?

In general,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

class DoubleHit {
 private:
 const int THRESHOLD = 5;
 MyTimestamp last_hit;
 MyTimestamp now;//NOT recommended because of confusion!

 public:
 //...
 void hit() {
 if(now – last_hit < THRESHOLD)
 on_double_hit();

 last_hit = now;
 }
 //...

Let's take a
closer look at

the question
“w hat exactly
do w e need to

intercept /
provide?”

each and every of system calls (including system
calls made indirectly via wrappers), creates a

danger of deviating your class from being strictly-
deterministic.

As a result, some of the readers will say: “hey, this way we will
end up with millions of parameters (or function calls we need
to intercept)!” . Fortunately, it is not that bad. Let’s take a
closer look at the question “what exactly do we need to
intercept/provide?”

As we’ve already discussed in “Logic-to-Graphics Layer”
section above, all the code which works directly with graphics,
should be separated from game logic by Logic-to-Graphics
Layer; moreover, the interface which we’ve defined for this
Layer, was essentially one-way communication (with game
logic sending instructions to draw something, to the Layer),
and one-way communication which goes in “from logic”
direction, doesn’t affect determinism. In a similar manner, all
the code which directly calls network sockets or input, should

be moved to the platform-dependent part; moreover, these parts will usually
reside in a different thread, or at least “higher” than our game logic (so that will act
as callers with regards to game logic), see section [[TODO]] below; such usage
won’t affect determinism either.

This leaves us with two major items which are closely related to the logic, and are
not deterministic per se; these are time and client-side configuration. Let’s take a
look at each of these two items:

Time. T ime as such is not deterministic by design, but obtaining time is
generally cheap, so usually there is no problem for the caller to pass time to
the callee, even if callee won’t use it. Therefore, for time we can use “pure
logic” approach above, to make the things more explicit (and to avoid
problems when existing input-logs get incorrect when somebody inserts
another my_get_current_time() into processing logic); functionally
equivalent “TLS Compromise” will be less explicit and less verbose too.

Client-side Configuration. Client-side configuration is pretty much the only
case when you may need an access to the client-side file system (leaving aside
caching, see on it below). With regards to the client-side configuration, you
usually can set it to one fixed value for the whole session, and to put this one
fixed value into the very beginning of your input-logs. If you want to test
manipulating client-side configuration (which I never needed and never heard
of somebody who needed it, but in the game world anything can happen) – you
may choose either to intercept calls, or to use a kind of exception-based

“

9

10

trickery which will be described in Chapter [[TODO]] with regards to
conditional handling of real (hardware-based) randomicity.

Other stuff. There is a chance that you will genuinely need to use a non-
deterministic call which is not covered in this Chapter, and to do it from
within your game logic. One such example includes re-formatting of the
server time into local time (which is better to be avoided anyway to avoid
confusion, replacing it with system-independent “it happens in 37 minutes
from now” kind of stuff, but sometimes you just don’t have a choice). In such
cases, you have the same two choices as right above – either to intercept
relevant calls , or to use exception-based approach described in Chapter
[[TODO]]. As long as such calls are rare, both these approaches will work
reasonably well in practice.

 it took me quite a few years to realize, how actually good it is
 for server-side, there is also real (hardware-based) randomicity and databases,

but we’ll set this discussion aside until Chapter [[TODO]]
 it is MUCH better to do this interception after conversion to system-independent

data formats, so it is system-independent data which gets into inputs-log

Strictly-Deterministic Logic: Non-Issues

In addition to the non-deterministic issues described above, there are also three
non-issues; these are pseudo-random numbers, logging and caching.

Pseudo-random numbers as such are perfectly deterministic; that is, as long as
you’re storing PRNG state as a part of your logical state (if you’re using
FiniteStateMachine as described below – as a member of specific class
MyFiniteStateMachine). Instead of using non-deterministic rand() (which implicitly
uses a global, see also below), you can either implement your own linear
congruential PRNG (which is literally a one-liner, but is not really good when it
comes to randomicity, see also Chapter [[TODO]]), or use one of those Mersenne
Twister classes which are dime a dozen these days (just make sure that those PRNG
classes have PRNG state as a class member, not as a global); for C++ you can use
something like boost::mt19937. Note that to get your PRNG seeded, you still need to
provide some seed which is external to your deterministic logic, but this is rarely a
problem.

Logging/tracing (as in “log something to a text/binary log file”), while it does
interact with an outside world, is usually strictly deterministic per se. Moreover,
even if your logging procedure prints current time itself (and to do it, calls
my_get_current_time() or something else of the sort), and technically becomes
non-deterministic from the “all the world outside of our logic” point of view (this
happens because it’s end-result depends on the current time), it still stays strictly

11

9

10

11

The second
deterministic
non-issue is
related to
caching.

deterministic from the point of view of the logic itself (as long as the logic cannot
read the log). Practical consequence: even in “Pure Logic” model, there is no need
to pass ‘now’ parameter to those framework-level functions which implement
logging (even if they call my_get_current_time() inside, but only as long as the
result of this my_get_current_time() is not used other than to write data to the
log).

The second deterministic non-issue is related to caching.
Caching (whether file-based or memory-based), when it comes
to the determinism, is an interesting beast. As long as all your
caching does, is strictly caching of the data and nothing else, it
is deterministic, regardless of all the reads and writes
(provided that original state of the cache is stored, if
applicable, in inputs-logs). While relying on caching being
implemented as a correct cache won’t allow you to “replay-
test” caching itself, as long as you’re sure that your caching is
working – you can rely on it’s determinism.

More generally, such things as logging and caching (if they are
strictly deterministic themselves), can be considered “outside”
of our logic (more strictly – outside of “isolation perimeter” as defined in “Event-
Driven Programming and Finite State Machines” section below); this approach
greatly reduces amount of logging which is required to guarantee correct
recording/replay, at the cost of the recording/replay being unable to aid with
testing of your logging/caching routines. In practice, as logging/caching are
relatively simple and are rarely changed, the latter restriction doesn’t cause too
much trouble.

 I know that this explanation reads quite ugly, but I cannot find better wording
now; regardless of the wording, the statements in this paragraph stand

 strict proof is beyond the scope of this book

Strictly-Deterministic Logic: No Access to Globals

This might go without saying, but let’s make it explicit:

for your logic to be strictly-deterministic, you MUST
NOT use any global variables. Y es, it means “No

Singletons” too.

Actually, it is not just a requirement to be strictly-deterministic, but is a well-
known “best practice” for your code to be reasonably reliable and readable, so
please don’t take it as an additional burden which you’re doing just to become

12

“
13

12

13

strictly-deterministic; following this practice will make your code better in the
medium- and long-run even if you’re not using any of the benefits provided by
strict determinism.

The only exception to this rule is that accessing constants is allowed without
restrictions (well, as long they you don’t modify them).

As an consequence,

you SHOULD NOT use any function which implicitly
uses globals

Identifying such functions can be not too trivial, but if you need to stay strictly
deterministic, there it is a requirement to avoid them. Alternatively, you may decide
to “intercept” these calls (and write whatever-they-return into inputs-log) to keep
your logic strictly deterministic, but as noted above, “intercepting calls” is better
to be avoided when feasible.

C standard library is particularly guilty of providing functions which implicitly
access globals (this includes rand()). Most of these functions (such as strtok())
should be avoided anyway due to the logic being non-obvious and being potentially
thread-unsafe on some of the platforms. One list of such functions can be found in
[ARM]; note that the problem here is not about thread-safety, so rand() and strtok()
are still non-deterministic even on those platforms (notably Windows) which make
them thread-safe by replacing globals with TLS-based stuff.

Strictly-Deterministic Logic: Pointers

C/C++ pointers are quite a nasty beast in general, and can cause quite a few
problems when it comes to determinism too . The problem with pointers from
determinism point of view is that in general, you cannot guarantee that allocated
pointers are the same on different runs of the program. As a result, below is a list
of things which should be avoided when writing for determinism:

using convoluted pointer arithmetic (and “convoluted” here means “anything
beyond simple array indexing). Seriously, if you’re relying on this kind of stuff,
you’d better write for Obfuscated C contest and stay away from any serious
development.

sending pointers over the network (and writing them to inputs-log), regardless
of marshalling used. Actually, this one should be avoided regardless of
determinism.

using pointers as identifiers

using pointers for ordering purposes; even using pointers to get “just some

14

kind of temporary ordering” is not good for determinism, sorry about that

While this looks as quite a few items to remember about, it is not too bad in
practice.

Strictly-Deterministic Logic: Cross-Platform Issues

Achieving strict determinism on one single platform is significantly easier than
across different platforms. For many practical purposes (such as post-mortem
and debugging), it is sufficient to have strict determinism only within one single
platform. However, to obtain some other properties (for example, cross-platform-
equivalence testing, User Replay, and identically running physics engines) you may
need to have cross-platform determinism. In such a case, additional
considerations apply:

non-ordered and partially-ordered collections may produce different results
on different platforms while staying compliant. For C++, examples include
hash-table-based unordered_map<>/unordered_set<> containers, and tree-
based partially ordered multiset<>/multimap<> containers.

a funny thing about them is that they ARE indeed nothing more than
“moving bits around”, it is just that bits are moved in a bit different (but
compliant) manner for different implementations

it means that one way to deal with them, is to write your own version (or
just to compile any of existing ones to all the platforms); as long as the
code for all the platforms is (substantially) the same, it will compile into
the code which behaves exactly the same

for tree-based partially ordered sets/maps, you often can make them
fully-ordered by adding an artificial ID (for example, incremented for
each insert to the container) and using it as a tie-breaker if original
comparison returns that objects are equal. It is quite a nasty hack, but if
you don’t need to care about ID wraparounds (which is almost
universally the case if you’re using 64-bit IDs), and you don’t care about
storing an extra ID for each item in collection, it works.

floating-point arithmetic issues. In short: while floating-point will return
almost the same results on different platforms, making them exactly the same
across different hardware/compilers/… is very challenging at the very least.
For further details, refer to [RandomASCII2013] and [Fiedler2015]. A few minor
but important points in addition to the discussion in those references:

As floating-point arithmetic is once again all about “moving bits around”
(it just takes some bunches of bits and returns some other bunches of
bits), it can be made perfectly deterministic. In practice, you can achieve
it by using software floating-point library which simulates floating-point
via integer arithmetic [[TODO: add ref to Knuth]]

Note that such a library (if used consistently for all your platforms)

does not need to be IEEE compliant; all you need is just to get some
reasonable results, and last bit of mantissa really matters in
practice (as long as it is the same for all the platforms)

such libraries are slooooow; for a reasonably good floating-point
emulation library (such as [SoftFloat]) you can expect slowdown of
the order of 20-50x compared to hardware floating point .

however, certain speed up can be expected if the library is
rewritten to avoid packing/unpacking floats (i.e that class
MyFloat is actually a two-field struct), and replacing IEEE-
compliant rounding with some-reasonable-and-convenient-
to-implement rounding; very wild guesstimate for such an
improvement is of the order of 2x [JohnHauser], which is not
bad, but will still leave us at least with 10x slow-down
compared to hardware floating point .

however, if you’re fine with this 20-50x-slower floating-point
arithmetic (for example, because your logic performs relatively few
floating-point operations) – such libraries will provide you with
perfect determinism.

Strictly-Deterministic Logic: Implementation summary

Given analysis above, we’ve found that while there are tons of places where your
logic can potentially call external functions (and get something from them, making
the logic potentially non-deterministic), in practice all of them can be dealt with
easily, and in most cases the only thing you’ll need to pass around, will be “current
timestamp”.

All the other system function calls will fall under one of the following:

function calls which are output-only (drawing, logging, generating output
events)

function calls which shouldn’t be called from within the logic
(communications, user input)

function calls which are used to implement caching; as long as caching is
working correctly, they can be ignored for the purposes of determinism (see
explanation above)

Even if you need more than “current timestamp”, nothing prevents you from
making a struct, consisting of all-of-your-pre-calculated-input-parameters, and
passing around one single parameter (FSMInputData* input_data or something).

This single
extra
parameter is
not a large price
f or all the
benef its you
w ill get f rom
making your
logic strictly
deterministic
(and if you have
strong f eelings
about this extra
parameter, you
can avoid it by
using TLS
Compromise)

From my experience, this single extra parameter is not a large
price for all the benefits you will get from making your logic
strictly deterministic (and if you have strong feelings about
this extra parameter, you can avoid it by using TLS
Compromise).

As for other issues (those not related to external function
calls), they are also of only very limited nature until you’re
going for a full-scale cross-platform determinism; neither
avoiding globals (which is a good practice anyway), nor
avoiding pointer-related trickery tends to cause much
practical problems.

However, if you’re going into realm of cross-platform
determinism, things may get quite a bit nastier (and will cause
more trouble); while collection differences can be handled if
you’re careful enough, achieving fully cross-platform floating
point calculations can be trouble across different CPUs.

Strictly-Deterministic Logic: Overall summary

TL;DR of the “Stronger than Platform-Independent: Strictly-
Deterministic” section:

Strictly-deterministic logic is a Good Thing™, providing
game-changing benefits for debugging distributed
systems, including production post-mortem

When implementing strictly-deterministic logic, either “Pure Logic”
approach, or “TLS-based Compromise” is generally preferred

Implementing strictly-deterministic logic requires rather few changes in
addition to following existing best practices, as long as cross-platform
determinism is not required

Going for a full-scale cross-platform determinism can be tricky, especially
because of floating-point issues.

Event-Driven Programming and Finite State Machines
when they don’t know what to say

and have completely given up on the play
just like a finger they lift the machine

and the spectators are satisfied
— Antiphanes, IV century B.C. —

“

https://en.wikipedia.org/wiki/Antiphanes_%28comic_poet%29

We need to
make an

“isolation
perimeter”

w here w e
control and log

all the inputs of
this piece of

code.

So, we’ve got our one single DoubleHit class as a strictly-deterministic logic. Good
for us, but in any realistic system there will be much more classes than this. What
should we do about it?

Pieces of strictly-deterministic logic can be combined with each other easily; the
only two things to keep in mind are the following:

don’t mix strictly-deterministic code with any non-strictly-deterministic
code; such a mix will be non-strictly-deterministic, and you will lose all the
benefits arising from being strictly-deterministic

if you’re using “Pure Logic” model to achieve determinism, you’re not allowed
to call my_get_current_timestamp() within your logic. It implies that
whenever you need to pass the MyTimestamp parameter to the callee, you
yourself should get it from the caller.

The latter observation leads us to a reasonable question: well, somebody will need
to call my_get_current_timestamp(), so where this whole calling tree (the one
which passes ‘now’ around) should end? Let’s see how it can (and should) be
organized.

First of all, let’s note that to take advantage of determinism of
a certain piece of code, we need to isolate it and make sure
that we can control (and log to inputs-log) all the inputs of
this piece of code. In other words, we need to make an
“isolation perimeter” where we control and log all the inputs
of this piece of code. Now let’s see how we want to build this
“isolation perimeter”. Systems such as [liblog] are trying to
build this “isolation perimeter” around the whole app;
actually, without access to internals of the code it is next to
impossible for them to do anything else. On the other hand, we
do have access to internals of our own code, and we can build
our “isolation perimeter” pretty much anywhere. Let’s discuss
one approach which has been observed to produce very good
results in practice.

Let’s say that we have a high-level class EventProcessor, which
does nothing but processes incoming events (anything can be

an event, from the user input up to passing a certain amount of time, with
message-from-server in between). At the point of receiving the event,
EventProcessor calls my_get_current_time(), and then calls
FiniteStateMachineBase::process_event():

“

15

In “Recording” mode, EventProcessor::process_event() will additionally write both
now and ev to inputs-log. In addition, while strictly not required to ensure
determinism, usually at least some of the output-only function calls (such as
events-generated-for-other-FSMs, instructions to Logic-to-Graphics Layer, etc.)
are also written to the same inputs-log, to simplify automated testing and
debugging.

In “Replay” Mode, EventProcessor::process_event() is not called at all; instead,
EventProcessor::replay_event() is called, which parses an entry in the inputs-log
and calls fsm->process_event() accordingly; in addition,
EventProcessor::replay_event() may parse expected outputs from the inputs-log
and compare them with the calls which actually happened, raising an exception at
the first sign of inconsistency.

Both class FiniteStateMachineBase and class EventProcessor mentioned above are
merely providing a framework to implement your own FiniteStateMachine to
implement some kind of specific logic:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

class FiniteStateMachineBase {
 public:
 virtual void process_event(MyTimestamp now, MyEvent& ev) = 0;
};

class EventProcessor {
 private:
 FiniteStateMachineBase* fsm;
 int mode;
 InputsLogForWriting& ol;

 public:
 void process_event(MyEvent& ev) {
 MyTimestamp now = my_get_current_timestamp();
 if(mode == RECORDING_MODE) {
 //write both ev and now to ol
 }
 try {
 fsm->process_event(now,ev);
 } catch(exception& x) {
 //some error handling
 }
 }

 void replay_event(InputsLogForReading& il) {
 //parse inputs-log and call fsm->process_event() accordingly
 }
};

It is these classes-derived-from-FiniteStateMachineBase which contains actual
FSM state (as data members) and actual FSM logic (as process_event() function).

Relation to Finite Automata as taught in Uni

– Have it compose a poem – a poem about a haircut! But lofty, noble, tragic, timeless, full of
love, treachery, retribution, quiet heroism in the face of certain doom! Six lines, cleverly

rhymed, and every word beginning with the letter s!! - And why not throw in a full exposition of
the general theory of nonlinear automata while you’re at it?

— Dialogue between Klapaucius and Trurl from The Cyberiad by Stanislaw Lem —

NB: if you’re not interested in theory, you can safely skip this subsection; for practical
purposes it suffices to know that whatever event-driven program you’ve already written, is in
fact a finite automaton, so there is absolutely no need to be scared. On the other hand, if you
are interested in theory, you’ll certainly need much more than this subsection. The idea here
is just to provide some kind of “bridge” between your uni courses and practical use of finite
automata in programming (which unfortunately differ significantly from quite a few courses out
there).

First of all we need to note that our class FiniteStateMachine, strictly falls under
definition of Finite Automaton (or more precisely – Deterministic Finite
Automaton) given in Wikipedia (and in quite a few uni courses). Namely,
deterministic Finite State Machine (a.k.a. Deterministic Finite Automaton) is
usually defined as follows [Wiki.DeterministicFiniteAutomaton]:

Σ is the input alphabet (a finite, non-empty set of symbols).
in our FiniteStateMachine, Σ is a set of values which a pair (now,ev) can
take; while this set is exponentially huge, it is still obviously finite

S is a finite, non-empty set of states.
in our case, it is represented by all possible combinations of all the bits
forming data members of FiniteStateMachine. Again, it is exponentially
huge, but certainly still finite.

s is an initial state, an element of S.
whatever state results from FiniteStateMachine::FiniteStateMachine()

1
2
3
4
5
6
7
8
9

10

class MyFiniteStateMachine : public class FiniteStateMachineBase {
 private:
 //FSM state goes here
 public:
 virtual void process_event(MyTimestamp now, MyEvent& ev) override {
 //within, the function MAY generate output,
 // including sending events intended for other state machines (!)
 // ...
 }
};

0

https://en.wikipedia.org/wiki/The_Cyberiad

The problem
w hich kills this

neat idea, is
know n as “state
explosion”, and

is all about
exponential

grow th of states
as you increase

complexity of
your machine.

δ is the state-transition function. δ: S × Σ -> S
implemented as FiniteStateMachine::process_event();

F is the set of final states, a (possibly empty) subset of S.
for our FiniteStateMachine, F is always empty.

Therefore, our class FiniteStateMachine complies with this defintion, and is a
Deterministic Finite Automaton (and most of event-processing systems are Finite
Automatons, albeit usually non-deterministic ones).

Quite often, in university courses state-transition function δ is replaced with a
“set of transitions”. From formal point of view, these two definitions are strictly
equivalent, because:

for any state-transition function δ with a finite number of possible inputs, we
can run this function through all the possible inputs, and to obtain the
equivalent set of transitions.

having a set of transitions, we can easily define our state-transition function δ
via this set

On the other hand, if you start to define your state machine via
set of transitions in practice (and not just in theory), most likely
you’re starting a journey on a long and painful way on
shooting yourself in the foot. When used in practice, this “set
of transitions” is usually implemented as some kind of a state
transition table (see [Wiki.StateTransitionTable]). It all looks
very neat, and fairly obvious. There is only one problem with
table-driven finite state machines, and the problem is that
they don’t work in the real world. The problem which kills this
neat idea, is known as “state explosion”, and is all about
exponential growth of states as you increase complexity of
your machine. I won’t delve into too much details on the “state
explosion”, but will note that it quickly becomes really really
bad as soon as you’re starting to develop something realistic;
even having 5 different 1-bit fields within your state lead to a
state transition table of size 32, and adding anything else is
already difficult; make it 8 1-bit fields and corresponding 256
already existing transitions, and adding any further logic has
already became unmanageable. In fact, while I’ve seen several
attempts to define state machines via state transition tables,

none of them was able to come even somewhat-close to succeeding.

What is normally used in practice, is an automaton which is defined via state-
transition function δ (which function δ is implemented as a usual function in an
imperative programming language, see, for example,

16

17

“

18

Y ou can
implement your
Finite State
Machine as a
deterministic
variation of a
usual event-
driven program

FiniteStateMachine::process_event() above). Actually, such automatons are used
much more frequently than developers realize that they’re writing a finite
automaton . To distinguish these real-world state machines from table-driven
(but usually impractical) finite state machines, I like the term “ad-hoc state
machines” (to the best of my knowledge, the term was coined in [Calderone2013]).

 for some of the platforms, and when you have your whole program
recorded/replayed, you may get such guarantees, but as we’re aiming to
record/replay on smaller-than-whole-program basis, it won’t fly for us

 yes, it could have be done with less code, but I certainly prefer to be extremely
explicit here

 see, for example, [CSC173]
 Never mind that such enumeration may easily take much longer than the universe

ends from something such as Heat Death or Big Rip – in maths world we don’t need
to restrict ourselves with such silly notions.

 while hierarchical state machines may mitigate this problem a bit, in practice they
become too intertwined if you’re trying to keep your state machines small enough
to be table-driven. In other words: while hierarchical state machines are a good
idea in general, even they won’t be able to allow you to use table-driven stuff

Implementing Deterministic Finite State Machines

Back to the real world, we need to discuss how to implement deterministic finite
state machines. In general, while you’re staying within your FiniteStateMachineBase
interface and restrictions stated above, exact implementation is up to you, and
may easily be different for the different state machines you have. Popular
possibilities include:

any deterministic event-driven program (which is
inherently a deterministic ad-hoc state machine); this is
probably what you really want to do if it is your first
experience with the state machines. While it may (or may
not) result in the code which is unwieldy, it is a very
familiar pattern, and (if you’re making it deterministic as
discussed above), you will still benefit from all the
goodies mentioned in “Strictly-Deterministic Logic:
Benefits” section (such as greatly improved debug and
post-mortem).

in many cases, it is useful to have a separate data member
called state, which takes one of (mutually exclusive)
enumerated values. One good example for state variable is
your PC running, or walking, or jumping, or croaching;
another good example is state reflecting stage of the
specific quest. In any case, you’re allowed to have other

14

15

16

17

18

“

data members in addition to state (they represent so-called “extended state”
in terms of UML state machines)

note that in quite a few cases, having state member is considered a
requirement to be named a “Finite State Machine”; I hate arguing about
which terminology is “right”, so I will just note that we’re using the
definition of “Finite State Machine” taken from Wikipedia (see also
above), and according to that definition, state member is not strictly
required (though often convenient).

Finite State Machines with state member can be implemented in an ad-
hoc manner (basically with a switch on your state in quite a few places);
this is simple and is known to work

alternatively, you may want to use State pattern from
[GameProgrammingPatterns.StatePattern]; the same book also gives
some hints on implementing hierarchical state machines and push-down
automata.

If you have this state member, you may want to document a diagram of
your state machine using UML state diagrams [Wiki.UMLStateMachine];
they have some useful concepts too. note that I mean using it only for
documentation purposes (and not for code generation), so it doesn’t
really what kind of software you’re using for drawing

As a Big Fat rule of thumb, you SHOULD NOT try table-driven state machines
(those which you might have been taught in uni); see “Relation to Finite
Automata as taught in Uni” section above if you need justification.

 for most of the commercial games, you will have a requirement to keep such
things private, so double-check your policy before using something like draw.io;
something like Visio will usually be ok

EventProcessor V ariations: Circular Buffers

The implementation of EventProcessor described above, is certainly not the only
possible one. In fact, the beauty (and practical implications) of the separation
between EventProcessor and FiniteStateMachine is that we have a liberty to plug
our FiniteStateMachine into pretty much any EventProcessor we want.

One practical case for a different EventProcessor arises when we want to have a
“post-mortem log” (sufficient to identify the problem), but we don’t want to write
all the things “forever and ever”, as it might cause performance degradation.

19

19

We can
implement
inputs-log as an
in-memory
circular buf f er,
avoiding the
need to keep the
data f orever-
and-ever.

Ok, for such cases we can make a different EventProcessor,
let’s name it EventProcessorWithCircularBuffer. For this
EventProcessorWithCircularBuffer, we can implement inputs-
log as an in-memory circular buffer, avoiding the need to keep
the data forever-and-ever. However, for this to work, it will
additionally need to:

make sure that underlying FiniteStateMachine has an
additional function such as void
serializeStateToLog(InputsLogForWriting& ol), and a
counterpart function
deserializeStateFromLog(InputsLogForReading& il).
State serialization should be implemented in a manner
which is consistent with serialization used for inputs-log in
general; see “Implementing Inputs-Log” section above for
further discussion on state serialization.

call this serializeStateToLog() function so that in-
memory circular buffer always has at least one instance of serialized state

make sure that there is always a way to find serialized state even after a
circular buffer wrap-around (this can be done by designing format of your
inputs.log carefully)

on failure, just dump the whole in-memory inputs.log to disk

on start of “Replay”, find the serialized state in inputs-log, call
deserializeStateFromLog() from that serialized state, and proceed with
rollforward as usual.

EventProcessorWithCircularBuffer describes only one of multiple possible
implementations of EventProcessor; it has an advantage that all the logging can be
kept in-memory and therefore very cheap, but in case of trouble this in-memory
log can be dumped, usually providing sufficient information about those all-
important “last seconds before the crash”. Further implementation details (such as
“whether implement buffer as a memory-mapped file” and/or “whether the buffer
should be kept in a separate process to make the buffer corruption less likely in
case of memory corruption in the process being logged”) are entirely up to you .

One very important usage of
EventProcessorWithCircularBuffer is that in many

cases it allows to keep the logging running all the
time in production, both on client side and on server
side. It means near-perfect post-mortem analysis in

case of problems

“

Let’s make some very rough estimates. Typical game client receives around a few
hundred bytes per second; let’s take it at 200 bytes/sec. User input is very rarely
more than that. It means that we’re speaking about at most 500-1000
bytes/second. 1MByte RAM buffer is nothing for client-side these days, and at a
rate of 1000 bytes/second we’ll be able to store about 3 hours of “last breath data”
for our “game logic” FSM; these 3 hours of data is usually orders of magnitude
more than enough to find a logical bug. For an FSM implementing your
animation/rendering engine, calculations will be different, but taking into account
that all the game resources are well-known and don’t need to be recorded, we
again can keep the data recorded to the minimum, again enabling a very good
post-mortem.

For the server side, you will need much more memory to run recording, and you
might not be able to keep circular buffers running all the time, but at the very least
you should be able to run them on selected FSMs (those are currently under
suspicion, or those which are not-so-time-critical, or just a random sample).

Deterministic Finite State Machines: Nothing too New But…
While there is nothing really new in event-driven programming (and ad-hoc finite
state machines used for this purpose), our finite state machines have one
significant advantage compared to those usually used in the industry. Our state
machines are strictly-deterministic (at least when it comes to one single platform),
that allows for lots of improvements for debugging of distributed systems (mostly
due to “replay testing/debugging” and “production post-mortem”).

On the other hand, in academy Deterministic Finite Automata are well-known, but I
don’t know of the descriptions on “how to write them in practical applications”.

On the third hand , determinism for games has been a popular topic for a while
(see, for example, [Gamasutra2001]) , and in recent years has got a new life with
MMOs and synchronous physics simulation on client and server (see, for example,
[Fiedler2015-2])).

On the fourth hand (yes, we’re exactly half way on becoming an octopus), I didn’t
see anybody concentrating on using determinism for the purposes of debug and
production post-mortem, and from my experience effect of these items on the
quality of your game cannot be underestimated. If you want to have your game
crashing 10x less frequently than competition – do yourself and your players a
favour, and record production inputs-logs for post-mortem purposes, as well as
perform replay-based testing. I know I sound like a commercial, but as a gamer
myself I do have a very legitimate interest in making games crash much more rarely
than they do it now; I also know that for most of good game developers out there,
deterministic testing and post-mortem will help in this regard, and will help a lot
(in addition to any replay/synchronous-physics goodies if you need them).

Deterministic Finite State Machines: Summary

To summarize all this long talk about determinism and state machines:

for distributed systems, you DO need to have at least single-platform
determinism. It will help A LOT with testing, debugging, and production post-
mortem.

achieving this one is not too difficult, and is usually only a minor
annoyance

on the other hand, it still provides A LOT of useful stuff, mostly for the
purposes of bugfixing (including those elusive production-only bugs)

for other purposes (cross-platform code equivalence testing, User Replay,
and physics equivalence) you MAY need cross-platform determinism

achieving this one can be a challenge, especially in the field of floating-
point calculations

nothing prevents you from starting small, with single-platform determinism,
and then trying to extend it to cross-platform one. Unless the life of your
game depends on a cross-platform determinism, this might be a viable option
to pursue.

Finite State Machines are a nice and convenient way to express deterministic
(sub)systems

this includes (but is not limited to) ad-hoc Finite State Machines, which
are nothing more than very-well known event-based systems

[[To Be Continued…
This concludes beta Chapter V(c) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter V(d), “Modular
Architecture: Client-Side Overall Architecture.]]

[–] References
[ISOCPP] Standard C++ Foundation, “How do I select the best serialization
technique?”
[liblog] Dennis Geels, Gautam Altekar, Scott Shenker, Ion Stoica, “Replay Debugging
for Distributed Applications”
[ARM] “C library functions that are not thread-safe”, ARM Compiler toolchain ARM C
and C++ Libraries and Floating-Point Support Reference
[RandomASCII2014] Bruce Dawson, “Floating-Point Determinism”, 2013
[Fiedler2015] Glenn Fiedler, “Floating Point Determinism”, Gaffer on Games, 2015
[SoftFloat] “Berkeley SoftFloat”
[JohnHauser] John Hauser, author of Berkeley SoftFloat, “Private communications

https://isocpp.org/wiki/faq/serialization#serialize-selection
http://www.cs.berkeley.edu/~istoica/papers/2006/liblog.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0492c/Chddjdaj.html
https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/
http://gafferongames.com/networking-for-game-programmers/floating-point-determinism/
http://www.jhauser.us/arithmetic/SoftFloat.html

« Chapter V (b). Modular A rchitecture: Client-Side. Programmin…

 Chapter V (d). Modular A rchitecture: Client-Side. Client A rch… »

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: client, debug, game, multi-player

Copyright © 2014-2016 ITHare.com

with”
[Wiki.DeterministicFiniteAutomaton] Wikipedia, “Deterministic Finite Automaton”
[CSC173] Randal Nelson, “CSC 173: Computation and Formal Systems”, University of
Rochester
[Wiki.StateTransitionTable] Wikipedia, “State Transition Table”
[Calderone2013] Jean-Paul Calderone, “What is a State Machine?”
[GameProgrammingPatterns.StatePattern] Robert Nystrom, “Game Programming
Patterns”
[Wiki.UMLStateMachine] Wikipedia, “UML State Machine”
[Gamasutra2001] Patrick Dickinson, “Instant Replay: Building a Game Engine with
Reproducible Behavior”, Gamasutra, 2001
[Fiedler2015-2] Glenn Fiedler, “Deterministic Lockstep”, Gaffer on Games, 2015

https://en.wikipedia.org/wiki/Deterministic_finite_automaton
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://en.wikipedia.org/wiki/State_transition_table
https://clusterhq.com/2013/12/05/what-is-a-state-machine/
http://gameprogrammingpatterns.com/state.html
http://www.amazon.com/Game-Programming-Patterns-Robert-Nystrom/dp/0990582906
https://en.wikipedia.org/wiki/UML_state_machine
http://www.gamasutra.com/view/feature/131466/instant_replay_building_a_game_.php
http://gafferongames.com/networked-physics/deterministic-lockstep/
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-vb-modular-architecture-client-side-programming-languages-for-games-including-resilience-to-reverse-engineering-and-portability/
http://ithare.com/chapter-vd-modular-architecture-client-side-client-architecture-diagram-threads-and-game-loop/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/debug/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter V(d). Modular Architecture: Client-Side. Client
Architecture Diagram, Threads, and Game Loop
posted December 14, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter V(d) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

After we’ve spent quite a lot of time discussing boring things such as deterministic
logic and finite automata, we can go ahead and finally draw the architecture
diagram for our MMO game client. Yahoo!

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/wp-content/uploads/BB_part069_BookChapter005d_v3.png

However, as the very last delay before that glorious and long-promised diagram,
we need to define one term that we’ll use in this section. Let’s define “tight loop” as
an “infinite loop which goes over and over without delays, and is regardless of any input”. In
other words, tight loop is bound to eat CPU cycles (and lots of them) regardless of
doing any useful work.

And now we’re really ready for the diagram .

 while different interpretations of the term “tight loop” exist out there, for our
purposes this one will be the most convenient and useful

Queues-and-FSMs (QnFSM) Architecture: Generic Diagram
Fig. V.2 shows a diagram which describes a “generic” client-side architecture. It is
admittedly more complicated than many of you will want or need to use; on the
other hand, it represents quite a generic case, and many simplifications can be
obtained right out of it by simple joining some of its elements.

Let’s name this architecture a “Queues-and-FSMs Architecture” for obvious
reasons, or “QnFSM” in short. Of course, QnFSM is (by far) not the only possible
architecture, and even not the most popular one, but its variations have been seen
to produce games with extremely good reliability, extremely good decoupling
between parts, and very good maintainability. On the minus side, I can list only a bit
of development overhead due to message-based exchange mechanism, but from my
experience it is more than covered with better separation between different parts
and very-well defined interfaces, which leads to the development speed-ups even
in the medium-run (and is even more important in the long-run to avoid spaghetti
code). Throw in the ability of “replay debug” and “replay-based post-mortem” in
production, and it becomes a solution for lots of real-world pre-deployment and
post-deployment problems.

1

1

/wp-content/uploads/Fig-V-2.png

There can be
dif f erent w ays
how to pass
these messages
around;
examples
include explicit
message
posting, or
implementing
non-blocking
RPC calls
instead

In short – I’m an extremely strong advocate of this
architecture (and its variations described below),

and don’t know of any practical cases when it is not
the best thing you can do. While it might look over-

engineered at the first glance, it pays off in the
medium- and long-run

I hope that the diagram on Fig V.2 should be more or less self-explanatory, but I will
elaborate on a few points which might not be too obvious:

each of FSMs is a strictly-deterministic FSM as described in “Event-Driven
Programming and Finite State Machines” section above

while being strictly-deterministic is not a strict requirement,
implementing your FSMs this way will make your debugging and post-
mortem much much much easier.

all the exchange between different FSMs is message-based. Here “message” is
a close cousin of a network packet; in other words – it is just a bunch of bytes
formatted according to some convention between sending thread and
receiving thread.

There can be different ways how to pass these
messages around; examples include explicit message
posting, or implementing non-blocking RPC calls
instead. While the Big Idea behind the QnFSM
architecture won’t change because of the way how
the messages are posted, convenience and
development time may change quite significantly.
Still, while important, this is only an implementation
detail which will be further discussed in Chapter
[[TODO]].

for the messages between Game Logic Thread and
Animation&Rendering Thread, format should be
along the lines of “Logic-to-Graphics API”,
described in “Logic-to-Graphics Layer” section
above. In short: it should be all about logical changes
in the game world, along the lines of “NPC ID=ZZZ is
currently moving along the path defined by the set of
points {(X0,Y0),(X1,Y1),…} with speed V” (with
coordinates being game world coordinates, not
screen coordinates), or “Player at seat #N is in the
process of showing his cards to the opponents”.

each thread has an associated Queue, which is able to accept messages, and
provides a way to wait on it as long as is the Queue is empty

2

“

3

In most cases,
at least one of
these tw o
particular
queues w ill be
supported by
your platf orm

the architecture is “Share-Nothing”. It means that there is no data shared
between threads, and the only way to exchange data between threads, is via
Queues and messages-passed-via-the-Queues

“share-nothing” means no thread synchronization problems (there is no
need for mutexes, critical sections, etc. etc. outside of your queues). This
is a Really Good Thing™, as trying to handle thread synchronization with
any frequently changeable logic (such as the one within at least some of
the FSMs) inevitably leads to lots and lots of problems (see, for example,
[NoBugs2015])

of course, implementation of the Queues still needs to use inter-thread
synchronization, but this is one-time effort and it has been done many
times before, so it is not likely to cause too much trouble; see Chapter
[[TODO]] for further details on Queues in C++

as a nice side effect, it means that whenever you want it, you can deploy
your threads into different processes without changing any code within
your FSMs (merely by switching to an inter-process implementation of
the Queue). In particular, it can make answering very annoying questions
such as “who’s guilty for the memory corruption” much more easily

Queues of Game Logic Thread and Communications Thread, are rather
unusual. They’re waiting not only for usual inter-thread messages, but also for
some other stuff (namely input messages for Game Logic Thread, and
network packets for the Communications Thread).

In most cases, at least one of these two particular
queues will be supported by your platform (see
Chapter [[TODO]] for details)

For those platforms which don’t support such
queues – you can always use your-usual-inter-
thread-queue (once again, the specifics will be
discussed in Chapter [[TODO]]), and have an
additional thread which will get user input data (or
call select()), and then feed the data into your-usual-
inter-thread-queue as a yet another message. This
will create a strict functional equivalent (a.k.a.
“compliant implementation”) of two specific Queues
mentioned above

all the threads on the diagram (with one possible
exception being Animation&Rendering Thread, see below) are not tight-
looped, and unless there is something in their respective Queue – they just
wait on the Queue until some kind of message comes in (or select() event
happens)

while “no-tight-loops” is not a strict requirement for the client-side,
wasting CPU cycles in tight loops without Really Good Reason is rarely a
good idea, and might hurt quite a few of your players (those with weaker
rigs).

“

If your
existing 3D
engine is too
complicated to
f it into single-

Animation&Rendering Thread is a potentially special case, and MAY use
tight loop, see “Game Loop” subsection below for details

to handle delays in other-than-Animation&Rendering Thread, Queues
should allow FSMs to post some kind of “timer message” to the own
thread

even without tight loops it is possible to write your FSM in an “almost-
tight-loop” manner that is closely resembling real-world real-time
control systems (and classical Game Loop too), but without CPU
overhead. See more on it in [[TODO!! – add subsection on it to “FSM”
section]] section above.

 As usual, “I don’t know of any cases” doesn’t provide guarantees of any kind, and
your mileage may vary, but at least before throwing this architecture away and
doing something-that-you-like-better, please make sure to read the rest of this
Chapter, where quite a few of potential concerns will be addressed
 yes, I know I’ve repeated it for quite a few times already, but it is that important,

that I prefer to risk being bashed for annoying you rather than being pounded by
somebody who didn’t notice it and got into trouble

Migration from Classical 3D Single-Player Game
If you’re coming from single-player development, you may find this whole diagram
confusing; this maybe especially true for inter-relation between Game Logic FSM
and Animation&Rendering FSM. The idea here is to have 95% of your existing “3D
engine as you know it”, with all the 3D stuff, as a part of “Animation&Rendering
FSM”. You will just need to cut off game decision logic (which will go to the server-
side, and maybe partially duplicated to Game Logic FSM too for client-side
prediction purposes), and UI logic (which will go into Game Logic FSM). All the
mesh-related stuff should stay within Animation&Rendering FSM (even Game Logic
FSM should know absolutely nothing about meshes and triangles).

If your existing 3D engine is too complicated to fit into single-
threaded FSM, it is ok to keep it multi-threaded as long as it
looks “just as an FSM” from the outside (i.e. all the
communications with Animation&Rendering FSM go via
messages or non-blocking RPC calls, expressed in terms of
Logic-to-Graphics Layer). For details on using FSMs for multi-
threaded 3D engines, see “On Additional Threads and Task-
Based Multithreading” section below. Note that depending on
specifics of your existing 3D rendering engine, you MAY need
to resort to Option C; while Option C won’t provide you with
FSM goodies for your rendering engine (sorry, my supply of
magic powder is quite limited), you will still be able to enjoy all

2

3

“

threaded FSM, it
is ok to keep it
multi-threaded
as long as it
looks 'just as an
FSM' f rom the
outside

the benefits (such as replay debugging and production post-
mortem) for the other parts of your client.

It is worth noting that Game Logic FSM, despite its name, can
often be more or less rudimentary, and (unless client-side
prediction is used) mostly performs two functions: (a) parsing
network messages and translating them into the commands of
Logic-to-Graphics Layer, (b) UI handing. However, if client-
side prediction is used, Game Logic FSM can become much
more elaborated.

Interaction Examples in 3D W orld: Single-Player vs MMO

Let’s consider three typical interaction examples after migration from single-
player game to an MMO diagram shown above.

MMOFPS interaction example (shooting). Let’s consider an MMOFPS example
when Player A presses a button to shoot with a laser gun, and game logic needs to
perform a raycast to see where it hits and what else happens. In single-player, all
this usually happens within a 3D engine. For an MMO, it is more complicated:

Step 1. button press goes to our authoritative server as a message

Step 2. authoritative server receives message, performs a raycast, and
calculates where the shot hits.

Step 3. our authoritative server expresses “where it hits” in terms such as
“Player B got hit right between his eyes” and sends it as a message to the
client (actually, to all the clients).

Step 4. this message is received by Game Logic FSM, and translated into the
commands of Logic-to-Graphics Layer (still without meshes and triangles, for
example, “show laser ray from my gun to the point right-between-the-eyes-
of-Player B”, and “show laser hit right between the eyes of Player B”), which
commands are sent (as messages) to Animation&Rendering FSM.

Step 5. Animation&Rendering FSM can finally render the whole thing.

While the process is rather complicated, most of the steps are inherently inevitable
for an MMO; the only thing which you could theoretically save compared to the
procedure described above, is merging step 4 and step 5 together (by merging
Game Logic FSM and Animation&Rendering together), but I advise against it as
such merging would introduce too much coupling which will hit you in the long run.
Doing such different things as parsing network messages and rendering within one
tightly coupled module is rarely a good idea, and it becomes even worse if there is
a chance that you will ever want to use some other Animation&Rendering FSM (for
example, a newer one, or the one optimized for a different platform).

4

5

MMORPG interaction example (ragdoll). In a typical
MMORPG example, when an NPC is hit for 93th time and dies
as a result, ragdoll physics is activated. In a typical single-
player game, once again, the whole thing is usually performed
within 3D engine. And once again, for a MMO the whole thing
will be more complicated:

Step 1. button press (the one which will cause NPC death)
goes to authoritative server

Step 2. server checks attack radius, calculates chances to
hit, finds that the hit is successful, decreases health, and
find that NPC is dead

Step 3. server performs ragdoll simulation in the server-
side 3D world. However, it doesn’t need to (neither it
really can) send it to clients as a complete triangle-based
animation. Instead, the server can usually send to the
client only a movement of “center of gravity” of NPC in
question (calculated as a result of 3D simulation). This
movement of “center of gravity” is sent to the client
(either as a single message with the whole animation or as
a series of messages with “current position” each)

as an interesting side-effect: as the whole thing is quite simple, there may
be no real need to calculate the whole limb movement, and it may suffice
to calculate just a simple parabolic movement of the “center of gravity”,
which MAY save you quite a bit of resources (both CPU and memory-
wise) on the server side (!)

Step 4. Game Logic FSM receives the message with “center of gravity”
movement and translates it into Logic-to-Graphics commands. This doesn’t
necessarily need to be trivial; in particular, it may happen that Game Logic
stores larger part of the game world than Animation&Rendering FSM. In this
latter case, Game Logic FSM may want to check if this specific ragdoll
animation is within the scope of the current 3D world of Animation&Rendering
FSM.

Step 5. Animation&Rendering FSM performs some ragdoll simulation (it can
be pretty much the same simulation which has already been made on the
server side, or something completely different). If ragdoll simulation is the
same, then the process of ragdoll simulation on the client-side will be quite
close to the one on the server-side; however, if there are any discrepancies
due to not-so-perfect determinism – client-side simulation will correct
coordinates so that “center of gravity” is adjusted to the position sent by
server. In case of non-deterministic behaviour between client and server, the
movement of the limbs on the client and the server may be different, but for a
typical RPG it doesn’t matter (what is really important is where the NPC
eventually lands – here or over the edge of the cliff, but this is guaranteed to

Ragdoll
physics
In computer
physics engines,
ragdoll physics
is a type of
procedural
animation that
is of ten used as
a replacement
f or traditional
static death
animations in
video games
and animated
f ilms.

— Wikipedia —

https://en.wikipedia.org/wiki/Ragdoll_physics

be the same for all the clients as “center of gravity” comes from the server
side).

UI interaction example. In a typical MMORPG game, a very common task is to
show object properties when the object is currently under cursor. For the diagram
above, it should be performed as follows:

Step 1. Game Logic FSM sends a request to the Animation&Rendering FSM:
“what is the object ID at screen coordinates (X,Y)?” (where (X,Y) are cursor
coordinates)

Step 2. Animation&Rendering FSM processes this (trivial) request and returns
object ID back

Step 3. Game Logic FSM finds object properties by ID, translates them into
text, and instructs Animation&Rendering FSM to display object properties in
HUD

While this may seem as an overkill, the overhead (both in terms of developer’s time
and run time) is negligible, and good old rule of “the more cleanly separated parts
you have – the easy is further development is” will more than compensate for the
complexities of such separation.

 this is generally preferable to player-unrelated “laser hit at (X,Y,Z)” in case of
client-side prediction; of course, in practice you’ll use some coordinates, but the
point is that it is usually better to use player-related coordinates rather than
absolute game world coordinates
 I won’t try to teach you how to render things; if you’re from 3D development side,

you know much more about it than myself

FSMs and their respective States
The diagram on Fig. V.2 shows four different FSMs; while they all derive from our
FiniteStateMachineBase described above, each of them is different, has a different
function, and stores a different state. Let’s take a closer look at each of them.

Game Logic FSM

Game Logic FSM is the one which makes most of decisions about your game world.
More strictly, these are not exactly decisions about the game world in general (this
one is maintained by our authoritative server), but about client-side copy of the game
world. In some cases it can be almost-trivial, in some cases (especially when client-
side prediction is involved) it can be very elaborated.

4

5

Game Logic
FSM is likely to
keep a copy of
the game w orld
f rom the game
server, as a part
of it's state.

In any case, Game Logic FSM is likely to keep a copy of the
game world (or of relevant portion of the game world) from
the game server, as a part of it’s state. This copy has normally
nothing to do with meshes, and describes things in terms such
as “there is a PC standing at position (X,Y) in the game world
coordinates, facing NNW”, or “There are cards AS and JH on
the table”.

Game Logic FSM & Graphics

Probably the most closely related to Game Logic FSM is
Animation&Rendering one. Most of the interaction between the
two goes in the direction from Game Logic to
Animation&Rendering, using Logic-to-Graphics Layer
commands as messages. Game Logic FSM should instruct
Animation&Rendering FSM to construct a portion of its own game copy as a 3D
scene, and to update it as its own copy of the game world changes.

In addition, Game Logic FSM is going to handle (but not render) UI, such as HUDs,
and various UI dialogs (including the dialogs leading to purchases, social stuff,
etc.); this UI handling should be implemented in a very cross-platform manner, via
sending messages to Animation&Rendering Engine. These messages, as usual,
should be expressed in very graphics-agnostic terms, such as “show health at 87%”,
or “show the dialog described by such-and-such resource”.

To handle UI, Game Logic FSM MAY send a message to Animation&Rendering FSM,
requesting information such as “what object (or dialog element) is at such-and-
such screen position” (once again, the whole translation between screen
coordinates into world objects is made on the Animation&Rendering side, keeping
Game Logic FSM free of such information); on receiving reply, Game Logic FSM
may decide to update HUD, or to do whatever-else-is-necessary.

Other messages coming from Animation&Rendering FSM to Game Logic FSM, such
as “notify me when the bullet hits the NPC”, MAY be necessary for the client-side
prediction purposes (see Chapter [[TODO]] for further discussion). On the other
hand, it is very important to understand that these messages are non-authoritative
by design, and that their results can be easily overridden by the server.

As you can see, there can be quite a few interactions between
Game Logic FSM and Animation&Rendering FSM. Still, while it
may be tempting to combine Game Logic FSM with
Animation&Rendering FSM, I would advise against it at least
for the games with many platforms to be supported, and for
the games with Undefined Life Span; having these two FSMs
separate (as shown on Fig V.2) will ensure much cleaner

“

Having these
tw o FSMs
separate w ill
ensure much
cleaner
separation,
f acilitating
much-better-
structured code
in the medium-
to long-run.

separation, facilitating much-better-structured code in the
medium- to long-run. On the other hand, having these two FSM
running within the same thread is a very different story, is
generally ok and can be done even on a per-platform basis; see
“Variations” section below.

Game Logic FSM: Miscellaneous

There are two other things which need to be mentioned with
regards to Game Logic FSM:

Y ou MUST keep your Game Logic FSM truly
platform-independent. While all the other FSMs MAY be
platform-specific (and separation between FSMs along
the lines described above, facilitates platform-specific
development when/if it becomes necessary), you should
make all the possible effort to keep your Game Logic the same across all your
platforms. The reason for it has already been mentioned before, and it is all
about Game Logic being the most volatile of all your client-side code; it
changes so often that you won’t be able to keep several code bases reasonably
in sync.

If by any chance your Game Logic is that CPU-consuming that one single core
won’t cope with it – in most cases it can be addressed without giving up the
goodies of FSM-based system, see “Additional Threads and Task-Based
Multi-Threading” section below.

Animation&Rendering FSM

Animation&Rendering FSM is more or less similar to the rendering part of your
usual single-player game engine. If your game is a 3D one, then in the diagram
above,

it is Animations&Rendering FSM which keeps and
cares about all the meshes, textures, and animations;
as a Big Fat Rule of Thumb, nobody else in the system
(including Game Logic FSM) should know about them.

At the heart of the Animation&Rendering FSM there is a more or less traditional
Game Loop.

Game Loop

Most of single-player games are based on a so-called Game Loop. Classical game
loop looks more or less as follows (see, for example,

“

all the
decision-
making is
moved at least
to the Game
Logic FSM, w ith
most of the

[GameProgrammingPatterns.GameLoop]):

Usually, Game Loop doesn’t wait for input, but rather polls input and goes ahead
regardless of the input being present. This is pretty close to what is often done in
real-time control systems.

For our diagram on Fig V.2 above, within our Animation&Rendering Thread we can
easily have something very similar to a traditional Game Loop (with a substantial
part of it going within our Animation&Rendering FSM). Our Animation&Rendering
Thread can be built as follows:

Animation&Rendering Thread (outside of Animation&Rendering FSM) checks
if there is anything in its Queue; unlike other Threads, it MAY proceed even if
there is nothing in the Queue

it passes whatever-it-received-from-the-Queue (or some kind of NULL if
there was nothing) to Animation&Rendering FSM, alongside with any time-
related information

within the Animation&Rendering FSM’s process_event(), we can still have
process_input(), update() and render(), however:

there is no loop within Animation&Rendering FSM; instead, as discussed
above, the Game Loop is a part of larger Animation&Rendering Thread

process_input(), instead of processing user input,
processes instructions coming from Game Logic
FSM

update() updates only 3D scene to be rendered, and
not the game logic’s representation of the game
world; all the decision-making is moved at least to
the Game Logic FSM, with most of the decisions
actually being made by our authoritative server

render() works exactly as it worked for a single-
player game

after Animation&Rendering FSM processes input (or lack

1
2
3
4
5

while(true) {
 process_input();
 update();
 render();
}

“

decisions
actually being
made by our
authoritative
server

The best thing
about our
architecture is
that the
architecture as
such doesn't
really depend
on time step
choices; you can
even make
dif f erent time

thereof) and returns, Animation&Rendering Thread may
conclude Game Loop as it sees fit (in particular, it can be
done in any classical Game Loop manner mentioned
below)

then, Animation&Rendering Thread goes back to the very
beginning (back to checking if there is anything in its
Queue), which completes the infinite Game Loop.

All the usual variations of Game Loop can be used within the Animation&Rendering
Thread – including such things as fixed-time-step with delay at the end if there is
time left until the next frame, variable-time-step tight loop (in this case a
parameter such as elapsed_time needs to be fed to the Animation&Rendering FSM
to keep it deterministic), and fixed-update-time-step-but-variable-render-time-
step tight loop. Any further improvements (such as using VSYNC) can be added on
top. I don’t want to elaborate further here, and refer for further discussion of game
loops and time steps to two excellent sources: [GafferOnGames.FixYourTimestep]
and [GameProgrammingPatterns.GameLoop].

One variation of the Game Loop that is not discussed there, is a simple event-
driven thing which you would use for your usual Windows programming (and
without any tight loops); in this case animation under Windows can be done via
WM_TIMER, and 2D drawing – via something like BitBlt(). While usually woefully
inadequate for any serious frames-per-second-oriented games, it has been seen to
work very well for social- and casino-like ones.

However, the best thing about our architecture is that the
architecture as such doesn’t really depend on time step
choices; you can even make different time step choices for
different platforms and still keep the rest of your code
(beyond Animation&Rendering Thread) intact, though
Animation&Rendering FSM may need to be somewhat different
depending on the fixed-step vs variable-step choice.

A nimation&Rendering FSM: Running from Game Logic
Thread

For some games and/or platforms it might be beneficial to run
Animation&Rendering FSM within the same thread as Game
Logic FSM. In particular, if your game is a social game running
on Windows, there may be no real need to use two separate
CPU cores for Game Logic and Animation&Rendering, and the
whole thing will be quite ok running within one single thread.
In this case, you’ll have one thread, one Queue, but two FSMs,
with thread code outside of the FSMs deciding which of the

6

“7

step choices f or
dif f erent
platf orms and
still keep the
rest of your
code intact

For most of
(if not 'all') the
platf orms, the

code of
Communications
FSM can be kept

the same

FSMs incoming message belongs to.

However, even in this case I still urge you to keep it as two
separate FSMs with a very clean message-based interface
between them. First, nobody knows which platform you will
need to port your game next year, and second, clean well-
separated interfaces at the right places tend to save lots of
trouble in the long run.

 yes, this does work, despite being likely to cause ROFLMAO syndrome for any
game developer familiar with game engines
 of course, technically you may write your Animation&Rendering FSM as a variable-

step one and use it for the fixed-step too, but there is a big open question if you
really need to go the variable-step, or can live with a much simpler fixed-step
forever-and-ever

Communications FSM

Another FSM, which is all-important for your MMOG, is Communications FSM. The
idea here is to keep all the communications-related logic in one place. This may
include very different things, from plain socket handling to such things as
connect/reconnect logic , connection quality monitoring, encryption logic if
applicable, etc. etc. Also implementations of higher-level concepts such as generic
publisher/subscriber, generic state synchronization, messages-which-can-be-
overridden etc. (see Chapter [[TODO]] for further details) also belong here.

For most of (if not “all”) the platforms, the code of
Communications FSM can be kept the same, with the only
things being called from within the FSM, being your own
wrappers around sockets (for C/C++ – Berkeley sockets).
Your own wrappers are nice-to-have just in case if some other
platform will have some peculiar ideas about sockets, or to
make your system use something like OpenSSL in a
straightforward manner. They are also necessary to
implement “call interception” on your FSM (see
“Implementing Strictly-Deterministic Logic: Strictly-
Deteministic Code via Intercepting Calls” section above),
allowing you to “replay test” and post-mortem of your
Communications FSM.

The diagram of Fig. V.2 shows an implementation of the
Communications FSM that uses non-blocking socket calls. For client-side it is
perfectly feasible to keep the code of Communications FSM exactly the same, but to
deploy it in a different manner, simulating non-blocking sockets via two additional

6

7

8

“

threads (one to handle reading and another to handle writing), with these
additional threads communicating with the main Communications Thread via
Queues (using Communication Thread’s existing Queue, and one new Queue per
new thread).

One more thing to keep in mind with regards to blocking/non-blocking Berkeley
sockets, is that getaddrinfo() function (as well as older gethostbyname() function)
used for DNS resolution, is inherently blocking, with many platforms having no
non-blocking counterpart. However, for the client side in most cases it is a non-
issue unless you decide to run your Communications FSM within the same thread
as your Game Logic FSM. In the latter case, calling a function with a potential to
block for minutes, can easily freeze not only your game (which is more or less
expected in case of connectivity problems), but also game UI (which is not
acceptable regardless of network connectivity). To avoid this effect, you can always
introduce yet another thread (with its own Queue) with the only thing for this
thread to do, being to call getaddrinfo() when requested, and to send result back
as a message, when the call is finished.

Communications FSM: Running from Game Logic Thread

For Communications FSM, running it from Game Logic Thread might be possible.
One reason against doing it, would be if your communications are encrypted, and
your Game Logic is computationally-intensive.

And again, as with Animation&Rendering FSM, even if you run two FSMs from one
single thread, it is much better to keep them separate. One additional reason to
keep things separate (with this reason being specific to Communications FSM) is
that Communications FSM (or at least large parts of it) is likely to be used on the
server-side too.

 BTW, connect/reconnect will be most likely needed even for UDP
 for the server-side, however, these extra threads are not advisable due to the

performance overhead. See Chapter [[TODO]] for more details
 Alternatively, it is also possible to create a new thread for each getaddrinfo()

(with such a thread performing getaddrinfo(), reporting result back and
terminating). This thread-per-request solution would work, but it would be a
departure from QnFSM, and it can lead to creating too many threads in some
fringe scenarios, so I usually prefer to keep a specialized thread intended for
getaddrinfo() in a pure QnFSM model

Sound FSM

Sound FSM handles, well, sound. In a sense, it is somewhat similar to
Animation&Rendering FSM, but for sound. Its interface (and as always with QnFSM,

9

10

8

9

10

Once again –
even if you
decide to run
tw o FSMs f rom
the same thread
– do yourself a
f avour and
keep the FSMs
separate

interfaces are implemented over messages) needs to be implemented as a kind of
“Logic-to-Sound Layer”. This “Logic-to-Sound Layer” message-based API should
be conceptually similar to “Logic-to-Graphics Layer” with commands going from
the Game Logic expressed in terms of “play this sound at such-and-such volume
coming from such-and-such position within the game world”.

Sound FSM: Running from Game Logic Thread

For Sound FSM running it from the same thread as Game Logic FSM makes sense
quite often. On the other hand, on some platforms sound APIs (while being non-
blocking in a sense that they return before the sound ends) MAY cause substantial
delays, effectively blocking while the sound function finds and parses the file
header etc.; while this is still obviously shorter than waiting until the sound ends, it
might be not short enough depending on your game. Therefore, keeping Sound
FSM in a separate thread MAY be useful for fast-paced frame-per-second-
oriented games.

And once again – even if you decide to run two FSMs from the
same thread – do yourself a favour and keep the FSMs
separate; some months down the road you’ll be very happy that
you kept your interfaces clean and different modules nicely
decoupled.

 Or you’ll regret that you didn’t do it, which is pretty much the
same thing

Other FSMs

While not shown on the diagram on Fig V.2, there can be other
FSMs within your client. For example, these FSMs may run in
their own threads, but other variations are also possible.

One practical example of such a client-side FSM (which was
implemented in practice) was “update FSM” which handled online download of
DLC while making sure that the gameplay delays were within acceptable margins
(see more on client updates in general and updates-while-playing in Chapter
[[TODO]]).

In general, any kind of entity which performs mostly-independent tasks on the
client-side, can be implemented as an additional FSM. While I don’t know of
practical examples of extra client-side FSMs other than “update FSM” described
above, it doesn’t mean that your specific game won’t allow/require any, so keep
your eyes open.

“
11

11

On Additional Threads and Task-Based Multithreading
If your game is very CPU-intensive, and either your Game Logic Thread, or
Animation&Rendering Thread become overloaded beyond capabilities of one single
CPU core, you might need to introduce an additional thread or five into the
picture. This is especially likely for Animation&Rendering Thread/FSM if your
game uses serious 3D graphics. While complexities threading model of 3D graphics
engines are well beyond the scope of this book, I will try to provide a few hints for
those who’re just starting to venture there.

As usually with multi-threading, if you’re not careful, things can easily become ugly,
so in this case:

first of all, take another look if you have some Gross
Inefficiencies in your code; it is usually much better to
remove these rather than trying to parallelize. For
example, if you’d have calculated Fibonacci numbers
recursively, it is much better to switch to non-recursive
implementation (which is IIRC has humongous O(2)
advantage over recursive one) than to try getting more
and more cores working on unnecessary stuff.

From this point on, to the best of my knowledge you have about three-and-a-
half options:

Option A . The first option is to split the whole thing into several FSMs
running within several threads, dedicating one thread per one specific
task. In 3D rendering world, this is known as “System-on-a-Thread”, and
was used by Halo engine (in Halo, they copy the whole game state
between threads[GDC.Destiny], which is equivalent to having a queue, so
this is a very direct analogy of our QnFSM).

Option B. The second option is to “off-load” some of the processing to a
different thread, with this new thread being just as all the other threads
on Fig V.2; in other words, it should have an input queue and a FSM
within. This is known as “Task-Based Multithreading”
[GDC.TaskBasedMT]. In this case, after doing its (very isolated) part of
the job a.k.a. “task”, the thread may report back to the whichever-thread-
has-requested-its-services. This option is really good for several
reasons, from keeping all the FSM-based goodies (such as “replay
testing” and post-mortem) for all parts of your client, to encouraging
multi-threading model with very few context switches (known as
“Coarse-grained parallelism”), and context switches are damn expensive
on all general-purpose CPUs. The way how “task off-loading” is done,
depends on the implementation. In some implementations, we MAY use
data-driven pipelines (similar to those described in [GDC.Destiny]) to
enable dynamic task balancing, which allows to optimize core utilization

IIRC
abbv f or If I
Recall Correctly

— Urban Dictionary

—N

12

13

http://www.urbandictionary.com/define.php?term=iirc

If you need
Option C f or
your Game
Logic – think

on different platforms. Note that in pure “Option B”, we still have
shared-nothing model, so each of the FSMs has it’s own exclusive state.
On the other hand, for serious rendering engines, due to the sheer size of
the game state, pure “shared-nothing” approach MIGHT BE not too
feasible.

Option B1. That’s the point where “task-off-loading-with-an-
immutable-shared-state” emerges. It improves over a basic
Option B by allowing for a very-well-controlled use of a shared state –
namely, sharing is allowed only when the shared state is guaranteed to be
immutable. It means that, in a limited departure from our shared-
nothing model, in addition to inter-thread queues in our QnFSM, we
MAY have a shared state. However, to avoid those nasty inter-thread
problems, we MUST guarantee that while there is more than one
thread which can be accessing the shared state, the shared state is
constant/immutable (though it may change outside of “shared”
windows). At the moment, it is unclear to me whether Destiny engine
(as described in [GDC.Destiny]) uses Option B1 (with an immutable
game state shared between threads during “visibility” and “extract”
phases) – while it looks likely, it is not 100% clear. In any case, both
Option B and Option B1 can be described more or less in terms of
QnFSM (and most importantly – both eliminate all the non-
maintainable and inefficient tinkering with mutexes etc. within your
logic). From the point of view of determinism, Option B1 is
equivalent to Option B, provided that we consider that immutable-
shared-state as one of our inputs (as it is immutable, it is
indistinguishable from an input, though delivered in a somewhat
different way); while such a game sharing would effectively preclude
from applying recording/replay in production (as recording the
whole game state on each frame would be too expensive),
determinism can still be used for regression testing etc.

Option C. To throw away “replay debug” and post-mortem benefits for
this specific FSM, and to implement it using multi-thread in-whatever-
way-you-like (i.e. using traditional inter-thread synchronization stuff
such as mutexes, semaphores, or Dijkstra forbid – memory fences etc.
etc.).

This is a very dangerous option, and it is to be
avoided as long as possible. However, there are
some cases when clean separation between the
main-thread-data and data-necessary-for-the-
secondary-thread is not feasible, usually
because of the piece of data to be used by both
parallel processes, being too large; it is these
cases (and to the best of my knowledge, only
these cases), when you need to choose Option C.
And even in these cases, you might be able to

14

“

tw ice, and then
tw ice more.

stay away from handling fine-grained thread
synchronization, see Chapter [[TODO]] for some
hints in this direction.

Also, if you need Option C for your Game Logic – think twice, and
then twice more. As Game Logic is the one which changes a damn lot,
with Option C this has all the chances of becoming unmanageable
(see, for example, [NoBugs2015]). It is that bad, that if you run into
this situation, I would seriously think whether the Game Logic
requirements are feasible to implement (and maintain) at all.

On the positive side, it should be noted that even in such an
unfortunate case you should be losing FSM-related benefits (such
as “replay testing” and post-mortem) only for the FSM which you’re
rewriting into Option C; all the other FSMs will still remain
deterministic (and therefore, easily testable).

In any case, your multi-threaded FSM SHOULD look as a normal FSM
from the outside. In other words, multi-threaded implementation
SHOULD be just this – implementation detail of this particular FSM, and
SHOULD NOT affect the rest of your code. This is useful for two reasons.
First, it decouples things and creates a clean well-defined interface, and
second, it allows you to change implementation (or add another one, for
example, for a different platform) without rewriting the whole thing.

 that is, if you’re not programming in Haskell or something similar
 GPGPUs is the only place I know where context switches are cheap, but usually

we’re not speaking about GPGPUs for these threads
 or “degrades”, depending on the point of view

On Latencies
One question which may arise for queue-based architectures and fast-paced
games, is about latencies introduced by those additional queues (we do want to
show the data to the user as fast as possible). My experience shows that then we’re
speaking about additional latency of the order of single-digit microseconds.
Probably it can be lowered further into sub-microsecond range by using less trivial
non-blocking queues, but this I’m not 100% sure of because of relatively expensive
allocations usually involved in marshalling/unmarshalling; for further details on
implementing high-performance low-latency queues in C++, please refer to
Chapter [[TODO]]. As this single-digit-microsecond delay is at least 3 orders of
magnitude smaller than inter-frame delay of 1/60 sec or so, I am arguing that
nobody will ever notice the difference, even for single-player or LAN-based games;
for Internet-based MMOs where the absolutely best we can hope for is 10ms delay,
makes it even less relevant.

12

13

14

15

16

17

In short – I don’t think this additional single-digit-microsecond delay can possibly
have any effect which is visible to end-user.

 assuming that the thread is not busy doing something else, and that there are
available CPU cores

 introduced by a reasonably well-designed message marshalling/unmarshalling +
reasonably well-designed inter-process single-reader queue

 see Chapter [[TODO]] for conditions when such delays are possible before hitting
me too hard

V ariations
The diagram on Fig V.2 shows each of the FSMs running within it’s own thread. On
the other hand, as noted above, each of the FSMs can be run in the same thread as
Game Logic FSM. In the extreme case it results in the system where all the FSMs are
running within single thread with a corresponding diagram shown on Fig V.3:

Each and every of FSMs on Fig V.3 is exactly the same as an FSM on Fig V.2;
moreover, logically, these two diagrams are exactly equivalent (and “recording”
from one can be “replayed” on another one). The only difference on Fig V.3 is that
we’re using the same thread (and the same Queue) to run all our FSMs. FSM
Selector here is just a very dumb selector, which looks at the destination-FSM field
(set by whoever-sent-the-message) and routes the message accordingly.

This kind of threading could be quite practical, for example, for a casino or a social
game. However, not all the platforms allow to wait for the select() in the main
graphics loop, so you may need to resort to the one on Fig V.4:

15

16

17

/wp-content/uploads/Fig-V-3.png

Here Sockets Thread is very simple and doesn’t contain any substantial logic; all it
does is just pushing whatever-it-got-from-Queue to the socket, and pushing
whatever-it-got-from-socket – to the Queue of the Main Thread; all the actual
processing will be performed there, within Communications FSM.

Another alternative is shown on Fig V.5:

Both Fig V.4 and Fig V.5 will work for a social or casino-like game on Windows.

On the other end of the spectrum, lie such heavy-weight implementations as the
one shown on Fig V.6:

18

/wp-content/uploads/Fig-V-4.png
/wp-content/uploads/Fig-V-51.png

Here, Animation&Rendering FSM, and Communications FSM run in their own
processes. This approach might be useful during testing (in general, you may even
run FSMs on different developer’s computers if you prefer this kind of interactive
debugging). However, for production it is better to avoid such configurations, as
inter-process interfaces may help bot writers.

Overall, an exact thread (and even process) configuration you will deploy is not
that important and may easily be system-dependent (or even situation-dependent,
as in “for the time being, we’ve decided to separate this FSM to a separate process
to debug it on respective developer’s machines”). What really matters is that

as long as you’re keeping your development model
FSM-based, you can deploy it in any way you like

without any changes to your FSMs.

In practice, this property has been observed to provide quite a bit of help in the
long run. While this effect has significantly more benefits on the server-side (and
will be discussed in Chapter [[TODO]]), it has been seen to aid client-side
development too; for example, different configurations for different platforms do
provide quite a bit of help. In addition, situation-dependent configurations have
been observed to help a bit during testing.

 While on Windows it is possible to create both “| select()” and “| user-input”
queues, I don’t know how to create one single queue which will be both “| select()”
and “| user-input” simultaneously, without resorting to a ‘dumb’ extra thread; more
details on these and other queues will be provided in Chapter [[TODO]]

On Code Bases for Different Platforms
As it was noted above, you MUST keep your Game Logic FSM the same for all the
platforms (i.e. as a single code base). Otherwise, given the frequent changes to

18

/wp-content/uploads/Fig-V-6.png

If your game
is graphics-

intensive, there
can be really

good reasons to
have your

Animation&Rendering
FSM dif f erent

f or dif f erent
platf orms

Game Logic, all-but-one of your code bases will most likely start to fall behind, to
the point of being completely useless.

But what about other FSMs? Do you need to keep them as a single code base? The
answer here is quite obvious:

while the architecture shown above allows you to
make non-Game-Logic FSMs platform-specific, it

makes perfect sense to keep them the same as long as
possible

For example, if your game is graphics-intensive, there can be
really good reasons to have your Animation&Rendering FSM
different for different platforms; for example, you may want
to use DirectX on some platforms, and OpenGL on some other
platforms (granted, it will be quite a chunk of work to
implement both of them, but at least it is possible with the
architecture above, and it becomes a potentially viable
business choice, especially as OpenGL version and DirectX
version can be developed in parallel).

On the other hand, chances that you will need the platform-
specific Communications FSM, are much lower. Even if
you’re writing in C/C++, usable implementations of Berkeley
sockets exist on most (if not on all) platforms of interest.
Moreover, the behavior of sockets on different platforms is
quite close from game developer’s point of view (at least with
regards to those things which we are able to affect).

So, while all such choices are obviously specific to your specific game, statistically
you should have much more Animation&Rendering FSMs than Communications
FSMs .

 I don’t count conditional inclusion of WSAStartup() etc. as being really platform-
specific

QnFSM Architecture Summary
Queues-and-FSMs Architecture shown on Fig V.2 (as well as its variations on Fig
V.3-Fig V.6) is quite an interesting beast. In particular, while it does ensure a clean
separation between parts (FSMs in our case), it tends to go against commonly used
patterns of COM-like components or even usual libraries. The key difference here

“
19

19

Most of
developers
agree that FSM-
based
programming is
benef icial in
the medium- to
long-run.

is that COM-like components are essentially based on blocking RPC, so after you
called a COM-like RPC , you’re blocked until you get a reply. With FSM-based
architecture from Fig V.2-V.6, even if you’re requesting something from another
FSM, you still can (and usually should) process events coming while you’re waiting
for the reply. See in particular [[TODO!! add subsection on callbacks to FSM]]
section above.

From my experience, while developers usually see this kind of
FSM-based programming as somewhat more cumbersome
than usual procedure-call-based programming, most of them
agree that it is beneficial in the medium- to long-run. This is
also supported by experiences of people writing in Erlang,
which has almost exactly the same approach to concurrency
(except for certain QnFSM’s goodies, see also “Relation to
Erlang” section below). As advantages of QnFSM architecture,
we can list the following:

very good separation between different modules (FSMs in
our case). FSMs and their message-oriented APIs tend to
be isolated very nicely (sometimes even a bit too nicely,
but this is just another side of the “somewhat more
cumbersome” negative listed above).

“replay testing“ and post-mortem analysis. See “Strictly-
Deterministic Logic: Benefits” section above.

very good performance. While usually it is not that important for client-side, it
certainly doesn’t hurt either. The point here is that with such an architecture,
context switches are kept to the absolute minimum, and each thread is
working without any pauses (and without any overhead associated with these
pauses) as long as it has something to do. On the flip side, it doesn’t provide
inherent capabilities to scale (so server-side scaling needs to be introduced
separately, see Chapter [[TODO]]), but at least it is substantially better than
having some state under the mutex, and trying to lock this mutex from
different threads to perform something useful.

We will discuss more details on this Queues-and-FSMs architecture as applicable
to the server-side, in Chapter [[TODO]], where its performance benefits become
significantly more important.

Relation to Actor Concurrency

NB: this subsection is entirely optional, feel free to skip it if theory is of
no interest to you

From theoretical point of view QnFSM architecture can be

20

“

Actor
Concurrency
Model
The actor model

https://en.wikipedia.org/wiki/Actor_model#Contrast_with_other_models_of_message-passing_concurrency

seen as a system which is pretty close to so-called “Actor
Concurrency Model” (that is, until Option C from “Additional
Threads and Task-Based Multithreading” is used), with
QnFSM’s deterministic FSMs being Actor Concurrency’s
‘Actors’. However, there is a significant difference between the
two, at least perceptionally. Traditionally, Actor concurrency
is considered as a way to ensure concurrent calculations; that
is, the calculation which is considered is originally a “pure”
calculation, with all the parameters known in advance. With
games, the situation is very different because we don’t know
everything in advance (by definition). This has quite a few
implications.

Most importantly, system-wide determinism (lack of which is
often considered a problem for Actor concurrency when we’re
speaking about calculations) is not possible for games. In
other words, games (more generally, any distributed interactive
system which produces results substantially dependent on timing;
dependency on timing can be either absolute, like “whether the
player pressed the button before 12:00”, or relative such as
“whether player A pressed the button before player B”) are
inherently non-deterministic when taken as a whole. On the
other hand, each of the FSMs/Actors can be made completely
deterministic, and this is what I am arguing for in this book.

In other words – while QnFSM is indeed a close cousin of Actor
concurrency, quite a few of the analysis made for Actor-
concurrency-for-HPC type of tasks, is not exactly applicable to
inherently time-dependent systems such as games, so take it
with a big pinch of salt.

 also DCE RPC, CORBA RPC, and so on; however, game engine RPCs are usually very
different, and you’re not blocked after the call, in exchange for not receiving
anything back from the call

 the discussion of this phenomenon is out of scope of this book, but it follows from
inherently distributed nature of the games, which, combined with Einstein’s light
cone and inherently non-deterministic quantum effects when we’re organizing
transmissions from client to server, mean that very-close events happening for
different players, may lead to random results when it comes to time of arrival of
these events to server. Given current technologies, determinism is not possible as
soon as we have more than one independent “clock domain” within our system
(non-deterministic behaviour happens at least due to metastability problem on
inter-clock-domain data paths), so at the very least any real-world multi-device
game cannot be made fully deterministic in any practical sense.

in computer
science is a
mathematical
model of
concurrent
computation
that treats
'actors' as the
universal
primitives of
concurrent
computation: in
response to a
message that it
receives, an
actor can make
local decisions,
create more
actors, send
more messages,
and determine
how to respond
to the next
message
received.

— Wikipedia —

21

20

21

Relation to Erlang Concurrency and Akka Actors

On the other hand, if looking at Erlang concurrency (more
specifically, at ! and receive operators), or at Akka’s Actors, we
will see that QnFSM is pretty much the same thing. There are
no shared states, everything goes via message passing, et
caetera, et caetera, et caetera.

The only significant difference is that for QnFSM I am arguing
for determinism (which is not guaranteed in Erlang/Akka, at
least not without “call interception”; on the other hand, you
can write deterministic actors in Erlang or Acca the same way
as in QnFSM, it is just an additional restriction you need to
keep in mind and enforce). Other than that, and some of those
practical goodies in QnFSM (such as recording/replay with all
the associated benefits), QnFSM is extremely close to Erlang’s
concurrency (as well as to Akka’s Actors which were inspired
by Erlang) from developer’s point of view.

Which can be roughly translated into the following
observation:

to have a good concurrency model, it is not
strictly necessary to program in Erlang or

to use Akka

 While both Erlang and Akka zealots will argue ad infinitum
that their favourite technology is much better, from our
perspective the differences are negligible

Bottom Line for Chapter V
Phew, it was a long chapter. On the other hand, we’ve managed to provide a 50’000-
feet (and 20’000-word) view on my favorite MMOG client-side architecture. To
summarize and re-iterate my recommendations in this regard:

Think about your graphics, in particular whether you want to use pre-
rendered 3D or whether you want/need dual graphics (such as 2D+3D); this is
one of the most important questions for your game client; moreover, client-
side 3D is not always the best choice, and there are quite a few MMO games
out there which have rudimentary graphics

if your game is an MMOFPS or an MMORPG, most likely you do need

Akka
is... simplif ying
the
construction of
concurrent and
distributed
applications on
the JVM. Akka...
emphasizes
actor-based
concurrency,
w ith
inspiration
draw n f rom
Erlang.

— Wikipedia —

22

Erlang
Erlang is a
general-
purpose,
concurrent,
garbage-
collected
programming
language and
runtime system.

— Wikipedia —

22

23

https://en.wikipedia.org/wiki/Akka_%28toolkit%29
https://en.wikipedia.org/wiki/Erlang_%28programming_language%29

Write your
code in a
deterministic
event-driven
manner, it
helps, and helps
a lot

fully-fledged client-side 3D, but even for an MMORTS the answer can be
not that obvious

when choosing your programming language, think twice
about resilience to bot writers, and also about those
platforms you want to support. While the former is just
one of those things to keep in mind, the latter can be a
deal-breaker when deciding on your programming
language

Usually, C++ is quite a good all-around candidate,
but you need to have pretty good developers to work
with it

Write your code in a deterministic event-driven manner
(as described in “Strictly-Deterministic Logic” and
“Event-Driven Programming and Finite State Machines”
sections), it helps, and helps a lot

This is not the only viable architecture, so you may be
able to get away without it, but at the very least you
should consider it and understand why you prefer an alternative one

The code written this way magically becomes a deterministic FSM, which
has lots of useful implications

Keep all your FSMs perfectly self-contained, in a “Share-Nothing” model.
It will help in quite a few places down the road.

Feel free to run multiple FSMs in a single thread if you think that your
game and/or current platform is a good fit, but keep those FSMs
separate; it can really save your bacon a few months later.

Keep one single code base for Game Logic FSM. For other FSMs, you may
make different implementations for different platforms, but do it only if
it becomes really necessary.

 yes, I know I’m putting on my Captain Obvious’ hat once again here

[[To Be Continued…
This concludes beta Chapter V(d) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VI, “Modular
Architecture: Server-Side. Naive and Classical Deployment
Architectures.]]

“

23

[–] References

« Chapter V (c). Modular A rchitecture: Client-Side. On Debuggin…

 Chapter V I(a). Serv er-Side MMO A rchitecture. Naïv e, W eb-Ba… »

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: client, game, multi-player, Multithreading

Copyright © 2014-2016 ITHare.com

[NoBugs2015] 'No Bugs' Hare, “Multi-threading at Business-logic Level is
Considered Harmful”, Overload #128
[GameProgrammingPatterns.GameLoop] Robert Nystrom, “Game Programming
Patterns”
[GafferOnGames.FixYourTimestep] Glenn Fiedler, “Fix Your Timestep!”, Gaffer On
Games
[GDC.Destiny] Natalya Tatarchuk, “Destiny's Multithreaded Rendering
Architecture”, GDC2015
[GDC.TaskBasedMT] Ron Fosner, “Task-based Multithreading - How to Program
for 100 cores”, GDC2010

http://accu.org/index.php/journals/2134
http://accu.org/var/uploads/journals/overload128.pdf
http://gameprogrammingpatterns.com/game-loop.html
http://www.amazon.com/Game-Programming-Patterns-Robert-Nystrom/dp/0990582906
http://gafferongames.com/game-physics/fix-your-timestep/
http://www.gdcvault.com/play/1021926/Destiny-s-Multithreaded-Rendering
http://www.gdcvault.com/play/1012321/Task-based-Multithreading-How-to
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines/
http://ithare.com/chapter-via-server-side-mmo-architecture-naive-and-classical-deployment-architectures/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/multithreading/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter VI(a). Server-Side MMO Architecture. Naïve,
Web-Based, and Classical Deployment Architectures
posted December 21, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VI(a) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

After drawing all that nice client-side QnFSM-based diagrams, we need to
describe our server architecture. The very first thing we need to do is to start
thinking in terms of “how we’re going to deploy our servers, when our game is
ready?” Yes, I really mean it – architecture starts not in terms of classes, and for
the server-side – not even in terms of processes or FSMs, it starts with the highest-
level meaningful diagram we can draw, and for the server-side this is a deployment
diagram with servers being its main building blocks. If deploying to cloud, these
may be virtual servers, but a concept of “server” which is a “more or less self-
contained box running our server-side software”, still remains very central to the
server-side software. If not thinking about clear separation between the pieces of
your software, you can easily end up with a server-side architecture that looks
nicely while you program it, but falls apart on the third day after deployment,
exactly when you’re starting to think that your game is a big success.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

Deployment Architectures, Take 1
In this Chapter we’ll discuss only “basic” deployment architectures. These
architectures are “basic” in a sense that they’re usually sufficient to deploy your
game and run it for several months, but as your game grows, further improvements
may become necessary. Fortunately, these improvements can be done later,
when/if the problems with basic deployment architecture arise; these
improvements will be discussed in Chapter [[TODO]].

Also note that for your very first deployment, you may have much less
physical/virtual boxes than shown on the diagram, by combining quite a few of
them together. On the other hand, you should be able to increase the number of
your servers quickly, so you need to have the software able to work in basic
deployment architecture from the very beginning. This is important, as demand for
increase in number of servers can develop very soon if you’re successful. We’ll
discuss your very first deployment in Chapter [[TODO]].

First, let’s start with an architecture you shouldn’t do.

Don’t Do It: Naïve Game Deployment Architectures
Quite often, when faced with development their very first multi-player game,
developers start with something like the following Fig VI.1:

/wp-content/uploads/BB_part070_BookChapter006a_v1.png

It is dead simple: there is a server, and there is a database to store persistent state.
And later on, as one single Game World server proves to be insufficient, it naturally
evolves into something like the diagram on Fig VI.2:

with each of Game World servers having its own database.

My word of advice about such naïve deployment architectures:

DON’T DO THIS!

Such a naïve approach won’t work well for a vast majority of games. The problem
here (usually ranging from near-fatal to absolutely-fatal depending on specifics of
your game) is that this architecture doesn’t allow for interaction between players
coming from different servers. In particular, such an architecture becomes
absolutely deadly if your game allows some way for a player to choose who he’s
playing with (or if you have some kind of merit-based tournament system), in other
words – if you’re not allowed to arbitrary separate your players (and in most cases
you will need some kind of interaction at least because of the social network
integration, see Chapter II for further discussion in this regard).

For the naïve architecture shown on Fig VI.2, any interaction
between separate players coming from separate databases,
leads to huge mortgage-crisis-size problems. Inter-DB
interaction, while possible (and we’ll discuss it in Chapter
[[TODO]]) won’t work well around these lines and between
completely independent databases. You’re going to have lots
and lots of problems, ranging from delays due to improperly
implemented inter-DB transactions (apparently this is not

CSR
Customer

service
representatives

interact w ith
customers to

/wp-content/uploads/Fig-VIv2-1.png
/wp-content/uploads/Fig-VIv2-2.png
https://en.wikipedia.org/wiki/Customer_service_advisor

that easy), to your CSRs going crazy because of two different
users having the same ID in different databases. Moreover, if
you start like this, you will even have trouble merging the
databases later (the very first problem you will face will be
about collisions in user names between different DBs, with
much more to follow).

To summarize relevant discussion from Chapter II and from
present Chapter:

A. Y ou WILL need inter-player interaction between
arbitrary players. If not now, then later. B. Hence,
you SHOULD NOT use “naïve” architecture shown

above.

Fortunately, there are relatively simple and practical architectures which allow to
avoid problems typical for naïve approaches shown above.

Web-Based Game Deployment Architecture
If your game satisfies two conditions:

first, it is reeeeallyyyy sloooow-paaaaaced (in other words, it is not an
MMOFPS and even not a poker game) and/or “asynchronous” (as defined in
Chapter I, i.e. it doesn’t need players to be present simultaneously),

and second, it has little interaction between players (think farming-like games
with only occasional inter-player interaction),

then you might be able to get away with Web-Based server-side architecture,
shown on Fig VI.3:

provide
answ ers to

inquiries
involving a

company's
product or

services.
— Wikipedia —

/wp-content/uploads/Fig-VIv2-32.png

One Big

W eb-Based Deployment Architecture: How It W orks

The whole thing looks alongside the lines of a heavily-loaded web app – with lots of
caching, both at front-end (to cache pages), and at a back-end. However, there are
also significant differences (special thanks to Robert Zubek for sharing his
experiences in this regard, [Zubek2016]).

The question “which web server to use” is not that important here. On the other
hand, there exists an interesting and not-so-well-known web server, which took an
extra mile to improve communications in game-like environments. I’m speaking
about [Lightstreamer]. I didn’t try it myself, so I cannot vouch for it, but what
they’re doing with regards to improving interactivity over TCP, is really
interesting. We’ll discuss some of their tricks in Chapter [{TODO]].

Peculiarities in Web-Based Game architectures are mostly about the way caching is
built. First, on Fig VI.3 both front-end caching and back-end caching is used.
Front-end caching is your usual page caching (like nginx in reverse-proxy mode, or
even a CDN), though there is a caveat. As your current-game-data changes very
frequently, you normally don’t want to cache it, so you need to take an effort and
clearly separate your static assets (.SWFs, CSS, JS, etc. etc.) which can (and should)
be cached, and dynamic pages (or AJAX) with current game state data which
changes too frequently to bother about caching it (and which will likely go directly
from your web servers) [Zubek2010].

At the back-end, the situation is significantly more
complicated. According to [Zubek2016], for games you will
often want not only to use your back-end cache as a cache to
reduce number of DB reads, but also will want to make it a
write-back cache (!), to reduce the number of DB writes. Such a
write-back cache can be implemented either manually over
memcached (with web servers writing to memcached only, and
a separate daemon writing ‘dirty’ pages from memcached to
DB), or a product such as Redis or Couchbase (formerly
Membase) can be used [Zubek2016].

Taming DB Load: W rite-Back Caches and In-Memory
States

One Big Advantage of having write-back
cache (and of the in-memory state of
Classical deployment architecture
described below) is related to the huge
reduction in number of DB updates. For
example, if we’d need to save each and
every click on the simulated farm with

CAS
Compare-And-
Sw ap is an
atomic
instruction
used in
multithreading
to achieve
synchronization.
It compares the
contents of a
memory
location to a
given value
and, only if
they are the
same, modif ies
the contents of“

https://en.wikipedia.org/wiki/Compare-and-swap

Advantage of
having w rite-

back cache (and
of the in-

memory state of
Classical

deployment
architecture

described
below) is

related to the
huge reduction

in number of
DB updates.

25M daily users (each coming twice a day
and doing 50 modifying-farm-state clicks
each time in a 5-minute session), we could
easily end up with 2.5 billion DB
transactions/day (which is infeasible, or
at least non-affordable). On the other
hand, if we’re keeping write-back cache,
we can write the cache into DB only once per 10 minutes, we’d
reduce the number of DB transactions 50-fold, bringing it to
much more manageable 50 million/day.

For faster-paced games (usually implemented as a Classical
Architecture described below, but facing the same challenge
of DB being overloaded), the problem surfaces even earlier.
For example, to write each and every movement of every
character in an MMORPG, we’d have a flow of updates of the
order of 10 DB-transactions/sec/player (i.e. for 10’000

simultaneous players we’d have 100’000 DB transactions/second, or around 10
billion DB transactions/day, once again making it infeasible, or at the very least
non-affordable). On the other hand, with in-memory states stored in-memory-only
(and saving to DB only major events such as changing zones, or obtaining level) –
we can reduce the number of DB transactions by 3-4 orders of magnitude, bringing
it down to much more manageable 1M-10M transactions/day.

As an additional benefit, such write-back caches (as long as you control write times
yourself) and in-memory states also tend to play well with handling server failures.
In short: for multi-player games, if you disrupt a multi-player “game event” (such
as match, hand, or fight) for more than a few seconds, you won’t be able to continue
it anyway because you won’t be able to get all of your players back; therefore, you’ll
need to roll your “game event” back, and in-memory states provide a very natural
way of doing it. See “Failure Modes & Effects” section below for detailed discussion
of failure modes under Classical Game Architecture.

A word of caution for stock exchanges. If your game is a stock exchange, you
generally do need to save everything in DB (to ensure strict correctness even in
case of Game Server loss), so in-memory-only states are not an option, and DB
savings do not apply. However, even for stock exchanges at least Classical Game
architecture described below has been observed to work very well despite DB
transaction numbers being rather large; on the other hand, for stock exchanges
transaction numbers are usually not that high as for MMORPG, and price of the
hardware is generally less of a problem than for other types of games.

W rite-Back Caches: Locking

As always, having a write-back cache has some very serious implications, and will

that memory
location to a
given new
value.

— Wikipedia —

“

cause lots of problems whenever two of your players try to interact with the same
cached object. To deal with it, there are three main approaches: “optimistic
locking”, “pessimistic locking”, and transactions. Let’s consider them one by one.

Optimistic Locking. This one is directly based on memcached’s CAS operation.
The idea of using CAS for optimistic locking goes along the following lines. To
process some incoming request, Web Server does the following:

reads whole “game world” state as a single blob from memcached, alongside
with “cas token”. “cas token” is a thing which is actually a “version number” for
this object.

we’re optimists! so Web Server is processing incoming request ignoring
possibility that some other Web Server also got the same “game world” and is
working on it

Web Server is NOT allowed to send any kind of reply back to user (yet)

Web Server issues cas operation with both new-value-of-“game-world”-blob,
and the same “cas token” which it has received

if “cas token” is still valid (i.e. nobody has written to the blob before
current Web Server has read it), memcached writes new value, and
returns ok.

Then our Web Server may send reply back to whoever-requested-it

if, however, there was a second Web Server which has managed to write
after we’ve read our blob – memcached will return a special error

in this case, our Web Server MUST discard all the prepared replies

in addition, it MAY read new value of “game world” state (with new
“cas token”), and try to re-apply incoming request to it

this is perfectly valid: it is just “as if” incoming request has
came a little bit later (which can always happen)

Optimistic locking is simple, is lock-less (which is important, see below why), and
has only one significant drawback for our purposes. That is, while it works fine as
long as collision probability (i.e. two Web Servers working on the same “game
world” at the same time) is low, but as soon as probability grows (beyond, say 10%)
– you will start getting a significant performance hit (for processing the same
message twice, three times, and so on and so forth). For slow-paced asynchronous
games it is very unlikely to become a problem, and therefore by default I’d
recommend optimistic locking for web-based games, but you still need to
understand limitations of the technology before using it.

 a supposedly equivalent optimistic locking for Redis is described in [Redis.CAS]

1

1

Pessimistic Locking. This is pretty much a classical multi-threaded mutex-based
locking, applied to our “how to handle two concurrent actions from two different
Web Servers over the same “game world” problem.

In this case, game state (usually stored as a whole in a blob) is protected by a sorta-
mutex (so that two web servers cannot access it concurrently). Such a mutex can
be implemented, for example, over something like memcached’s CAS operation
[Zubek2010]. For pessimistic locking, Web Server acts as follows:

obtains lock on mutex, associated with our “game world” (we’re pessimists
, so we need to be 100% sure before processing, that we’re not processing in
vain).

if mutex cannot be obtained – Web Server MAY try again after waiting a
bit

reads “game world” state blob

processes it

writes “game world” state blob

releases lock on mutex

This is a classical mutex-based schema and it is very robust when applied to
classical multi-thread synchronization. However, when applying it to web servers
and memcached, there is a pretty bad caveat . The problem here is related to
“how to detect hanged/crashed web server – or process – which didn’t remove the
lock” question, as such a lock will effectively prevent all future legitimate
interactions with the locked game world (which reminds me of the nasty problems
from the early-90ish pre-SQL FoxPro-like file-lock-based databases).

For practical purposes, such a problem can be resolved via timeouts, effectively
breaking the lock on mutex (so that if original mutex owner of the broken mutex
comes later, he just gets an error). However, allowing to break mutex locks on
timeouts, in turn, has significant further implications, which are not typical for
usual mutex-based inter-thread synchronizations:

first, if we’re breaking mutex on timeout – there is a problem of choosing the
timeout. Have it too low, and we can end up with fake timeouts, and having it
too high will cause frustrated users

second, it implies that we’re working EXACTLY according to the pattern
above. In particular:

having more than one memcached object per “game world” is not
allowed

“partially correct” writes of “game state” are not allowed either, even if
they’re intended to be replaced “very soon” under the same lock

In practice, these issues are rarely causing too much problems when using
memcached for mutex-based pessimistic locking. On the other hand, as for
memcached we’d need to simulate mutex over CAS, I still suggest optimistic
locking (just because it is simpler and causes less memcached interactions).

Transactions. Classical DB transactions are useful, but dealing with concurrent
transactions is really messy. All those transaction isolation levels (with
interpretations subtly different across different databases), locks, and deadlocks
are not a thing which you really want to think about.

Fortunately, Redis transactions are completely unlike classical DB transactions and
are coming without all this burden. In fact, Redis transaction is merely a sequence
of operations which are executed atomically. It means no locking, and an ability to
split your “game world” state into several parts to deal with traffic. On the other
hand, I’d rather suggest to stay away from this additional complexity as long as
possible, using Redis transactions only as means of optimistic locking as described
in [Redis.CAS]. Another way of utilizing capabilities of Redis transactions is briefly
mentioned in “Web-Based Deployment Architecture: FSMs” section below.

W eb-Based Deployment Architecture: FSMs

You may ask: how finite state machines (FSMs) can possibly be related to the web-
based stuff? They seem to be different as night and day, don’t they?

Actually, they’re not. Let’s take a look at both optimistic and pessimistic locking
above. Both are taking the whole state, generating new state out of it, and storing
this new state. But this is exactly what our FSM::process_event() function from
Chapter V does! In other words, even for web-based architecture, we can (and
IMHO SHOULD) write processing in an event-driven manner, taking state and
processing inputs, producing state and issuing replies as a result.

As soon as we’ve done it this way, the question
“Should we use optimistic locking or pessimistic

one”, becomes a deployment implementation detail

In other words, if we have an FSM-based (a.k.a. event-driven) game code, we can
change the wrapping infrastructure code around it, and switch it from optimistic
locking to pessimistic one (or vice versa). All this without changing a single line
within any of FSMs!

Moreover, if using FSMs, we can even change from
Web-Based Architecture to Classical one and vice

versa without changing FSM code

If by any chance reading the whole “game world” state from cache becomes a
problem (which it shouldn’t, but you never know), it MIGHT still be solved via FSMs
together with Redis-style transactions mentioned above. Infrastructure code (the
one outside of FSM) may, for example, load only a part of the “game world” state
depending on type of input request (while locking all the other parts of the state to
avoid synchronization problems), and also MAY implement some kind on-demand
exception-based state loading along the lines of on-demand input loading
discussed in [[TODO]] section below.

W eb-Based Deployment Architecture: Merits

Unlike the naïve approach above, Web-Based systems may work. Their obvious
advantage (especially if you have a bunch of experienced web developers on your
team) is that it uses familiar and readily-available technologies. Other benefits are
also available, such as:

easy-to-find developers

simplicity and being relatively obvious (that is, until you need to deal with
locks, see above)

web servers are stateless (except for caching, see below), so failure analysis is
trivial: if one of your web servers goes down, it can be simply replaced

can be easily used both for the games with downloadable client and for
browser-based ones

Web-Based Architecture (as well as any other one), of course, also has downsides,
though they may or may not matter depending on your game:

there is no way out of web-based architecture; once you’re in – switching to
any other one will be impossible. Might be not that important for you, but
keep it in mind.

it is pretty much HTTP-only (with an option to use Websockets); migration to
plain TCP/UDP is generally not feasible.

as everything will work via operations on the whole game state, different parts
of your game will tend to be tightly coupled. Not a big problem if your game is
trivial, but may start to bite as complexity grows.

as the number of interactions between players and game world grows, Web-
Based Architecture becomes less and less efficient (as distributed-mutex-
locked accesses to retrieve whole game state from the back-end cache and
write it back as a whole, don’t scale well). Even medium-paced “synchronous”
games such as casino multi-players, are usually not good candidates for Web-
Based Architecture.

you need to remember to keep all the accesses to game objects synchronized;

if you miss one – it will work for a while, but will cause very strange-looking
bugs under heavier load.

you’ll need to spend A LOT of time meditating over your caching strategy. As
the number of player grows, you’re very likely to need a LOT of caching, so
start designing your caching strategies ASAP. See above about peculiarities of
caching when applied to games (especially on write-back part and mutexes),
and make your own research.

as the load grows, you will be forced to spend time on finding a good and
really-working-for-you solution for that nasty web-server-never-releases-
mutex problem mentioned above. While not that hopeless as ensuring
consistency within pre-SQL DBF-like file-lock-based databases, expect quite
a chunk of trouble until you get it right.

Still,

if your game is rather slow/asynchronous and inter-
player interactions are simple and rather far

between, Web-Based Architecture may be the way to
go

While Classical Architecture described below (especially with Front-End Servers
added, see [[TODO]] section) can also be used for slow-paced games,
implementing it yourself just for this purpose is a Really Big Headache and might
be easily not worth the trouble if you can get away with Web-Based one. On the
other hand,

even for medium-paced synchronous multi-player
games (such as casino-like multi-player games) Web-

Based Architecture is usually not a good candidate

(see above).

Classical Game Deployment Architecture
Fig VI.4 shows a classical game deployment diagram.

In this deployment architecture, clients are connected to Game Servers directly,
and Game Servers are connected to a single DB Server, which hosts system-wide
persistent state. Each of Game Servers MIGHT (or might not) have it own database
(or other persistent storage) depending on the needs of your specific game;
however, usually Game Servers store only in-memory states with all the persistent
storage going into a single DB residing on DB Server.

Game Servers

Game Servers are traditionally divided according to their functionality, and while
you can combine different types of functionality on the same box, there are often
good reasons to avoid combining too many different things together.

Different types of Game Servers (more strictly – different types of functionality
hosted on Game Servers) should be mapped to the entities on your
Entities&Relationships Diagram described in Chapter II. You should do this
mapping for your specific game yourself. However, as an example, let’s take a look
at a few of typical Game Servers (while as always, YMMV, these are likely to be
present for quite a few games):

Game W orld Serv ers. Your game worlds are running on Game World Servers,
plain and simple. Note that “Game World” here doesn’t necessarily mean a “3D

/wp-content/uploads/Fig-VIv2-41.png

Payment
Server and

Usually,
when a player
launches her
client app, the
client by
default
connects to
one of
Matchmaking
Servers.

game world with simulated physics etc.” . Taking a page from a casino-like games
book, “Game World” can be a casino table; going even further into realm of stock
exchanges, “Game World” may be a stock exchange floor. Surprisingly, from an
architecture point of view, all these seemingly different things are very similar. All
of them represent a certain state (we usually name it “game world”) which is
affected by player’s actions in real time, and changes to this state are shown to all
the players.

Matchmaking Serv ers. Usually, when a player launches her
client app, the client by default connects to one of
Matchmaking Servers. In general, matchmaking servers are
responsible for redirecting players to one of your multiple
game worlds. In practice, they can be pretty much anything:
from lobbies where players can join teams or select game
worlds, to completely automated matchmaking. Usually it is
matchmaking servers that are responsible for creating new
game worlds, and placing them on the servers (and sometimes
even creating new servers in cloud environments).

Tournament Serv ers. Not always, but quite often your game
will include certain types of “tournaments”, which can be
defined as game-related entities that have their own life span
and may create multiple Game World instances during this life
span. Technically, these are usually reminiscent of
Matchmaking Servers (they need to communicate with players,
they need to create Game Worlds, they tend to use about the
same generic protocol synchronization mechanics, see
Chapter [[TODO]] for details), but of course, Tournament
Servers need to implement tournament rules of the specific tournament etc. etc.

Payment Serv er and Social Gatew ay Serv er. These are necessary to provide
interaction of your game with the real world. While these server might look an
“optional thing nobody should care about”, they’re usually playing an all-important
role in increasing popularity of your game and monetization, so you’d better to
account for them from the very beginning.

The very nature of Payment Servers and Social Gateway
Server is to be “gateways to the real world”, so they’re usually
exactly what is written on the tin: gateways. It means that their
primary function is usually to get some kind of input from the
player and/or other Game Servers, write something to DB (via
DB Server), and make some request according to some-
external-protocol (defined by payment provider or by social
network). On the other hand, implementing them when you
need to support multiple payment/social providers (each

2

“

“

Social Gatew ay
Server are

necessary to
provide

interaction of
your game w ith
the real w orld.

with their own peculiarities, you can count on it) – is a
challenge; also they tend to change a lot due to requirements
coming from business and marketing, changes in provider’s
APIs, need to support new providers etc. And of course, at
least for payment servers, there are questions of distributed
transactions between your DB and payment-provider DB, with
all the associated issues of recovery from “unknown-state”
transactions, and semi-manul reconciliation of reports at the
end of month. As a result, these two seemingly irrelevant-to-

gameplay servers tend to have their own teams after deployment; more details on
payment servers will be discussed in Chapter [[TODO]].

One of the things these servers should do, is isolating Game World Servers and
preferably Matchmaking Servers from the intimate details about specifics of the
payment providers and social networks. In other words, Game World Servers
shouldn’t generally know about such things as “a guy has made a post of Facebook,
so we need to give him bonus of 25% extra experience for 2 days”. Instead, this
functionality should be split in two: Social Gateway Server should say “this guy has
earned bonus X” (with explanation in DB why he’s got the bonus, for audit
purposes), and Game World Server should take “this guy has bonus X” statement
and translate it into 25% extra experience.

 restrictions may apply to which parts of the state are shown to which players. One
such example is a server-side fog-of-war, that we’ll discuss in Chapter [[TODO]]

Implementing Game Servers under QnFSM architecture

In theory, Game Servers can be implemented in whatever way you prefer. In
practice, however, I strongly suggest to have them implemented under Queues-
and-FSMs (QnFSM) model described in Chapter V. Among the other things, QnFSM
provides very clean separation between different modules, enables replay-based
debug and production post-mortem, allows for different deployment scenarios
without changing the FSM code (this one becomes quite important for the server
side), and completely avoids all those pesky inter-thread synchronization problems
at logical level; see Chapter V for further discussion of QnFSM benefits.

Fig VI.5 shows a diagram with an implementation of a generic Game Server under
QnFSM:

2

When a
Matchmaking
server needs
to create a
new game
world on
server X, it
sends a
request to the
Game Logic

If it looks complicated at the first glance – well, it should. First of all, the diagram
represents quite a generic case, and for your specific game (and at least at first
stages) you may not need all of that stuff, we’ll discuss it below. Second, but
certainly not unimportant, writing anywhere-close-to-scalable server is not easy.

Now let’s take a closer look at the diagram on Fig VI.5, going in an unusual
direction from right to left.

Game Logic and Game Logic Factory. On the rightmost side
of the diagram, there is the most interesting part – things,
closely related to your game logic. Specifics of those Game
Logic FSMs are different for different Game Servers you have,
and can vary from “Game World FSM” to “Payment Processing
FSM” with anything else you need in between. It is worth noting
that while for most Game Logic FSMs you won’t need any
communications with the outside world except for
sending/receiving messages (as shown on the diagram), for
gateway-style FSMs (such as Payment FSM or Social Gateway
FSM) you will need some kind of external API (most of the time
they go over outgoing HTTP, though I’ve seen quite strange
things, such as X.25); it doesn’t change the nature of those
gateway-style FSMs, so you still have all the FSM goodies (as
long as you “intercept” all the calls to that external API, see
Chapter V for details). [[TODO! – discussion on blocking-vs-
non-blocking APIs for gateway-style FSMs]]

Game Logic Factory is necessary to create new FSMs (and if

“

/wp-content/uploads/Fig-VIv2-51.png

Factory which
resides on
server X, and
Game Logic
Factory
creates game
world with
requested
parameters.

necessary, new threads) by an external request. For example,
when a Matchmaking server needs to create a new game world
on server X, it sends a request to the Game Logic Factory which
resides on server X, and Game Logic Factory creates game
world with requested parameters. Deployment-wise, usually
there is only one instance of the Game Logic Factory per
server, but technically there is no such strict requirement.

TCP Sockets and TCP A ccept. Going to the left of Game Logic
on Fig VI.5, we can see TCP-related stuff. Here the things are
relatively simple: we have classical accept() thread, that passes
the accepted sockets to Socket Threads (creating Socket
Threads when it becomes necessary).

The only really important thing to be noted here is that each Socket Thread should
normally handle more than one TCP socket; usually number of TCP sockets per
thread for a game server should be somewhere between 16 and 128 (or “somewhere
between 10 and 100” if you prefer decimal notation to hex). On Windows, if you’re
using WaitForMultipleObjects() , you’re likely to hit the wall at around 30 sockets
per thread (see further discussion in Chapter [[TODO]]), and this has been observed
to work perfectly fine. Having one thread (even worse – two, one for recv() and
another one for send()) per socket on the server-side is generally not advisable, as
threads have substantial associated overhead (both in terms of resources, and in
terms of context switches). In theory, multiple sockets per thread may cause
additional latencies and jitter, but in practice for a reasonably well written code
running on a non-overloaded server I wouldn’t expect additional latencies and
jitter of more than single-digit microseconds, which should be non-observable
even for the most fast-paced games.

 and accordingly, Socket FSM, unless you’re hosting multiple Socket FSMs per
Socket Thread, which is also possible
 which IMHO provides the best balance between performance and implementation

complexity (that is, if you need to run your servers on Windows), see Chapter
[[TODO]] for further details

UDP-related FSMs. UDP (shown on the left side of Fig VI.5) is quite a weird beast;
in some cases, you can use really simple things to get UDP working, but in some
other cases (especially when high performance is involved), you may need to resort
to quite heavy solutions to achieve scalability. The solution on Fig VI.5 is on the
simpler side, so you MIGHT need to get into more complicated things to achieve
performance/scalability (see below).

Let’s start explaining things here. One problem which you [almost?] universally will

3

4

3

4

Y ou MAY
f ind that your
UDP Handler
Thread becomes
a bottleneck,
causing
incoming
packets to drop

have when using UDP, is that you will need to know whether your player is
connected or not. And as soon as you have a concept of “UDP connection” (for
example, provided by your “reliable UDP” library), you have some kind of
connection state/context that needs to be stored somewhere. This is where those
“Connected UDP Threads” come in.

So, as soon as we have the concept of “player connected to our
server” (and we need this concept at least because players
need to be subscribed to the updates from our server), we
need those “Connected UDP Threads”. Not exactly the best
start from KISS point of view, but at least we know what we
need them for. As for the number of those threads – we should
limit the number of UDP connections per Connected UDP
Thread; as a starting point, we can use the same ballpark
numbers of UDP connections per thread as we were using for
TCP sockets per thread: that is, between 16-128 UDP
connections per thread.

UDP Handler Thread and FSM is a very simple thing – it
merely gets whatever-comes-in-from-recvfrom(), and passes

it to an appropriate Connected UDP Thread (as UDP Handler FSM also creates
those Connected UDP Threads, it is not a problem for it to have a map of incoming-
packet-IP/port-pairs to threads).

However, you MAY find that this simpler approach doesn’t
work for you (and your UDP Handler Thread becomes a
bottleneck, causing incoming packets to drop while your
server is not overloaded yet); in this case, you’ll need to use
platform-specific stuff such as recvmmsg(), or to use multiple
recvfrom()/sendto() threads. The latter multi-threaded
approach will in turn cause a question “where to store this
mapping of incoming-packet-IP/port-pairs to threads”. This
can be addressed either using shared state (which is a
deviation from pure FSM model, but in this particular case it
won’t cause too much trouble in practice), or via separate UDP
Factory Thread/FSM (with UDP Factory FSM storing the
mapping, and notifying recvfrom() threads about the mapping
on request, in a manner somewhat similar to the one used for
Routing Factory FSM described in [[TODO]] section below).

 see further discussion on recvmmsg() in Chapter [[TODO]]

W ebsocket-related FSMs and HTTP-related FSMs (not show n). If you need to

KISS
principle

KISS is an
acronym f or

'Keep it simple,
stupid' as a

design
principle noted
by the U.S. Navy

in 1960.
— Wikipedia —

“
5

5

https://en.wikipedia.org/wiki/KISS_principle

support Websocket clients (or, Stevens forbid, HTTP clients) in addition to, or
instead of TCP or UDP, this can be implemented quite easily. Basic Websocket
protocol is very simple (with basic HTTP being even simpler), so you can use pretty
much the same FSMs as for TCP, but implementing additional header parsing and
frame logic within your Websocket FSMs. If you think you need to support HTTP
protocol for a synchronous game – think again, as implementing interactive
communications over request-response HTTP is difficult (and tends to cause too
much server load), so Websockets are generally preferable over HTTP for
synchronous games and are providing about-the-same (though not identical)
benefits in terms of browser support and being firewall friendly; see further
discussion on these protocols in Chapter [[TODO]]. For asynchronous games, HTTP
(with simple polling) MAY be a reasonable choice.

CUDA /OpenCL/Phi FSM (not show n). If your Game Worlds require simulation
which is very computationally heavy, you may want to use your Game World servers
with CUDA (or OpenCL/Phi) hardware, and to add another FSM (not shown on Fig
VI.5) to communicate with CUDA/OpenCL/Phi GPGPU. A few things to note in this
regard:

We won’t discuss how to apply CUDA/OpenCL/Phi to your simulation; this is
your game and a question “how to use massively parallel computations for
your specific simulation” is utterly out of scope of the present book.

Obtaining strict determinism for CUDA/OpenCL FSMs is not trivial due to
potential inter-thread interactions which may, for example, change the order
of floating-point additions which may lead to rounding-related differences in
the last digit (with both results practically the same, but technically different).
However, for most of gaming purposes (except for replaying server-side
simulation forever-and-ever on all the clients), even this “almost-strict-
determinism” may be sufficient. For example, for “recovery via replay” feature
discussed in “Complete Recovery from Game World server failures: DIY Fault-
Tolerance in QnFSM World” section below, results during replay-since-last-
state-snapshot, while not guaranteed to be exactly the same, are not too likely
to result in macroscopic changes which are too visible to players.

Normally, you’re not going to ship your game servers to your datacenter. Well,
if the life of your game depends on it, you might, but this is a huuuge headache
(see below, as well as Chapter [[TODO]] for further discussion)

 As soon as you agree that it is not your servers, but
leased ones or cloud ones (see also Chapter
[[TODO]]), it means that you’re completely
dependent on your server ISP/CSP on supporting
whatever you need.

Most likely, with 3rd-party ISP/CSP it will be Tesla or GRID GPU (both by
NVidia), so in this case you should be ok with CUDA rather than OpenCL.

The choice of such ISPs which can lease you GPUs, is limited, and they

CSP
Cloud Service
Provider

-

In short –
Titan X gets you
more or less
comparable
perf ormance
parameters
(except f or RAM
size and double-
precision
calculations) at
less than 30% of
the price of
Tesla K80.

tend to be on an expensive side :-(. As of the end of 2015, the best I was
able to find was Tesla K80 GPU (the one with 4992 cores) rented at
$500/month (up to two K80’s per server, with the server itself going at
$750/month). With cloud-based GPUs, things weren’t any better, and
started from around $350/month for a GRID K340 (the one with
4×384=1536 total cores). Ouch!

If you are going to co-locate your servers instead of
leasing them from ISP , you should still realize that
server-oriented NVidia Tesla GPUs (as well as AMD
FirePro S designated for servers) are damn expensive.
For example, as of the end of 2015, Tesla K80 costs
around $4000(!); at this price, you get 2xGK210 cores,
24GB RAM@5GHz, clock of 562/875MHz, and 4992 CUDA
cores. At the same time, desktop-class GeForce Titan X is
available for about $1100, has 2 of newer GM200 cores,
12GB RAM@7GHz, clock of 1002/1089MHz, and 3072 CUDA
cores. In short – Titan X gets you more or less
comparable performance parameters (except for RAM
size and double-precision calculations) at less than 30%
of the price of Tesla K80. It might look as a no-brainer to
use desktop-class GPUs, but there are several significant
things to keep in mind:

the numbers above are not directly comparable;
make sure to test your specific simulation with
different cards before making a decision. In
particular, differences due to RAM size a double-
precision maths can be very nasty depending on
specifics of your code

even if you’re assembling your servers yourself, you are still going to
place your servers into a 3rd-party datacenter; hosting stuff within your
office is not an option (see Chapter [[TODO]])

space in datacenters costs, and costs a lot. It means that tower
servers, even if allowed, are damn expensive. In turn, it usually
means that you need a “rack” server.

Usually, you cannot just push a desktop-class GPU card (especially
a card such as Titan X) into your usual 1U/2U “rack” server; even if
it fits physically, in most cases it won’t be able to run properly
because of overheating. Feel free to try, and maybe you will find the
card which runs ok, but don’t expect it to be the-latest-greatest
one; thermal conditions within “rack” servers are extremely tight,
and air flows are traditionally very different from the desktop
servers, so throwing in additional 250W or so with a desktop-
oriented air flow to a non-GPU-optimized server isn’t likely to work
for more than a few minutes.

“

6

If your game
cannot survive
w ithout server-
side GPGPU
simulations – it
can be done, but
be prepared to
pay a lot more
than you would
expect based on
desktop GPU
prices

IMHO, your best bet would be to buy rack servers which are specially
designated as “GPU-optimized”, and ideally – explicitly supporting those
GPUs that you’re going to use. Examples of rack-servers-supporting-
desktop-class-GPUs range from 1U server by Supermicro with up 4x
Titan X cards, to 4U boxes with up to 8x Titan X cards, and monsters
such as 12U multi-node “cluster” which includes total of 10×6-core Xeons
and 16x GTX 980, the whole thing going at humble $40K total, by
ExxactCorp. In any case, before investing a lot to buy dozens of specific
servers, make sure to load-test them, and load-test a lot to make sure that
they won’t overheat under many hours of heavy load and datacenter-
class thermal conditions (where you have 42 such 1U servers with one
lying right on top of each other, ouch!, see Chapter [[TODO]] for further
details).

To summarize: if your game cannot survive without server-
side GPGPU simulations – it can be done, but be prepared to
pay a lot more than you would expect based on desktop GPU prices,
and keep in mind that deploying CUDA/OpenCL/Phi on
servers will take much more effort than simply making your
software run on your local T itan X . Also – make sure to start
testing on real server rack-based hardware as early as
possible, you do need to know ASAP whether hardware of your
choice has any pitfalls.

 this potentially includes even assembling them yourself, but I
generally don’t recommend it
 I didn’t use any of these, so I cannot really vouch for them, but

at least you, IMHO, have reasonably good chances if you try;
also make sure to double-check if your colocation provider is
ready to host these not-so-mainstream boxes
 officially Supermicro doesn’t support Titans, but their 1U

boxes can be bought from 3rd-party VARs such as Thinkmate
with 4x Titan X for a total of $10K, T itans included; whether it
really works with Titans in datacenter environment 24×7 under
your type of load – you’ll need to see yourself

Simplifications. Of course, if your server doesn’t need to support UDP, you won’t
need corresponding threads and FSMs. However, keep in mind that usually your
connection to DB Server SHOULD be TCP (see “On Inter-Server Communications”
section below), so if your client-to-server communication is UDP, you’ll usually
need to implement both. On the other hand, our QnFSM architecture provides a
very good separation between protocols and logic, so usually you can safely start
with a TCP-only server, and this will almost-certainly be enough to test your game
intra-LAN (where packet losses and latencies are negligible), and implement UDP

7

8

“
6

7

8

support later (without the need to change your FSMs). Appropriate APIs which
allow this kind of clean separation, will be discussed in Chapter [[TODO]].

On Inter-Server Communications

One of the questions you will face when designing your server-side, will be about
the protocol used for inter-server communications. My take on it is simple:

even if you’re using UDP for client-to-server
communications, seriously consider using TCP for

server-to-server communications

Detailed discussion on TCP (lack of) interactivity is due in Chapter [[TODO]], but
for now, let’s just say that poor interactivity of TCP (when you have Nagle algorithm
disabled) becomes observable only when you have packet loss, and if you have non-
zero packet loss within your server LAN – you need to fire your admins.

On the positive side, TCP has two significant benefits. First, if you can get
acceptable latencies without disabling Nagle algorithm, TCP is likely to produce
much less hardware interrupts (and overall context switches) on the receiving
server’s side, which in turn is likely to reduce overall load of your Game Servers and
even more importantly – DB Server. Second, TCP is usually much easier to deal with
than UDP (on the other hand, this may be offset if you already have implemented
UDP support to handle client-to-server communications).

 to those asking “if it is zero packet loss, why would we need to use TCP at all?” –
I’ll note that when I’m speaking about “zero packet loss”, I can’t rule out two packet
lost in a day which can happen even if your system is really really well-built. And
while a-few-dozen-microsecond additional delay twice a day won’t be noticeable,
crashing twice a day is not too good

QnFSM on Server Side: Flexibility and Deployment-Time/Run-Time
Options.

When it comes to the available deployment options, QnFSM is an extremely flexible
architecture. Let’s discuss your deployment and run-time options provided by
QnFSM in more detail.

Threads and Processes

9

9

FSMs can be
deployed as
multiple-FSMs-
per-thread, one-
FSM-per-
thread-
multiple-
threads-per-
process, or one-
FSM-per-
process
conf igurations
(all this w ithout
changing your
FSM code at all)

First of all, you can have your FSMs deployed in different
configurations depending on your needs. In particular, FSMs
can be deployed as multiple-FSMs-per-thread, one-FSM-per-
thread-multiple-threads-per-process, or one-FSM-per-
process configurations (all this without changing your FSM
code at all).

In one real-world system with hundreds of thousands
simultaneous players but lightweight processing on the
server-side and rather high acceptable latencies, they’ve
decided to have some of game worlds (those for novice
players) deployed as multiple-FSMs-per-thread, another
bunch of game worlds (intended for mature players) –
deployed as a single-FSM-per-thread (improving latencies a
bit, and providing an option to raise thread priority for these
FSMs), and those game worlds for pro players – as a single-
FSM-per-process (additionally improving memory isolation in
case of problems, and practically-unobservedly improving
memory locality and therefore performance); all these FSMs
were using absolutely very same FSM code, but it was
compiled into different executables to provide slightly
different performance properties.

Moreover, in really extreme cases (like “we’re running a
Tournament of the Year with live players”), you may even pin a single-FSM-per-
thread to a single core (preferably the same where interrupts from you NIC come
on this server) and to pin other processes to other cores, keeping your latencies to
the absolute minimum.

 Restrictions apply, batteries not included. If you have blocking calls from within
your FSM, which is common for DB-style FSMs and some of gateway-style FSMs,
you shouldn’t deploy multiple-FSMs-per-thread
 yes, this will further reduce latencies in addition to any benefits obtained by

simple increase of thread priority, because of per-core caches being intact

Communication as an Implementation Detail

With QnFSM, communication becomes an implementation detail. For example, you
can have the same Game Logic FSM to serve both TCP and UDP. Not only it can
come handy for testing purposes, but also may enable some of your players (those
who cannot access your servers via UDP due to firewalls/weird routers etc.) to
play over TCP, while the rest are playing over UDP. Whether you want this
capability (and whether you want to match TCP players only with TCP players to

“
10

11

10

11

Y et another
tw o options
provided by

QnFSM, enable
server-side

sof tw are
upgrades

w ithout
stopping the

server.

make sure nobody has an unfair advantage) is up to you, but at least QnFSM does
provide you with such an option at a very limited cost.

Mov ing Game W orlds A round (at the cost of client reconnect)

Yet another flexibility option which QnFSM can provide (though with some
additional headache, and a bit of additional latencies), is to allow moving your
game worlds (or more generally – FSMs) from one server to another one. To do it,
you just need to serialize your FSM on server A (see Chapter V for details on
serialization), to transfer serialized state to a server’s B Game Logic Factory, and
to deserialize it there. Bingo! Your FSM runs on server B right from the same
moment where it stopped running on server A. In practice, however, moving FSMs
around is not that easy, as you’ll also need to notify your clients about changed
address where this moved FSM can be reached, but despite being an additional
chunk of work, this is also perfectly doable if you really want it.

Online Upgrades

Yet another two options provided by QnFSM, enable server-
side software upgrades while your system is running, without
stopping the server.

The first of these options is just to start creating new game
worlds using new Game Logic FSMs (while existing FSMs are
still running with the old code). This works as long as changes
within FSMs are minor enough so that all external inter-FSM
interfaces are 100% backward compatible, and the life time of
each FSM is naturally limited (so that at some point you’re
able to say that migration from the old code is complete).

The second of these online-upgrade options allows to
upgrade FSMs while the game world is still running (via
serialization – replacing the code – deserialization). This
second option, however, is much more demanding than the
first one, and migration problems may be difficult to identify.
Therefore, severe automated testing using “replay” technique

(also provided by QnFSM, see Chapter V for details) is strongly advised. Such
testing should use big chunks of the real-world data, and should simulate online
upgrades at the random moments of the replay.

On Importance of Flexibility

Quite often we don’t realize how important flexibility is. Actually, we rarely realize
how important it is until we run into the wall because of lack of flexibility.
Deterministic FSMs provide a lot of flexibility (as well as other goodies such as
post-mortem) at a relatively low development cost. That’s one of the reasons why I

“

While in
theory, it is
possible to use
your usual
ODBC-style
blocking calls to
your database
right f rom your
Game Server
FSMs, do
yourself a
f avor and skip
this option.

am positively in love with them.

DB Server

DB Server handles access to a database. This can be implemented using several
very different approaches.

The first and the most obvious model is also the worst one.
While in theory, it is possible to use your usual ODBC-style
blocking calls to your database right from your Game Server
FSMs, do yourself a favor and skip this option. It will have
several significant drawbacks: from making your Game Server
FSMs too tightly coupled to your DB to having blocking calls
with undefined response time right in the middle of your FSM
simulation (ouch!). In short – I don’t know any game where this
approach is appropriate.

DB A PI and DB FSM(s)

A much better alternative (which I’m arguing for) is to have at
least one FSM running on your DB server, to have your very
own message-based DB API (expressed in terms of messages
or non-blocking RPC calls) to communicate with it, and to keep
all DB work where it belongs – on DB Server, within
appropriate DB FSM(s). An additional benefit of such a
separation is that you shouldn’t be a DB guru to write your
game logic, but you can easily have a DB guru (who’s not a
game logic guru) writing your DB FSM(s).

DB API exposed by DB Server’s FSM(s), SHOULD NOT be plain SQL (which would
violate all the decoupling we’re after). Instead, your DB API SHOULD be specific to
your game, and (once again) should be expressed in game terms such as “take PC Z
and place it (with all it’s gear) into game world #NN”. All the logic to implement
this request (including pre-checking that PC doesn’t belong to any other game
world, modifying PC’s row in table of PCs to reflect the number of the world where
she currently resides, and reading all PC attributes and gear to pass it back) should
be done by your DB FSM(s).

In addition, all the requests in DB API MUST be atomic; no things such as “open
cursor and return it back, so I can iterate on it later” are ever allowed in your DB
API (neither you will really need such things, this stands in spite of whatever-your-
DB-guru-may-tell-you).

As soon as you have this nice DB API tailored for your needs, you can proceed with
writing your Game Server FSMs, without worrying about exact implementation of

“

Application-
level cache has
been observed

to provide 10x+
perf ormance

improvement
over DB cache
even if all the

necessary
perf ormance-

related
optimizations

are made on the
DB side

your DB FSM(s).

Meanw hile, at the King’s Castle…

As soon as we have this really nice separation between Game Server’s FSMs and DB
FSM(s) via your very own message-based DB API, in a sense, the implementation of
DB FSM will become an implementation detail. Still, let’s discuss how this small but
important detail can be implemented. Here I know of two major approaches.

Single-connection approach. This approach is very simple. You have run just one
FSM on your DB Server and process everything within one single DB connection:

Here, there is a single DB FSM which has single DB connection
(such as an ODBC connection, but there are lots of similar
interfaces out there), which performs all the operations using
blocking calls. A very important thing in this architecture is
application-level cache, which allows to speed things up very
considerably. In fact, this application-level cache has been
observed to provide 10x+ performance improvement over DB
cache even if all the necessary performance-related
optimizations (such as prepared statements or even stored
procedures) are made on the DB side. Just think about it –
what is faster: simple hash-based in-memory search within
your DB FSM (where you already have all the data, so we’re
speaking about 100 CPU clocks or so even if the data is out of
L3 cache), or marshalling -> going-to-DB-side-over-IPC ->
unmarshaling -> finding-execution-plan-by-prepared-
statement-handle -> executing-execution-plan -> marshaling
results -> going-back-to-DB-FSM-side-over-RPC ->
unmarshaling results. In the latter case, we’re speaking at
least a few dozens of microseconds, or over 1e4 CPU clocks,
over two orders of magnitude difference. And with single
connection to DB which is able to write data, keeping cache
coherency is trivial. The main thing which gets cached for
games is usually ubiquitous USERS (or PLAYERS) table, as well
as some of small game-specific near-constant tables.

“

12

/wp-content/uploads/Fig-VIv2-61.png

There is no
need to w orry
about
transaction
isolation levels,
locks and
deadlocks

Despite all the benefits provided by caching, this schema clearly sounds as an
heresy from any-DB-gal-out-there point of view. On the other hand, in practice it
works surprisingly well (that is, as soon as you manage to convince your DB gal that
you know what you’re doing). I’ve seen such single-connection architecture
handling 10M+ DB transactions per day for a real-world game, and it were real
transactions, with all the necessary changes, transactions, audit tables and so on.

Actually, at least at first stages of your
development, I’m advocating to go with this single-

connection approach.

It is very nice from many different points of view.

First, it is damn simple.

Second, there is no need to worry about transaction
isolation levels, locks and deadlocks

Third, it can be written as a real deterministic FSM (with
all the associated goodies); moreover, this determinism
stands (a) both if you “intercept calls” to DB for DB FSM
itself, or (b) if we consider DB itself as a part of the FSM
state, in the latter case no call interception is required
for determinism.

Fourth, the performance is very good. There are no locks
whatsoever, the light is always green, so everything goes
unbelievably smoothly. Add here application-level
caching, and we have a winner! The single-connection
system I’ve mentioned above, has had an average
transaction processing time in below-1ms range (once again, with real-world
transactions, commit after every transaction, etc.).

The only drawback of this schema (and the one which will make DB people
extremely skeptical about it, to put it very mildly) is an apparent lack of scalability.
However, there are ways to modify this single-connection approach to provide
virtually unlimited scalability The ways to achieve DB scalability for this single-
connection model will be discussed in Vol. 2.

One thing to keep in mind for this single-connection approach, is that it (at least if
we’re using blocking calls to DB, which is usually the case) is very sensitive to
latencies between DB FSM and DB; we’ll speak about it in more detail in Chapter
[[TODO]], but for now let’s just say that to get into any serious performance (that is,
comparable to numbers above), you’ll need to use RAID card with BBWC in write-

13

“

14

15

The upside of

back mode , or something like NVMe, for the disk which stores DB log files (other
disks don’t really matter much). If your DB server is a cloud one, you’ll need to look
for the one which has low latency disk access (such things are available from quite a
few cloud providers).

 with stored procedures the things become a bit better for DB side, but the
performance difference is still considerable, not to mention vendor lock-in which
is pretty much inevitable when using stored procedures

 with a full cache of PLAYERS table
 while in practice I’ve never went above around 100M DB transactions/day with

this “single-connection-made-scalable” approach, I’m pretty sure that you can get
to 1B pretty easily, and then it MAY become tough, as the number is too different
from what-I’ve-seen so some unknown-as-of-now problems can start to develop.
On the other hand, I daresay reaching these numbers is even more challenging with
traditional multiple-connection approach

 don’t worry, it is a perfectly safe mode for this kind of RAID, even for financial
applications

Multiple-Connections approach. This approach is much more along the lines of
traditional DB development, and is shown on Fig VI.7:

In short: we have one single DB-Proxy FSM (with the same DB API as discussed
above), which does nothing but dispatches requests to DB-Worker FSMs; each of
these DB-Worker FSMs will keep its own DB connection and will issue DB requests
over this connection. Number of these DB-Worker FSMs should be comparable to
the number of the cores on your DB server (usually 2*number-of-cores is not bad
starting number), which effectively makes this schema a kind of transaction
monitor.

The upside of this schema is that it is inherently somewhat-
scalable, but that’s about it. Downsides, however, are
numerous. The most concerning one is the cost of code
maintenance in face of all those changes of logic, which are
run in multiple connections. This inevitably leads us to a well-
known but way-too-often-ignored discussion about
transaction isolation levels, locks, and deadlocks at DB level.
And if you don’t know what it is – believe me, you Really don’t

15

12

13

14

15

16

“

/wp-content/uploads/Fig-VIv2-7.png

this schema is
that it is

inherently
somew hat-

scalable, but
that's about it.

want to know about them. And updating DB-handling code
when you have lots of concurrent access (with isolation levels
above UR), is possible, but is extremely tedious. Restrictions
such as “to avoid deadlocks, we must always issue all our
SELECT FOR UPDATEs in the same order – the one written in
blood on the wall of DB department” can be quite a headache
to put it mildly.

Oh, and don’t try using application-side caching for multiple-connections (i.e. even
DB-Proxy SHOULD NOT be allowed to cache). While this is theoretically possible,
re-ordering of replies on the way from DB to DB-Proxy make the whole thing way
too complicated to be practical. While I’ve done such a thing myself once, and it
worked without any problems (after several months of heavy replay-based testing),
it was the most convoluted thing I’ve ever written, and I clearly don’t want to
repeat this experience.

But IMNSHO the worst thing about using multiple DB connections, is that while
each of those DB FSMs can be made deterministic (via “call interception”), the
whole DB Server cannot possibly be made deterministic (for multiple connections),
period. It means that it may work perfectly under test, but fail in production while
processing exactly the same sequence of requests.

Worse than that, there is a strong tendency for
improper-transaction-isolation bugs to manifest

themselves only under heavy load.

So, you can easily live with such a bug (for example, using SELECT instead of
SELECT FOR UPDATE) quietly sitting in, but not manifesting itself until your Big
Day comes, and then it crashes your site. Believe me, you really don’t find yourself
in such a situation, it can be really (and I mean Really) unpleasant.

In a sense, working with transaction isolation levels is akin to working with threads:
about the same problems with lack of determinism, bugs which appear only in
production and cannot be reproduced in test environment, and so on. On the other
hand, there are DB guys&gals out there who’re saying that they can design a real-
world multi-connection system which works under the load of 100M+ write
transactions per day and never deadlocks, and I don’t doubt that they can indeed
do it. The thing which I’m not so sure about, is whether they really can maintain
such quality of their system in face of new-code-required-twice-a-week, and I’m
even less sure that you’ll have such a person on your game team.

In addition, the scalability under this approach, while apparent, is never perfect
(and no, those TPC-C linear-scalability numbers don’t prove that linear scalability
is achievable for real-world transactions). In contrast, single-connection-made-

“

17

scalable approach which we’ll discuss in Vol. 2, can be extended to achieve perfect
linear scalability (at least in theory).

 in particular, it means that we can rewrite our DB FSM from Single-connection
to Multiple-connections without changing anything else in the system

 And it is not a generic “all the problems are waiting for the worst moment to
happen” observation (which is actually purely perception), but a real deal. When
probability of the problem depends on site load in a non-linear manner (and this is
the case for transaction isolation bugs), chances of it happening for the first time
exactly during your heavily advertised Event of the Year are huge.

DB Serv er: Bottom Line.

Unless you happen to have on your team a DB gal
with real-world experience of dealing with locks,

deadlocks, and transaction isolation levels for your
specific DB under at least million-per-day DB write-

transaction load – go for single-connection approach

If you do happen to have such a DB guru who vehemently opposes going single-
connection – you can try multi-connection, at least if she’s intimately familiar with
SELECT-FOR-UPDATE and practical ways of avoiding deadlocks (and no, using
RDBMS’s built-in mechanism to detect the deadlock 10 seconds after it happens, is
usually not good enough).

And in any case, stay away from any things which include SQL in your Game Server
FSMs.

Failure Modes & Effects

When speaking about deployment, one all-important question
which you’d better have an answer to, is the following: “What
will happen if some piece of hardware fails badly?” Of course,
within the scope of this book we won’t be able to do a formal
full-scale FMEA for an essentially unknown architecture, but at
least we’ll be able to give some hints in this regard.

Communication Failures

So, what can possibly go wrong within our deployment
architecture? First of all, there are (not shown, but existing)
switches (or even firewalls) residing between our servers; while
these can be made redundant, their failures (or transient

16

17

FMEA
Failure mode
and ef f ects
analysis (FMEA)
w as one of the
f irst systematic
techniques f or
f ailure
analysis.

— Wikipedia —

https://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis

Note that the
stuf f marked as

'High
Availability',

doesn't help
w ith losing in-
memory state:

w hat w e need to
avoid losing in-

memory state,
is 'Fault-

Tolerant'
techniques.

software failures of the network stack on hosts) may easily cause occasional packet
loss, and also (though extremely infrequently) may cause TCP disconnects on inter-
server connections. Therefore, to deal with it, our Server-to-Server protocols need
to account for potential channel loss and allow for guaranteed recovery after the
channel is restored. Let’s write this down as a requirement and remember until
Chapter [[TODO]], where we will describe our protocols.

Serv er Failures

In addition, of course, any of the servers can go badly wrong.
There are tons of solutions out there claiming to address this
kind of failures, but you should keep in mind that usually, the
stuff marked as “High Availability”, doesn’t help with losing in-
memory state: what you need if you want to avoid losing in-
memory state, is “Fault-Tolerant” techniques (see “Server
Fault Tolerance: King is Dead, Long Live the King!” section
below).

Fortunately, though, for a reasonably good hardware (the one
which has a reasonably good hardware monitoring, including
fans, and at least having ECC and RAID, see Chapter [[TODO]]
for more discussion on it), such fatal server failures are
extremely rare. From my experience (and more or less
consistently with manufacturer estimates), failure rate for
reasonably good server boxes (such as those from one of Big
Three major server vendors) is somewhere between “once-
per-5-years” and “once-per-10-years”, so if you’d have only
one such server (and unless you’re running a stock exchange),
you’d be pretty much able to ignore this problem completely.
However, if you have 100 servers – the failure rate goes up to
“once or twice a month”, which is unacceptable if such a

failure leads to the whole site going down.

Therefore, at the very least you should plan to make sure that single failure of the
single server doesn’t bring your whole site down. BTW, most of the time it will be a
Game World Server going down, as you’re likely to have much more of these than
the other servers, so at first stages you may concentrate on containment of Game
World server failures. Also we can note that, counter-intuitively, failures of DB
Server are not that important to deal with; not because they have less impact (they
do have much more impact), but because they’re much less likely to happen that a
failure of one-of-Game-World-servers.

 that is, beyond keeping a DB backup with DB logs being continuously moved to
another location, see Chapter [[TODO]] for further discussion

“

18

18

If Game
World server
f ails, it can be
restarted f rom
scratch, losing
all the changes
since last save-
to-DB, but at
least preserving
previous
results.

If you disrupt
the game-event-

currently-in-
progress f or

more than 0.5-2

Containment of Game W orld serv er failures

The very first (and very obvious) technique to minimize the
impact of your Game World server failure on the whole site, is
to make sure that your Game World reports relevant changes
(without sending the whole state) to DB Server as soon as they
occur. So that if Game World server fails, it can be restarted
from scratch, losing all the changes since last save-to-DB, but
at least preserving previous results. These saves-to-DB are the
best to be done at some naturally arising points within your
game flow.

For example, if your game is essentially a Starcraft- or
Titanfall-like sequence of matches, then the end of each match
represents a very natural save-to-DB point. In other words, if
Game World server fails within the match – all the match data
will be lost, but all the player standings will be naturally
restored as of beginning of the match, which isn’t too bad. In
another example, for a casino-like game the end of each “hand”
also represents the natural save-to-DB point.

If your gameplay is an MMORPG with continuous gameplay,
then you need to find a way to save-to-DB all the major changes of the players’ stats
(such as “level has been gained”, or “artifact has changed hands”). Then, if the Game
Server crashes, you may lose the current positions of PCs within the world and a
few hundred XP per player, but players will still keep all their important stats and
achievements more or less preserved.

Two words of caution with regards to save-to-DB points. First,

For synchronous games, don’t try to keep the whole
state of your Game Worlds in DB

Except for some rather narrow special cases (such as stock
exchanges and some of slow-paced and/or “asynchronous”
games as defined in Chapter I), saving all the state of your
game world into DB won’t work due to
performance/scalability reasons (see discussion in “Taming
DB Load: Write-Back Caches and In-Memory States” section
above). Also keep in mind that even if you would be able to
perfectly preserve the current state of the game-event-
currently-in-progress (with game event being “match”,
“hand”, or an “RPG fight”) without killing your DB, there is
another very big practical problem of psychological rather
than technical nature. Namely, if you disrupt the game-event-

“

“

minutes, f or
almost-any

synchronous
multi-player

game you w on't
be able to get the

same players
back, and w ill

need to rollback
the game event

anyw ay.

Y ou should
have a special

currently-in-progress for more than 0.5-2 minutes, for
almost-any synchronous multi-player game you won’t be able
to get the same players back, and will need to rollback the
game event anyway.

For example, if you are running a bingo game with a hundred
of players, and you disrupt it for 10 minutes for technical
reasons, you won’t be able to continue it in a manner which is
fair to all the players, at the very least because you won’t be
able to get all that 100 players back into playing at the same
time. The problem is all about numbers: for two-player game
it might work, for 10+ – succeeding in getting all the players
back at the same time is extremely unlikely (that is, unless the
event is about a Big Cash Prize). I’ve personally seen a large

commercial game that handled the crashes in the following way: to restore after the
crash, first, it rolled forward its DB at the DB level to get perfectly correct current
state, and then it rolled all the current game-events back at application level,
exactly because continuing these events wasn’t a viable option due to the lack of
players.

Trying to keep all the state in DB is a common pitfall which arises when the guys-
coming-from-single-player-casino-game-development are trying to implement
something multiplayer. Once again: don’t do it. While for a single-player casino
game having state stored in DB is a big fat Business Requirement (and is easily
doable too), for multi-player games it is neither a requirement, nor is feasible (at
least because of the can’t-get-the-same-players-together problem noted above).
Think of Game World server failure as of direct analogy of the fire-in-brick-and-
mortar-casino in the middle of the hand: the very best you can possibly do in this
case is to abort the hand, return all the chips to their respective owners (as of the
beginning of the hand), and to run out of the casino, just to come back later when
the fire is extinguished, so you can start an all-new game with all-new players.

The second pitfall on this way is related to DB consistency issues and DB API.

Y our DB API MUST enforce logical consistency

For example, if (as a part of your very own DB API) you have
two DB requests, one of which says “Give PC X artifact Y”, and
another one “Take artifact Y from PC X”, and are trying to
report an occurrence of “PC X took over artifact Y from PC XX”
as two separate DB requests (one “Take” and one “Give”),
you’re risking that in case of Game World server failure, one of
these two requests will go through, and the other one won’t, so
artifact will get lost (or will be duplicated) as a result. Instead
of using these two requests to simulate “taking over”

“

DB request “PC
X took over
artif act Y f rom
PC XX” (and it
should be
implemented as
a single DB
transaction
w ithin DB FSM)

occurrence, you should have a special DB request “PC X took
over artifact Y from PC XX” (and it should be implemented as a
single DB transaction within DB FSM); this way at least the
consistency of the system will be preserved, so whatever
happens – there is still exactly one artifact. The very same
pattern MUST be followed for passing around anything of
value, from casino chips to artifacts, with any other goodies in
between.

Serv er Fault Tolerance: King is Dead, Long Liv e the King!

If you want to have your servers to be really fault-tolerant,
there are some ways to have your cake and eat it too.

However, keep in mind, that all fall-tolerant
solutions are complicated, costly, and in the games

realm I generally consider them as an over-
engineering (even by my standards).

Fault-Tolerant Serv ers: Damn Expensiv e

Historically, fault-tolerant systems were provided by damn-expensive hardware
such as [Stratus] (I mean their hardware solutions such as ftServer; see discussion
on hardware-vs-software redundancy in Chapter [[TODO]]) and
[HPIntegrityNonStop] which have everything doubled (and CPUs often
quadrupled(!)) to avoid all single points of failure, and these tend do work very
well. But they’re usually way out of game developer’s reach for financial reasons, so
unless your game is a stock exchange – you can pretty much forget about them.

Fault-Tolerant V Ms

Fault-Tolerant VMs (such as VMWare FT feature or Xen Remus) are quite new kids
on the block (for example, VMWare FT got beyond single vCPU only in 2015), but
they’re already working. However, there are some significant caveats. Take
everything I’m saying about fault-tolerant VMs with a really good pinch of salt, as all the
technologies are new and evolving, and information is scarce; also I admit that I didn’t have a
chance to try these things myself .

When you’re using a fault-tolerant VM, the Big Picture looks
like this: you have two commodity servers (usually right next to
each other), connect them via 10G Ethernet, run VM on one of
them (the “primary” one), and when your “primary” server fails,
your VM magically reappears on the “secondary” box. From
what I can see, modern Fault-Tolerant VMs are using one of
two technologies: “virtual lockstep” and “fast checkpoints”.

Modern
Fault-Tolerant
VMs are using
one of tw o
technologies:
'virtual
lockstep' and
'f ast
checkpoints'.
Unf ortunately,
each of them
has its ow n
limitations.

Unfortunately, each of them has its own limitations.

V ir tual Lockstep: Not Available Anymor e?

The concept of virtual lockstep is very similar to our QnFSM
(with the whole VM treated as FSM). Virtual lockstep takes one
single-core VM, intercepts all the inputs, passes these inputs
to the secondary server, and runs a copy VM there. As any other
fault-tolerant technology, virtual lockstep causes additional
latencies, but it seems to be able to restrict its appetite for
additional latency to a sub-ms range, which is acceptable for
most of the games out there. Virtual lockstep is the method of
fault-tolerance vSphere prior to vSphere v6 was using. The
downside of virtual lockstep is that it (at least as implemented
by vSphere) wasn’t able to support more that one core. For our
QnFSMs, this single-core restriction wouldn’t be too much of a
problem, as they’re single-threaded anyway (though balancing
FSMs between VMs would be a headache), but there are lots of
applications out there which are still heavily-multithreaded, so it was considered
an unacceptable restriction. As a result, vSphere, starting from vSphere 6, has
changed their fault-tolerant implementation from virtual lockstep to checkpoint-
based implementation. As of now, I don’t know of any supported implementations of
Virtual Lockstep .

Checkpoint-Based Fault T oler ance: Latencies

To get around the single-core limitation, a different technique, known as
“checkpoints”, is used by both Xen Remus and vSphere 6+. The idea behind
checkpoints is to make a kind of incremental snapshots (“checkpoints”) of the full
state of the system and log it to a safe location (“secondary server”). As long as you
don’t let anything out of your system before the coming-later “checkpoint” is
committed to a secondary server, all the calculations you’re making meanwhile,
become inherently unobservable from the outside, so in case of “primary” server
failure, it is not possible to say whether it didn’t receive the incoming data at all. It
means that for the world outside of your system, your system (except for the
additional latency) becomes almost-indistinguishable from a real fault-tolerant
server such as Stratus (see above). In theory, everything looks perfect, but with VM
checkpoints we seem to hit the wall with checkpoint frequency, which defines the
minimum possible latency. On systems such as VMWare FT, and Xen Remus,
checkpoint intervals are measured in dozens of milliseconds. If your game is ok
with such delays – you’re fine, but otherwise – you’re out of luck . For more
details on checkpoint-based VMs, see [Remus].

Saving for latencies (and the need to have 10G connections between servers, which
is not that big deal), checkpoint-based fault tolerance has several significant
advantages over virtual lockstep; these include such important things as support

“

19

for multiple CPU cores, and N+1 redundancy.

 strictly speaking, the difference can be observed as some network packets may
be lost, but as packet loss is a normal occurrence, any reasonable protocol should
deal with transient packet loss anyway without any observable impact

Complete Recover y f r om Game W or ld ser ver f ailur es: DIY Fault-T oler ance in
QnFSM W or ld

If you’re using FSMs (as you should anyway), you can also implement your own
fault-tolerance. I should confess that I didn’t try this approach myself, so despite
looking very straightforward, there can be practical pitfalls which I don’t see yet.
Other than that, it should be as fault-tolerant as any other solution mentioned
above, and it should provide good latencies too (well in sub-ms range).

As any other fault-tolerant solution, for games IMHO it is an over-engineering, but
if I’d feel strongly about the failures causing per-game-event rollbacks, this is the
one I’d try first. It is latency friendly, it allows for N+2 redundancy (saving you from
doubling the number of your servers in case of 1+1 redundancy schemas), and it
plays really well alongside our FSM-related stuff.

The idea here is to have separate Logging Servers logging all the events to all the
FSMs residing on your Game World servers; then, you will essentially have enough
information on your Logging Servers to recover from Game World server failure.
More specifically, you can do the following:

have an additional Logging Server(s) “in front of Game Servers”; these
Logging Server(s) perform two functions:

log all the messages incoming to all Game Server FSMs

these include: messages coming from clients, messages coming
from other Game Servers, and messages coming from DB Server

moreover, even communications between different FSMs residing
on the same Game Server, need to go via Logging Server and need
to be logged

timestamp all the incoming messages

all your Game Server FSMs need to be strictly-deterministic

in particular, Game Server FSMs won’t use their own clocks, but will use

19

if it is Game
Server w hich
f ails, w e can re-
provision it,
and then roll-
f orw ard each
and every FSM
w hich w as
running on it

timestamps provided by Logging Servers instead

In addition, from time to time each of Game Server FSMs need to serialize its
whole state, and report it to Logging Server

then, we need to consider two scenarios: Logging Server failure and Game
Server failure (we’ll assume that they never fail simultaneously, and such an
event is indeed extremely unlikely unless it is a fire-in-datacenter or
something)

if it is Logging Server which fails, we can just replace it with another (re-
provisioned) one; there is no game-critical data there

if it is Game Server which fails, we can re-provision
it, and then roll-forward each and every FSM which
was running on it, using last-reported-state and
logs-saved-since-last-reported-state saved on the
Logging Server. Due to the deterministic nature of
all the FSMs, the restored state will be exactly the
same as it was a few seconds ago

at this point, all the clients and servers which
were connected to the FSM, will experience a
disconnect

on disconnect, the clients should automatically
reconnect anyway (this needs to account for IP
change, what is a medium-sized headache, but
is doable; in [[TODO]] section we’ll discuss
Front-End servers which will isolate clients
from disconnects completely)

issues with server-to-server messages should already be solved as
described in “Communication Failures” subsection above

In a sense, this “Complete Recovery” thing is conceptually similar to
EventProcessorWithCircularLog from Chapter V (but with logging residing on
different server, and with auto-rollforward in case of server failure), or to a
traditional DB restore-and-log-rollforward.

Note that only hardware problems (and software bugs outside of your FSMs, such
as OS bugs) can be addressed with this method; bugs within your FSM will be
replayed and will lead to exactly the same failure .

“20

Last but not least, I need to re-iterate that I would object any fault-tolerant
schema for most of the games out there on the basis of over-engineering, though I
admit that there might be good reasons to try achieving it, especially if it is not too
expensive/complicated.

 or, in case of almost-strictly-deterministic FSMs such as those CUDA-based
ones, it will be almost-exactly-the-same

[[T ODO!]] DIY V Ir tual-Lockstep

Classical Game Deployment Architecture: Summary

To summarize the discussion above about Classical Game Deployment
Architecture:

It works

It can and should be implemented using QnFSM model with deterministic
FSMs, see discussion above for details

Your communication with DB (DB API) SHOULD use game-specific requests,
and SHOULD NOT use any SQL; all the SQL should be hidden behind your DB
FSM(s)

Your first DB Server SHOULD use single-connection approach, unless you
happen to have a DB guy who has real-world experience with multi-
connection systems under at least millions-per-day write(!) transaction loads

Even in the latter case, you SHOULD try to convince him, but if he resists,
it is ok to leave him alone, as long as external DB API is still exactly the
same (message-based and expressed in terms of whatever-your-game-
needs). This will provide assurance that in the extreme case, you’ll be
able to rewrite your DB Server later.

[[To Be Continued…
This concludes beta Chapter VI(a) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VI(b), “Modular
Architecture: Server-Side. Throwing in Front-End Servers.]]

20

[–] References
[Lightstreamer] http://www.lightstreamer.com/
[Redis.CAS] http://redis.io/topics/transactions#cas
[Zubek2016] Robert Zubek, “Private communications with”
[Zubek2010] Robert Zubek, “Engineering Scalable Social Games”, GDC2010

http://www.lightstreamer.com/
http://redis.io/topics/transactions#cas
http://gdcvault.com/play/1012230/Engineering-Scalable-Social

« Chapter V (d). Modular A rchitecture: Client-Side. Client A rch…

 Chapter V I(b). Serv er-Side A rchitecture. Front-End Serv ers a… »

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: game, multi-player, Multithreading, server

Copyright © 2014-2016 ITHare.com

[Stratus] “Stratus Technologies”, Wikipedia
[HPIntegrityNonStop] “HP Integrity NonStop”, Wikipedia
[Remus] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew Warfield, “Remus: High Availability via Asynchronous
Virtual Machine Replication”

https://en.wikipedia.org/wiki/Stratus_Technologies
https://en.wikipedia.org/wiki/NonStop
http://usenix.org/legacy/event/nsdi08/tech/full_papers/cully/cully_html/index.html
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-vd-modular-architecture-client-side-client-architecture-diagram-threads-and-game-loop/
http://ithare.com/chapter-vib-server-side-architecture-front-end-servers-and-client-side-random-load-balancing/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/multithreading/
http://ithare.com/tag/server/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Chapter VI(b). Server-Side Architecture. Front-End
Servers and Client-Side Random Load Balancing
posted December 28, 2015 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VI(b) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

Enter Front-End Servers

[Enter Juliet] Hamlet: Thou art as sweet as the sum of the sum of Romeo and his horse and
his black cat! Speak thy mind! [Exit Juliet]

— a sample program in Shakespeare Programming Language —

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
https://en.wikipedia.org/wiki/Shakespeare_Programming_Language

Our Classical Deployment Architecture (especially if you do use FSMs) is not bad,
and it will work, but there is still quite a bit of room for improvement for most of
the games out there. More specifically, we can add another row of servers in front
of the Game Servers, as shown on Fig VI.8:

/wp-content/uploads/BB_part071_BookChapter006b_v2.png

In addition,
usually these
Front-End
servers store a
copy of

As you see, compared to the Classical Deployment Architecture (see Fig VI.4 above)
we’ve just added a row of Front-End Servers in front of our Game Servers. These
additional Front-End Servers are intended to deal with all the communication stuff
when it comes from the clients. All those pesky “whether the player is connected or
not” questions (including keep-alive handing where applicable, see Chapter
[[TODO]] for details on keep-alives), all that client-to-server encryption (if
applicable), with all those keys etc., all those rather more-or-less strange reliable-
UDP protocols (again, if applicable), and of course, routing messages between the
clients and different Game Servers – all the communication with clients is handled
here.

In addition, usually these Front-End servers store a copy of
relevant Game Worlds when it is necessary, and are acting as
“concentrators” for the game world updates; i.e. even if a
Game Server has 100’000 people watching some game (like
final of some tournament or something), it will need to send
updates only to a few Front-End servers, and Front-End
servers will take care of data distribution to all the 100’000
people. This ability comes really handy when you have some
kind of Big Final game, with thousands of people willing to
watch it (and you don’t really need to make it a video
broadcast, which is not-so-convenient for existing players and
damn expensive, but you can do it right within your client).

“

/wp-content/uploads/Fig-VIv2-8.png

you can use

relevant Game
Worlds w hen it
is necessary,
and are acting
as
“concentrators”
f or the game
w orld updates

More on it below, and implementation of this “concentrator”
paradigm is discussed in more detail in Chapter [[TODO]].

We’ll discuss the implementation of our Front-End servers a
bit later, but for now let’s note that most importantly,

Front-End Servers MUST be easily
replaceable without significant

inconveniences to players

That is, if any of Front-End Servers fails for whatever reason – the most a player
should see, is a disconnect for a few seconds. While still disruptive, it is very much
better than scenarios such as “the whole game world went down and we need to
restore it from backup”. In other words, whenever Front-End server crashes for
whatever reason, all the clients who were connected there, need to detect the crash
(or even worse, “black hole”) and automagically reconnect to some other Front-
End server; in this case all the player can see, is a momentarily disconnect (which is
also a nuisance, but is much better than to see your game hang).

Front-End Servers: Benefits

Whenever we’re adding another layer of complexity, there is always a question “Do
we really need it?” From what I’ve seen, having easily replaceable Front-End
Servers in front of your Game Servers is very valuable and provides quite a few
benefits. More specifically:

Front-End Servers take some load off your Game Servers, while being easily
replaceable

it means that you can have less Game Servers
this, combined with the observation that Front-End Servers are
easily replaceable, means that you improve reliability of your site as
a whole; instances when some of your Game World Servers go down,
will occur more rarely (!)

having a copy of relevant game world(s) on your Front-End Servers,
takes even more load off your Game Servers, and makes Game Server
load independent on the number of observers

you can use really cheap boxes for your Front-End
Servers; strictly speaking, you don’t even need ECC and
RAID for them (and you certainly do need them for your
Game Servers). As noted above, Front-End Servers are
easily replaceable, so if one goes down – its load is
automagically redistributed among the others (see
Chapter [[TODO]] for further details). If you’re going to “

really cheap
boxes f or your
Front-End
Servers

deploy into the cloud – you may want to consider cheaper
offers for your front-end servers (even if they’re coming
from different CSP).

they allow your client to have a single connection point to
the whole site; benefits of this approach include better
control over player’s “last mile” so that priorities between different data
streams can be controlled, eliminating difficult-to-analyze “partial
connections”, and hiding more implementation details of your site from the
hostile world outside; more on single client connection in Chapter [[TODO]]

they allow for trivial client-side load balancing (no hardware load balancers
needed, etc. etc.), more discussion on the load balancing below in “On Client-
Side Load Balancing and Law of Big Numbers” section below

having a copy of relevant game world(s) on your Front-End Servers allows to
have virtually unlimited number of observers who want to watch some of the
games being played on your site (such as a Big Final or something) Best of all,
this will happen without affecting game server’s performance (!). Moreover, usually
you won’t need to organize anything for your Big Final, the system (if built
properly) can take care of it itself, in (roughly) the following manner:

whenever somebody comes to watch a certain game, his client requests
this game from the Front End Server

if Front End Server doesn’t have a copy of the requested game, it
requests it from the relevant Game Server, alongside with updates to the
game world state

from this point on, Front End Server will keep an “in-sync” copy of the
game world, providing it (with updates) to all the clients which have
requested it

it means that from this point on, even if you have 100’000 observers
watching some game on this Game Server, all the additional load is
handled by your Front-End Servers, without affecting your Game Server

for further details, see Chapter [[TODO]].

Front-End Servers allow for better security later on (acting essentially as a
kind of DMZ, see Chapter [[TODO]] for details).

 keep in mind that you still need top-notch connectivity
 and as Big Finals are a good way to attract attention, this does provide you an

edge over your competitors, etc. etc.

Front-End Servers: Latencies and Inter-Player Latency Differences

“
1

2

1

2

Y ou can have
processing time

of your Front
End server

application-
layer of the

order of single-
digit

microseconds.

As for the negative side of having Front End Servers, I can
think only of two such drawbacks. The first one is additional
latency introduced by your Front End Server. More
specifically, we’re speaking about the time which is necessary
for the packet incoming from a client at application layer, to
get processed by your Front End Server, to go into TCP stack
on Front End Server side, to get out of TCP stack on Game
Server side, and to reach application layer in your Game
Server (plus the time necessary to go in the opposite
direction).

Let’s take a look at this additional latency. From my
experience, if you’re using a reasonably good communication
layer library, you can have processing time of your Front End
server application-layer of the order of single-digit
microseconds. Then, we have an end-to-end TCP connection
from your Front End Server to your Game Server; latencies of

such a connection (over 10GB Ethernet) have been measured at around 8 µs
[Larsen2007]. Adding these two delays together and multiplying it by two to get
RTT, would mean that we’re still staying well below 100 µs. However, there are
some further considerations (such as switch delays, differences between different
operating systems, differences between games, etc.) which make me uncomfortable
to say that you will have no problem achieving 100 µs delay (i.e. either you may, or
you may not). On the other hand, I am ready to say that if you’re careful enough with
your implementation, reducing the delay introduced by Front-End Servers, down
to 1ms is achievable in all but most weird cases.

To summarize:

if additional latency of around 1 millisecond is ok for you – don’t worry about
additional latencies and go for Front-End Servers; this certainly covers all
genres with the only potential exception being MMOFPS

if additional latency you can live with, is well below 1 millisecond (which is
difficult for me to imagine as it is still over an order of magnitude less that
1/60 sec frame update time, but in MMOFPS world pretty much anything can
happen) – think about it a bit more and try to find out (ideally –
experimentally) what kind of latency you can achieve in practice; if your
experiments show that latencies are indeed unacceptable, you MIGHT need to
drop those Front-End Servers because of the latency they’re introducing

YMMV, no warranties of any kind, batteries not included

The second (IMHO more theoretical, but as usual, YMMV) potential issue with
having Front-End Servers would arise if some of your Front-End Servers are
overloaded (or they’re running using significantly different hardware), so those

“ 3

4

5

If /w hen such
inter-player
latency
becomes a real
problem, you
MAY need to
implement
some kind of
af f inity f or
players of
certain Game
Worlds to
certain Front-
End servers

players connected to less-loaded Front-End Servers, will have lower latencies, and
therefore will have an advantage.

On the one hand, I didn’t see situations where it makes any
practical difference in real-world deployments (i.e. as I’ve seen
it, if some of the Front-End Servers are overloaded, it means
that most of the other ones are already at 90%+ of capacity,
which you should avoid anyway; see [[TODO!]] section for
further discussion of load balancing). On the other hand,
YMMV and in theory you might get hit by such an effect (though
I certainly don’t see it coming into play for anything but
MMOFPS).

If such inter-player latency differences become the case (and
only when/if it becomes a real problem), you MAY need to
implement some kind of affinity for players of certain Game
Worlds to certain Front-End servers (more on affinity in “On
Affinity” section below). However, keep in mind that large-
scale affinity tends to remove most of the benefits provided by
Front-End Servers, so if you feel that you’re going to
implement affinity for each-and-every-game – you’ll probably
be better without Front-End Servers (implementing affinity
only for a small percentage of your games, such as “high profile
tournaments” will cause less trouble, see “On Affinity” section
below for further discussion).

 yes, I’m arguing for TCP connections for inter-server communications in most
cases, see “On Inter-Server Communication” section above. On the other hand, UDP
is also possible if you really really prefer it.
 note that this might become a non-trivial exercise, see further discussion in

Chapter [[TODO]]. On the other hand, I’ve done it myself.
 in theory, you may also want to experiment with something like Infiniband, which

BTW would fit nicely in overall QnFSM architecture with communications neatly
isolated from the rest of the code, but most likely it won’t be worth the trouble

Client-Side Random Balancing and Law of Big Numbers

As soon as you have several Front-End servers where your clients are coming, you
have a question “how to ensure that all the Front-End Servers are loaded equally”,
i.e. a typical load balancing question. Load balancing in general is quite a big topic
at least over last 20 years. Three most common techniques out there are the
following: DNS Round-Robin, Client-Side Random Balancing, and Server-Side
(usually hardware-based) Load Balancers. With the industry producing those
hardware boxes behind the last one, there is no wonder that it becomes more and

“

3

4

5

one of these
returned IPs

can get cached
by a Big Fat DNS

server, and
then get

distributed to
many

thousands of
clients

more popular at least in the enterprise world. Still, let’s take a closer look at these
load balancing solutions.

DNS Round-Robin

DNS round-robin is based on a traditional DNS requests.
Whenever a client requests address frontend.yoursite.com to
be resolved into IP address, a DNS request is sent (this stands
with or without DNS round-robin) to your (or “your DNS
provider’s”) DNS server. If DNS server is configured for DNS
round-robin, it returns different IP addresses to different DNS
requests, in a round-robin fashion hence the name.

DNS Round-Robin, when applied to balancing browsers across
different web servers, has two major disadvantages. First of
all, there is a problem with caching DNS servers along the path
of the request (which is a very standard part of DNS handling).
That is, even if your server is faithfully returning all your IPs in
a round robin fashion, one of these returned IPs can get
cached by a Big Fat DNS server (think Comcast or AT&T), and
then get distributed to many thousands of clients; in this case
distribution of your clients across your servers will be skewed
towards that “lucky” IP which got cached by the Big Fat DNS
server . The second problem with using DNS round-robin

for web servers, if that if one of your servers is down, usual web browser won’t try
another server on the list, so usually in web server realm round-robin DNS doesn’t
provide server fault tolerance.

Fortunately, as we DO have a client, we can solve both these problems very easily.
Moreover, these techniques will also work for your browser-based games (that is,
after you’ve got your JS loaded and it started execution).

 strictly speaking, it is a little bit more complicated than that, as DNS packets
contain a list of servers, but as virtually everybody out there ignores all the entries
in returned packet except for the very first one, it is more or less equivalent to
returning only one IP per request – that is, unless you have your own client which
can do the choice itself, see “Client-Side Balancing”

Client-Side Random Balancing

“ 6

6

Client simply
takes random
item f rom the IP
list, and tries
connecting to
this randomly
chosen IP.

To improve on DNS round-robin, a very simple idea can be
used. We won’t rotate anything on the server side; instead, we
will distribute exactly the same list of servers to all the clients.
This list may be hardcoded into your clients (and that’s what
I’ve used personally with big success), or the list can be
distributed via DNS as a simple list of IPs for desired name
(and retrieved on client via getaddrinfo() or equivalent). Which
way to prefer – doesn’t matter to us now, but we’ll discuss
relevant issues in Chapter [[TODO]].

As soon as the client gets the list of IPs, everything is very
simple. Client simply takes random item from the IP list, and
tries connecting to this randomly chosen IP. If connection
attempt is unsuccessful (or connection is lost, etc.) – client
gets another random item from the list and tries connecting
again.

One note of caution – while you don’t really need a cryptographic-quality random
generator to choose the IP from the list, you DO want to avoid situations when your
random number generator (the one used for this purpose) is essentially just some
function of coarse-grained time. One Really Bad example would be something like

In such a case, if you get mass disconnect (and as a result all your players will
attempt to reconnect at about the same time), your IP distribution will likely get
skewed due to too few differences between the clients trying to get their IP
addresses; if all the clients attempt to connect within 5 seconds, with such a bad
myrand() function you’ll get at most 5 different IPs (less if you’re unlucky). Other
than such extremely bad cases, pretty much any RNG should be fine for this
purpose. Even a trivial linear congruential generator, seeded with time(0) at the
moment when the program was launched (and NOT at the moment of request, as in
example above), should do in practice, though adding some kind of milliseconds or
some other randomly looking or client-specific data to the mix is advisable “just in
case”.

Client-Side Random Balancing: a Law of Large Numbers,
and comparison w ith DNS Round-Robin

Unlike DNS round-robin (which in theory provides “ideal”
balancing), client-side random balancing relies on the
statistical Law of Large Numbers to achieve flat distribution
of clients between the servers. What the law basically says is

“

1
2
3
4

int myrand() {//DON'T DO THIS!
 srand(time(0));
 return rand();
}

Law of
Large

Numbers
According to

the law, the

https://en.wikipedia.org/wiki/Law_of_large_numbers

that for independent measurements, the more experiments
you’re performing – the more flat distribution you’ll get.
[[TODO!: add stuff about binomial distribution, and an
example]]

In practice, despite being “non-ideal” in theory, client-side
random balancing achieves much more flat distribution than
DNS round-robin. The reason for it is two-fold. First, as soon
as the number of clients is large (hundreds and up), client-
side random balancing becomes sufficiently flat for practical
purposes (and if your system is provisioned for thousands of
players, and only a few have came yet – the distribution won’t
be too flat, but the inequality involved won’t be able to hurt,
and the balance will improve as the number grows). On the
positive side, however, client-side random balancing doesn’t
suffer from DNS caching issue described above. Even if you’re
using DNS to distribute IP lists (and this list gets cached) –
with client-side balancing all the IP lists circulating in the system
are identical by design, so caching (unlike with DNS round-
robin) doesn’t change client distribution at all.

To summarize: personally, I would be very cautious to use DNS Round-Robin for
production load balancing. On the other hand, I’ve seen Client-Side Random
Balancing to work extremely well for a game which grew from a few hundreds of
simultaneous players into hundreds of thousands; it worked without any problems
whatsoever, providing almost-perfect balancing all the time. That is, if the average
load across the board was 50%, you could find some servers at 48% and some at
52%, but not more than that.

As for the second disadvantage mentioned above for DNS Round-Robin as applied
to web browsers (which was inability of most of the browsers to provide fault
tolerance in case when one of the servers crashes) – this evaporates as soon as we
have the whole list on the client-side, can detect failure, and can select another
item from the list.

 this, of course, stands only when you have run your servers identically for
sufficient time; if one of the servers has just entered service, it will take some hours
until it reaches the same load level than the others. If really necessary, this effect
can be mitigated, though mitigation is rather ugly and I’ve never seen it necessary
in practice

Serv er-Side Load Balancers

An approach which is very different from both round-robin DNS and client-side

average of the
results

obtained from
a large

number of
trials should

be close to the
expected

value, and
will tend to

become closer
as more trials

are
performed.
— Wikipedia —

7

7

These
additional
balancing
capabilities are
usually
completely
unnecessary
f or games
(w here Law of
Large Numbers
tends to stand
very f irmly)

random balancing, is to use server-side load balancers. Load balancer is usually an
additional box, sitting in front of your servers, and doing, as advertised, load
balancing.

Server-side load balancers do have significantly more
balancing capabilities with regards to scenarios when
different clients cause very different loads (so that server-side
balancers can work even if the Law of Large Numbers doesn’t
work anymore). However, on the one hand, these additional
balancing capabilities are usually completely unnecessary for
games (where Law of Large Numbers tends to stand very
firmly), and on the other hand, such load balancer boxes tend
to be damn expensive (double that if you want redundancy, and
you certainly want it), they do not allow inter-datacenter
balancing and fault tolerance (by design), and they introduce
additional not-so-well-controlled latencies.

Oh, and BTW – when speaking about redundancy and the cost
of their boxes, quite a few hardware manufacturers will tell you
“hey, you can use our balancer in active/active configuration,
so you won’t waste anything!”. Well, while you can indeed use
many server-side load balancers in active/active
configuration, you still MUST have at least one redundant box
to handle the load if one of those boxes fails. In other words, if
all you have is two boxes in active/active configuration, when
both are working, overall load on each of them MUST be well below 50%, there is no
way around it if you want redundancy.

As a result of all the considerations above, for game load-balancing purposes I have
never seen any practical uses for server-side load balancer boxes (as always, YMMV
and batteries are not included). Even if you’re using Web-Based Deployment
Architecture (in the way described above), you should be able to stay away from
them (though YMMV even more).

 most of load balancers are designed to balance web sites where anything below
100ms is pretty much nothing, so at the very least make sure to discuss and
measure the latency (under your kind of load!) before buying such a box

Balancing Summary

From my experience, client-side random balancing (aimed towards front-end
servers) worked really good, and I’ve never seen any reasons to use something
different. Round-robin DNS is almost universally inferior to client-side balancing,
and hardware-based server-side balancers are too complicated and expensive,

“
8

8

usually without any real reason to use them in gaming environment. As note above,
one exception when you MAY need server-side balancers, is if you’re using Web-
Based Deployment Architecture.

One last word about load balancing: it is possible to use more
than one of the methods listed here (and it might even work for
you); however, implications of such combined use of more than
one method of load balancing, are way too convoluted to
discuss them in this book.

Front-End Servers as a CDN

It is possible to use Front-End Servers as a kind of CDN (or
even use them to build your own CDN). Even if you’re running
all your Game Servers from one single datacenter, for certain
kinds of games it might be a good idea to have your Front-End
Servers sitting in different datacenters (and acting as
different “entry points” to your clients), as shown on Fig VI.9:

The idea here is pretty much like the one behind classical CDN: to reduce latencies

CDN
A content
delivery
netw ork or
content
distribution
netw ork (CDN)
is a globally
distributed
netw ork of
proxy servers
deployed in
multiple data
centers

— Wikipedia —

https://en.wikipedia.org/wiki/Content_delivery_network
/wp-content/uploads/Fig-VIv2-91.png

CDN-like
arrangements
of Front-End
Servers MAY
save some of
your players a
f ew
milliseconds in

for end-users. On the other hand, we need to note that

unlike classical CDN, the content with our game-
sorta-CDN is not static, so gain in latencies is

possible only because of better peering, with gains
usually being in single-digit milliseconds

There is still a different reason to use such deployment architectures – in case if
you want to protect yourself from Internet connectivity in your primary datacenter
going down (provided that “Some Connectivity” survives); in practice, if you have a
decent datacenter, it should never happen. More precisely – your datacenter WILL
occasionally experience transient faults of around 1.5-2 minutes long (typical BGP
convergence time), so if you’re looking for excuses to use this nice diagram on Fig
VI.9 and your client can detect the fault and redirect to a different datacenter
significantly faster than that, it MAY make some difference to your players.

Implementation-wise, there are several considerations for such CDN-like multi-
datacenter Front-End Server configurations:

you MUST have very good connectivity between your data centers (“some
connectivity” on Fig. VI.9). At the very least, you should have inter-ISP peering
explicitly set by both of your ISPs (to each other) to ensure the best data flow
for this critical path

strictly speaking, “some connectivity” does not necessarily need to be
Internet-based; you often can save additional few milliseconds by
getting something like “dedicated” Frame-Relay between your
datacenters, but this will likely cost you in the range of tens of thousands
per month .

traffic on “some connectivity” can be an order (or even
two) of magnitude lower than that going to the clients
due to Front-End Servers acting as “concentrators”

you SHOULD account for secondary datacenter to go
down (in particular, in case of inter-datacenter
connectivity going down). The simplest way to deal with it
is to have enough capacity in your primary datacenter
(both traffic-wise and CPU-wise) to handle all of your
clients, but this tends to be expensive. As an alternative,
shutting down some activities in case of such a failure
may be possible depending on specifics of your game.

Bottom line for CDN-like arrangements. CDN-like
arrangements of Front-End Servers may save some of your
players a few milliseconds in latency (that is, if you have a really

“

latency. From
my experience,
it w as hardly
w orth the
trouble

good connection between datacenters), which in turn may
allow to level the field a bit with regards to latency. From my
experience, it was hardly worth the trouble (because you
cannot really improve MUCH in terms of latency, as the
packets still need to go all the way to the Game Server and
back), but keep the possibility in mind. For example, it may
come handy in some really strange scenarios when you’re
legally required to keep your game servers in a strange location (hey casino guys!)
where you simply don’t have enough bandwidth to serve your clients directly.

Front-End Servers + Game Servers as a kinda-CDN

On the other hand, if you’re really concerned about latencies, it is usually much
better to bring your Game World Servers closer to players (while leaving DB Server
behind), as shown on Fig VI.10:

Here, we’re moving the most time-critical stuff (which is usually your Game World
Servers) towards the end-user, providing significantly better latencies to those
players who’re in the vicinity of corresponding datacenter. Maintaining such
infrastructure is quite a Big Headache, but is doable, so if you’re really concerned
about latencies – you may want to deploy in such a manner. A word of caution – if
going this way, you will end up with “regional servers”, which have their own share
of troubles (you’ll need to ensure that clients in the region go only to the relevant
Front-End Servers, security on inter-datacenter connections becomes quite an

/wp-content/uploads/Fig-VIv2-10.png

The things
w ill go

smoothly as
long as the

number of the
game w orlds

w hich use
af f inity is

small.

issue, etc., etc.); once again – it is doable, but go this way only if you really need it.

On Affinity

In some cases, you may decide that you need to have a kind of “affinity” so that
some specific players (usually those playing in a specific game world) are coming
to specific Front-End Servers.

Note when we’re speaking about our Front-End Servers,
“affinity” is quite different from classical affinity (usually
referred to as “persistence” or “stickiness”) used on load
balancers for web servers. In the web world
persistence/stickiness is about having the same client coming
to the same server (to deal with sessions and per-client
caches). For our Front-End Servers, however, affinity has a
very different motivation, and is usually about Front-End-
Server-to-game-world affinity (for players or for
players+observers) rather than client-to-server affinity (see
“Front-End Servers: Latencies and Inter-Player Latency
Differences” section above for one reason where you MIGHT
need such affinity).

Technically, implementing Front-End-Server-to-game-
world-affinity is not that difficult, but the real problems will
start after you deploy your affinity. In short – the things will go

smoothly as long as the number of the game worlds which use affinity is small. On
the other hand, as soon as you have a significant chunk of your players connected
using the affinity rules, you will find that achieving reasonable load balance
between different Front-End Servers becomes difficult . When there is no
affinity, the balance is near-perfect just because of the Law of Large Numbers; as
you’re introducing the affinity rules, you’re starting to skew this near-perfectly-flat
distribution, and the more players are affected by affinity, the more you’re
deviating from the ideal distribution, so managing those rules while achieving load
balance can become a Big Fat Challenge.

Bottom line: avoid affinity as long as possible (and most likely you will be able to
get away without it).

Front-End Servers: Implementation

Now let’s discuss ways how our Front-End Servers can be implemented. As
mentioned above, the key property of our Front-End Servers is that they’re easily
replaceable in case of failure. To achieve this behavior,

you MUST ensure that there is NO original game-

“

world state on any of your Front-End Servers
In other words, Front-End Servers should have only
a replica of the original game-world state, with the

original game-world state kept by Game Servers

There is no need to worry too much about it if you’re using a generic
subscriber/publisher (or state replication) kind of stuff, but be extremely careful if
you’re introducing any custom logic to your Front-End Servers, because you may
lose the all-important “easily replaceable” property above. See Chapter [[TODO]]
for further discussion of this potential issue.

Front-End Serv ers: QnFSM Implementation

One implementation of the Front-End Server implemented under pure Queues-
and-FSMs architecture (see Chapter V for details on QnFSM, state machines, and
queues) is shown on Fig VI.10:

Here, we have TCP- and UDP-related threads similar to those described in
“Implementing Game Servers under QnFSM architecture” section above with
regards to Game Servers, and one or more of Routing&Data Threads (with at least
one Routing&Data FSM each), which are responsible for routing of all the packets,
and for caching the data (such as “game world” data). Let’s discuss these routing-
related FSMs in a bit more detail.

Routing&Data FSMs. Each of Routing&Data FSMs has its own data that it handles
(and updates if applicable). For example, one such Routing&Data FSM may contain

/wp-content/uploads/Fig-VIv2-11.png

It is possible
(and of ten
advisable) to
have more than
one
Routing&Data
FSM w ithin
single
Routing&Data
Thread

a state of one game world. Other Routing&Data FSMs may handle routing of the
point-to-point packets from players to (and from) one specific Game Server.
Further details of the data types handled by Routing&Data FSMs will be discussed
in Chapter [[TODO]], but generally there will be three different types of
Routing&Data FSMs:

generic connection handlers (to handle point-to-point communications
including player input and server-to-server connections)

generic publisher/subscriber handlers (to cache and handle generic but
structured data such as a list of available games, if players are allowed to
select the game)

specific game world handlers (to cache and handle game world data if the
required functionality doesn’t fit into generic handler). In many cases you’ll be
able to live without specific game world handlers, but if you want to
implement some kind of server-side filtering, like server-side fog-of-war to
avoid sending data to those players who shouldn’t see it (so no hack of the
client can possibly lift fog-of-war) – specific game world handlers become a
necessity.

It is possible (and often advisable) to have more than one
Routing&Data FSM within single Routing&Data Thread to
reduce unnecessary load due to an exceedingly high number of
threads (and unnecessary thread context switches). How to
combine those Routing&Data FSMs into specific threads –
depends on your game significantly, but usually generic
connection handlers are extremely fast and all of them can be
combined in one thread. As for generic publisher/subscriber
and specific game world handlers, their distribution into
different threads should take into account typical load and
allowed latencies. The rule of thumb is (as usual) the following:
the more FSMs per thread – the more latency and the less
thread-related overhead; unfortunately, the rest depends too
much on specifics of your game to discuss it here.

Routing&Data Factory Thread. Routing&Data Factory
Thread is responsible for creating Routing&Data Threads (and
Routing&Dara FSMs), according to requests coming from
TCP/UDP threads. A typical life cycle of Routing&Data FSM may look as follows:

One of TCP/UDP FSMs needs to route some message (or to provide
synchronization to some state), and realizes that it has no data on
Routing&Data FSM, which it needs to route the message to, in its own cache.

TCP/UDP FSM sends a request to Routing&Data Factory FSM

“

As a rule of
thumb, Front-
End Servers are
a Good Thing™.

Factory FSM creates Routing&Data Thread (with an appropriate
Routing&Data FSM)

Factory FSM reports ID of the Queue, where the messages towards
appropriate Routing&Data FSM should be sent, back to the requesting
TCP/UDP Thread

TCP/UDP FSM (the one mentioned above) sends the message to the
appropriate Queue (using ID rather than pointer to enable deterministic
“recording”/”replay”, see Chapter V for details).

Whenever the Routing&Data FSM is no longer necessary for its purposes,
TCP/UDP FSM reports it to the Factory FSM

if it was the last TCP/UDP FSM which needs this Routing&Data FSM,
Factory FSM may instruct appropriate Routing&Data Thread to destroy
the Routing&Data FSM

Routing&Data FSMs in Game Serv ers and Clients

I need to confess that personally I am positively in love these Routing&Data FSMs. I
love them so much that I usually have not only on Front-End Servers, but also on
Game Servers, and on Clients too; while they’re not strictly necessary there (and
are not shown on appropriate diagrams to avoid unnecessary clutter), they did
help me to simplify things quite a bit, making all the communications very uniform.
Still, it is pretty much your choice if you want to have Routing&Data stuff on your
Game Servers and/or Clients.

Front-End Servers Summary

To summarize the section on Front-End Servers:

As a rule of thumb, Front-End Servers are a Good
Thing™. In particular:

they take the load off your Game Servers
which often makes the system cheaper (as
Front-End Servers are cheap)

and also improves overall system reliability (as
Front-End Servers are easily replaceable)

they facilitate single client connection (which is
generally a good thing to have, see Chapter [[TODO]]
for further discussion)

they facilitate client-side load balancing

they allow to handle 100’000+ observers for your Big Event easily
(actually, the sky is the limit)

their drawbacks are pretty much limited to the additional latency, and
this additional latency is firmly in sub-millisecond range

“

« Chapter V I(a). Serv er-Side MMO A rchitecture. Naïv e, W eb-Ba…

 MMOG Serv er-Side. Eternal Linux-v s-W indow s Debate »

Client-side load balancing usually is the best one for games
one potential exception is Web-Based Deployment Architectures, where
you MAY need server-side balancers

large-scale affinity is to be avoided

CDN-like arrangements are possible, but not without caveats

Front-End Servers can (and IMHO SHOULD) be implemented in QnFSM
architecture, as described above

[[To Be Continued…
This concludes beta Chapter VI(b) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VI(c), “Modular
Architecture: Server-Side. Eternal Windows-vs-Linux
Debate.]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: deployment, game, multi-player, server

Copyright © 2014-2016 ITHare.com

[–] References
[Larsen2007] Steen Larsen, “Architectural Breakdown of End-to-End Latency in a
TCP/IP Network”

http://eecs.ceas.uc.edu/~paw/classes/ece975/sp2011/papers/larsen-07.pdf
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-via-server-side-mmo-architecture-naive-and-classical-deployment-architectures/
http://ithare.com/mmog-server-side-eternal-linux-vs-windows-debate/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/deployment/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/server/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
MMOG Server-Side. Eternal Linux-vs-Windows Debate
posted January 4, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VI(c) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

Operating Systems
Please don’t expect to find anything new in this section, especially in the context of “which
OS is the best one out there”. It is merely a summary of well-known things as they apply to
MMOG server-side.

For the client-side, operating system is normally a big fat Business Requirement,
which means that we as developers don’t have much choice about it. If we need to
support Android, iOS and Windows on the client-side – we just need to shut up and
do it, plain and simple. With operating system for the server-side, situation is
usually different – as nobody on the business side of things really cares (or at least
SHOULD NOT care) about which OS is used to run our servers, it is more or less a
developer’s choice. What MAY (and actually SHOULD) interest business guys/gals
though, is time-to-market and the cost of running servers, more on it below.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

When it comes to server-side operating systems, there are actually only two
realistic choices: Windows and Linux (or “Linux and Windows”, depending on your
preferences, we’ll discuss this in a moment). While in theory you can run an OS X
server, or can dream about trying a 32-core SPARC M7 under Solaris, or (like
myself) be eager to get your hands on the latest greatest POWER8 box, in practice
all we’ll ever get (except, maybe, for stock exchange guys) is x64 box with either
Windows or Linux. And while there is nothing wrong about x64, it still often leaves
us feel a bit sad about all those existing-but-never-available opportunities.

Leaving sentimental feelings aside, we need to take a look at two real contenders:
Linux/BSD and Windows. Unfortunately, over the course of serveral last centuries
decades, any attempt to to take such a look has invariably lead to almost-religious
wars.

 For the purposes of our discussion, we’ll consider BSD as a flavour of Linux (which
is admittedly a sacrilege, but Linux programming and *BSD programming at our
application level are that similar, that with a few narrow exceptions such as
epoll/kqueue, we can pretty much ignore the difference until actual deployment).

New Generation Chooses Cross-Platform! W ell, at least it SHOULD…
One thing you should seriously consider before choosing one single OS as your
development target, is “whether you can make your program cross-platform

1

1

/wp-content/uploads/BB_part072_BookChapter006c_v1.png

instead”. In general, I strongly support cross-platfrom programs, even on the
server-side, for several reasons:

we don’t need to go into Linux-vs-Windows debate right here, making it a
deployment-time issue rather than development-time issue. Not only having
cross-platform code postpones the debate, but also it makes the debate much
less heated, as the cost of mistake at deployment-time is orders of magnitude
lower

cross-platform programs are, well, cross-platform, which gives you
deployment-time freedom

for example, if you find that for the purposes of your game the latest
greatest TCP stack from Linux (or Windows) works significantly better
(see “Other Technical Differences (kernel scheduler, TCP stack, etc)”
section below) – you can switch without that much hassle

moreover, you can have some servers on Windows and some on Linux at
the same time (optimizing different audiences according to different
parameters)

cross-platform programming helps to keep dependencies in check

cross-platform programs tend to have better structured codebases (I
attribute it to better discipline, so it is not inherent to cross-platform
programs, but a correlation)

cross-platform programming help to test your code better. It has been
observed that running a program which was considered perfectly error-free,
on a different platform, helps to reveal quite a few subtle bugs which have
never manifested themselves on original platform (but were sitting there, just
waiting for the right moment to kick in).

How to achieve a holy grail of cross-platform code, is a separate story, which we’ll
discuss in [[TODO]] section below. For now, let’s just make a note that going cross-
platform does not necessarily mean going JVM (Python, Erlang, pick your poison),
and that C++ can also be made perfectly cross-platform, so at least don’t write it
off on these grounds. On the other hand, let’s keep in mind that outside of
deterministic FSMs (and for pretty much any programming language), the best we
can possibly hope for, is “run once – test everywhere”, and “testing everywhere”
takes time . Which, in turn, makes convincing managers going cross-platform
route quite difficult (that is, unless you’re using Java/Python/…), so you may need
to choose your OS even if you would like to avoid it in the first place.

Eternal W indows-vs-Linux Debate

I have no
choice other
than to brace
myself and be
prepared to all
the punches
f rom both
Window s and
Linux f ans

I realize that for the analysis below, I will be hit hard by zealots from
both sides. On the other hand, as choosing server-side OS is an
important part of the overall MMO exercise, I need to provide at least
some observations in this regard, so I have no choice other than to
brace myself and be prepared to all the punches from both Windows
and Linux fans (with an occasional hit by BSD/Solaris proponents).

Now, we can forget about the boring cross-platform stuff, and
to concentrate on the classical Linux-vs-Windows flame war.
BTW, most of the arguments routinely raised in such flame
wars, do have some merit behind them, with the tricky part
being to estimate applicability and impact of these arguments
within the specific context. Let’s take a closer look at some of
them (only in the context of the server-side specifically for
games):

Open-Source

The practical argument here goes along the lines of “if you ever have a problem,
you’ll be able to fix it” . However, being a game developer, I don’t think it is realistic
to expect that you’ll be able to fix anything in Linux kernel (or, Linus forbid, driver).
If you’ve done it before – of course, being able to fix things in kernel becomes an
all-important argument, but otherwise – don’t hold your breath over it.

Stability/Reliability

There are a lot of horror stories about Windows being unstable/unreliable,
including (in)famous migration of London Stock Exchange from Windows to Linux
in 2009. [http://www.itwire.com/opinion-and-analysis/the-linux-
distillery/28359-london-stock-exchange-gets-the-facts-and-dumps-windows-
for-linux] My personal experience, however, doesn’t support this observation. In
short – from what I’ve seen, if all you’re using from Windows, is Windows kernel
(without any fancy COM components or .NET) – Windows has been observed work
perfectly fine (more on disabling unnecessary software in Chapter [[TODO]]). Add
anything large on top of a bare Windows kernel – and if you’re not careful enough,
you’re entering much riskier waters, to put it mildly. Pretty much the same goes for
Linux, but as Linux doesn’t try to cover everything-under-the-sun as a part of
operating system, you can usually choose which software to use, more freely. Still,
from my experience, if you’re careful enough, it is more or less a tie between Linux
and post-9x Windows in the stability realm.

Security

“

http://www.itwire.com/opinion-and-analysis/the-linux-distillery/28359-london-stock-exchange-gets-the-facts-and-dumps-windows-for-linux

Personally, I
w ould agree
that Linux is

somew hat more
secure (that is,

if you're
exercising at

least basic
caution and are

not running
your w eb

server under
root account).

Another quite popular argument is that Linux is more secure
than Windows (what Microsoft vehemently objects, mostly on
the basis of the number of reported bugs, which is a very
convenient metrics for a closed-source company). Personally,
I would agree that Linux is somewhat more secure (that is, if
you’re exercising at least basic caution and are not running
your web server under root account).

I tend to attribute it to the fact that Linux in general is more
modular than Windows, so disabling unnecessary parts is
easier (and it is these unnecessary parts that cause most
trouble). While this is partially offset by an atrocious *nix
permission system (with suid bit abuses being responsible of a
substantial chunk of successful real-world attacks), being
highly modular still helps even in this department. Also SE
Linux, despite all the shortcomings, does provide an
additional layer of protection.

On the other hand, it is clear that you do need a highly
qualified and security-aware admin to run any operating
system securely. Just one very recent real-world breach
example involved default Amazon EC2 Linux image to run

Apache under root (and while SE Linux was running, SE policies didn’t prevent
attacker from taking the server over). In short: it wasn’t a problem of Linux as
such, but a problem of Linux being misconfigured. However, it leads us to an all-
important bottom line:

Each server is only as secure as its admin

If you have highly qualified admins, then I’d probably prefer Linux from security
perspective, but in practice security advantage over Windows will likely to be
negligible (that is, if you’re using only “bare” Windows kernel, while disabling
everything else, see above).

 if you don’t understand why running your services under root account is a
problem – wait until Chapter [[TODO]], we’ll briefly discuss it there

Fast Netw ork Packet Processing

If your game is a very latency-sensitive, all chances are that you’ll need to use UDP
(see Chapter [[TODO]] for further discussion). And when you’re using UDP, you may
easily run into your recvmsg() thread (or even recvmmsg() thread) becoming a
bottleneck. One of the ways to deal with it in a cross-platform way, is to try

“

2

2

multiple threads calling recvmsg() on the very same (non-blocking) socket, which
has been reported to work pretty good (which has been briefly described in “UDP-
related FSMs” section above). However, if this doesn’t help, you’re pretty much out
of cross-platform options. It means using rather obscure and little-known
platform-specific APIs, which may include the following.

[[TODO!: Linux netmap/DPDK, Windows RIO]]

[[TODO!: Interrupt balancing: Linux RSS/RPS/RFS]]

Other Technical Differences (kernel scheduler, TCP stack, etc)

There are quite a few debates out there related to comparisons between Linux and
Windows kernel schedulers and network stacks. In short – at least for games, the
differences between them are negligible. A tiny bit more detailed analysis follows.

Regarding kernel/thread schedulers – note that for the game you certainly want to
keep your CPU utilization low (even for social games having CPU utilization at
100% is certainly not a good idea), and thread queue – as short as possible. It
means that there should always be a free CPU in the system, which is ready to
process incoming packet. It means that the scheduler (almost) always doesn’t
really have a choice which thread to schedule – all threads which are not waiting,
will run, as there are (almost) always sufficient CPUs to run them. In practice, I
don’t know of any significant differences between Windows and Linux schedulers
when applied to games; moreover, the difference was non-observable in practice
even in the days of Linux O(n) scheduler.

One closely related topic is related to so-called NUMA
scheduling. The thing here is the following. In production,
you’re very likely to use 2-socket x64 servers, which are NUMA
for the last 10 years or so. And for NUMA, it is very important
performance-wise to keep your threads’ physical memory on
the same socket (NUMA node) where your thread is running
(otherwise memory accesses will need to go across the
QPI/Hypertransport, which is slow compared to local
memory accesses). The topic of keeping NUMA locality when
scheduling, is still very much in active development (see, for
example, [Corbet2013]), and does have a potential to bring
significant benefits for applications (due to removal of
unnecessary round-trips via QPI/Hypertransport). However,
the last time I’ve seen (at least somewhat appropriate)
comparison, I wasn’t able to notice the difference between
Windows and Linux in this regard (which might or might not
be because of FSM-oriented architecture, which tends to
exhibit very good memory locality and may be easier to handle

3

4

NUMA
Non-unif orm

memory access
(NUMA) is a

computer
memory design

used in
multiprocessing,

w here the
memory access

time depends
on the memory

location
relative to the

processor.
— Wikipedia —

5

https://en.wikipedia.org/wiki/Non-uniform_memory_access

by NUMA schedulers). In short – jury is still out on Windows-
vs-Linux NUMA scheduling, it may or may not affect your game (though IMHO the
differences are not going to be drastic, at least not for long). Good description of
NUMA on Linux can be found in [Lameter2013]. A bit more on practical suggestions
related to manipulating NUMA-related things from application level will be
mentioned in Chapter [[TODO]].

As for the TCP stack: all the TCP stacks out there start with the same RFC793 (yes,
that’s 1981 and still not obsolete); of course, there are several dozens RFCs on top
of the basics described there, and sets of these RFCs and their defaults vary, but
deep inside it is still pretty much the same thing (and even first several layers on
top of it, such as Nagle’s algorithm or SACK, are pretty much the same). Most of the
differences between TCP stacks discussed out there, are actually about using
different defaults/settings for TCP stack, which result in different throughput
under different conditions (especially TCP performance over long fat pipes can be
significantly different); however, these things, while interesting and important for
video- and file-services, are not directly applicable to games, where average
packet size is around 40-80 bytes (that’s including 20 bytes of IP header). When it
comes to latencies, network stack doesn’t affect UDP latencies much, and TCP
latencies will depend on lots of things, including TCP stack on the client side (not
to mention that if you’re into single-digit millisecond latencies, using TCP is
probably not the best idea). One thing which may affect those games working over
TCP, is a choice of TCP congestion algorithm (with Windows Server 2008+ using
NewReno, and recent Linux reportedly using CUBIC); however, as of now, I don’t
have any information which demonstrates any advantage of any of them TCP-
latency-wise (that is, with usual mixed-bag of clients, consisting of PCs and mobile
phones); on the other hand, it is an area where development is still very much
ongoing, so further changes are likely. Also note that as we cannot control client
and there are tons of different clients with different TCP settings out there, any
theoretical analysis becomes extremely complicated; the best we can do – is to try
both in a real-world environment (the one with thousands of clients) and see
whether there are any differences. Which makes yet another reason to have your
code cross-platform.

When it comes to IPC (which you need to implement inter-FSMs interactions), both
systems are very much the same. We’ll discuss it in more detail in Chapter [[TODO]],
but the rule of thumb is always the same: if you want it to be really fast – use shared
memory, all the other mechanisms are inherently slower. Fortunately, shared
memory is available on both Windows and Linux. If you don’t care too much about
achieving topmost available speed on the same machine – all common other
methods (such as pipes and sockets) are readily available on both these platforms;
and for our purposes, you won’t need more than that. Fancy stuff such as
completion ports and APC, may in theory provide some difference, but in practice
for FSM-based architectures, it wasn’t observed to provide any advantage (see also
Chapter [[TODO]] for details). In short – IPC-wise, you will have quite a difficulty to
find significant difference between Linux and Windows.6

As for file systems – for your Front-End Servers and Game Servers they don’t really
matter. Amount of file I/O on Front-End Servers and Game Servers should be kept
negligible, mostly reading executables and configuration files; under these
conditions all the differences between JFS, ZFS, ext4, and NTFS, won’t play any
significant role.

To summarize – technically (and from games perspective) both Windows and Linux
kernel (and network stack) are doing really good job and (drivers aside) you’re
quite unlikely to observe significant differences because of these things. While you
may see the some difference, if migrating from Windows to Linux or vice versa on
the same hardware, experiences when migrating different server boxes will most
likely be different, and I tend to attribute them (mostly) not to OS’s as such, but
rather to drivers, whose quality varies greatly. One potential exception is TCP
congestion algorithm (that is, for TCP-based games), but its effects on games are
yet to be seen.

 in practice, it is more complicated, as depending on the hardware, interrupt
coming from NIC can be processed only on a dedicated CPU, which complicates
things. However, this is normally not an OS restriction, but a hardware restriction,
so there isn’t much which can be done about it
 I also don’t know of attempts to use different Linux schedulers for games, but

based on reasoning above, I have my doubts whether they will make any difference
 I’m speaking about classical NUMA, with a node per socket
 ok, local sockets tend to be a tad slower on Windows than on Linux, but if you’re

really after speed, you still need to use shared memory, so it becomes pretty much
a moot issue

C++ Compilers

If speaking about C++, a question of compiler becomes quite important. If you’re
going Windows route, your obvious choice would be MSVC, and for Linux it is
probably GCC or LLVM/CLang. When comparing MSVC to GCC, GCC (especially
GCC 4.8 and up) tends to produce better-quality code, which may amount (in
practice) to as much as 5-10% overall performance difference. This can be
accounted for as 5-10% increase in number of servers you need to run your game;
alternatively, you may try using MinGW (which is essentially GCC for Windows, I
didn’t try it myself, and can provide no warranties of any kind in this regard).

If comparing LLVM/CLang to GCC, in practice the difference (as of beginning of
2016) is pretty much negligible.

 individual functions can be much faster, but on average and taking into account
such things as context switches and associated very severe cache misses (both

3

4

5

6

7

7

With zero
price of f ree
distros, there is
absolutely no
w ay f or
Window s to
beat them price-
w ise, and even
matching it
looks very
unlikely in
f oreseeable
f uture.

being inevitable on game servers), it is not that much as it may seem from “pure
calculation” benchmarks

Is it Enough to Decide?

All the arguments above are repeated ad infinitum on the Internet, and as you see, I
personally tend to favor Linux, but honestly, I don’t really see that these arguments
are sufficient to make a decision for our game servers (except, maybe, in some rare
cases for interrupt-related stuff, see “Fast Network Packet Processing” section
above). In practice, the real deal is usually about the following two reasons.

Free as in “Free Beer”

If your estimates show that you may need dozens and
hundreds of servers – then the price of the license starts to
hurt in a really bad way. And don’t listen to those who say “Hey,
RedHat license is about the same price as the Windows one, so
it doesn’t really matter”; in a price-conscious environment,
you will likely use Debian, CentOS, or some other perfectly free
distro, and will stay away from paying anything for Linux
(except, maybe, for your DB server). And guess what – with zero
price of free distros, there is absolutely no way for Windows to
beat them price-wise, and even matching it looks very unlikely
in foreseeable future.

TCO w ars

At some point around 10 years ago,
Microsoft has pushed an argument that
despite license costs, a long-term cost of
ownership (known as TCO) is lower for
Windows (mostly due to higher salaries of
Linux guys). This argument was one of the
cornerstones of Microsoft’s highly
controversial “Get the Facts” campaign. I
certainly and clearly don’t agree with Microsoft on TCO, and
am of a very firm opinion that at least for not-too-small
datacenter-hosted systems, pretty much regardless of how
you calculate it, costs of Linux boxes will be lower.
Fortunately, there are quite a few bits of research out there,
which confirm my experience a.k.a. gut feeling in this regard.
These start (surprisingly) from a Microsoft-sponsored(!) IDC
report back from 2002 [IDC]; while Microsoft has made a lot of
buzz about Windows TCO advantage found by this report, it
usually conveniently omitted that for web servers Linux TCO

“

TCO
Total cost of

ow nership
(TCO) is a

f inancial
estimate

intended to help
buyers and

ow ners
determine the

direct and
indirect costs of

a product or
system.

— Wikipedia —

https://en.wikipedia.org/wiki/Total_cost_of_ownership

For cheaper
servers, the
dif f erence
betw een
Window s and
Linux can eat as
much as 50% of
the server
rental price
(though f or
those servers

was found to be lower (and our game servers are much more similar to web servers
than to handling file or print jobs). Other studies supporting the same point of view
include a report by Cybersource [Cybersource] and an IBM-sponsored report by
RFG [RFG]. The latter one is especially interesting not only because it is exactly
about application servers, and not only because it found Linux being 40% less
expensive than Windows in the long run, but also because it has found that Linux
admins, while more expensive, on average are able to handle more servers than
their opposite numbers on the Windows side. To be honest, I need to mention that
there are other reports which do claim that Microsoft TCO has an advantage, but
also being honest, I need to say that I am not buying their arguments, agreeing with
PCWorld’s take on Linux-vs-Windows TCP for servers: “There’s no beating Linux’s
total cost of ownership, since the software is generally free… The overall TCO
simply can’t be beat.” [PCWorld]

To summarize the long text above:

Cost-wise, for game servers Linux is likely to
provide a Significant Advantage

The importance of this observation, however, depends heavily on the number of
servers you expect to run; if servers costs (not including traffic costs!) are going to
be negligible, the whole line of argument about the server costs becomes much less
important. More on it in “It is All about Money :-(” subsection below.

On ISPs and W indow s-v s-Linux Cost

If you by any chance think “hey, we will rent servers from ISP
anyway, so license costs won’t matter”, you’re deadly wrong.
Yes, you will most likely rent servers from ISPs (see Chapter
[[TODO]] for details), but ISPs (no real surprise here) need to
factor in the license price into their server rental price. As of
the beginning of 2016, kind of typical price difference between
CentOS two-socket “workhorse” server and the-same-
hardware server with Windows Standard, was roughly
between $35/month and $50/month. For cheaper servers, the
difference between Windows and Linux can eat as much as
50% of the server rental price (though for those servers which
are more or less optimal price-performance-wise observed
difference was closer to 20-30%). And with cloud providers, it
won’t get any better: an instance which costs $52/month with
Linux, went up to $77/month with Windows (that’s almost 50%
on top of Linux (!)).

Time To Market: Familiarity to your Dev elopers

“8

w hich are more
or less optimal
price-
perf ormance-
w ise observed
dif f erence w as
closer to 20-
30%).

If your game is computationally intensive, and you can support
only a thousand players per server (and therefore, if your game
is a success, you will need hundreds of servers to run your
game), costs become a very important factor, difficult to fight
with. In such cases, there is IMHO only one consideration that
can trump lower costs for Linux boxes. This one is time to
market for your game.

In other words, if you don’t have anybody on the team who has
ever developed anything for Linux, it is usually a good enough
reason to use Windows on the server-side (and yes, it will work, provided that
you’re careful enough). It is not that to exploit lower cost of Linux boxes you need
all of your developers to be Linux gurus (after all, you’re much better when you can
keep your FSMs “pure” anyway, and being “pure” pretty much implies being cross-
platform), but if the whole your team has zero Linux experience – it will probably
qualify as a valid reason to use Windows (that is, if you’ve already calculated the
associated price tag and are ok with it).

An additional (and quite similar) time-to-market-related pro-Windows argument
arises if your game is PC-only (or PC-and-Xbox-only). In this case, if you keep your
server under Windows, you can have the same code running on server and client
quite easily. While such logic has a grain of truth in it, personally I don’t really like
this line of reasoning. First of all, there isn’t that much code to share to start with
(it is mostly about the framework which runs FSMs, Communications- and Routing-
related FSMs, and client-side prediction if applicable). Second, your FSMs need to
be “pure” and cross-platform anyway (see above). Third, even the code outside of
FSMs can be made cross-platform without going into vendor-lock-in stuff rather
easily. And last but not least, having the same code run on different platforms,
while taking additional time, allows to test your code better, improving overall
code quality.

It is A ll about Money

At the end of the day, if your team consists primarily (but not exclusively) of
Windows developers, and your game is computationally intensive enough to
support only thousands (or even worse – hundreds) of players per server (and you
can count on income per player being very limited), you’re facing quite a difficult
decision.

Usually, under such circumstances time-to-market
considerations will override lower server costs, so it is all
about the balance of Windows-vs-Linux guys and gals on your
team. On the other hand, it is clearly a Business Decision which
needs to be made by Business People and is outside of scope
of this book. Our job as developers is just to warn business-
minded people that Windows servers are going to cost more

Usually,
under such
circumstances
time-to-market
considerations
w ill override
low er server
costs

than their Linux counterparts (and that server/cloud rental
difference can be as large as 50%, though likely to be more in
around 20-30%; note that these numbers do not include traffic,
which will be the same regardless of the platform); the rest is
not our decision anyway.

On the other hand, if your estimates show that you can handle a
hundred thousands players per server – it looks unlikely that
license costs will eat too much of your budget either way, so in
this case you may be able to use Linux or Windows, whichever-
platform-looks-better-for-you. The whole thing is all about
numbers, pure and simple.

Mixed Bags

In the context of the discussion above, a logical question arises: “Can we develop
our servers for Windows to get it faster, and migrate to Linux later to save costs?“
The answer is “yes, you can, but you need to be extremely vigilant to avoid
unnecessary dependencies”. In general, QnFSM model with deterministic FSMs
stimulates cross-platform development, so it might be not that difficult, but you
still should remember about your intention to migrate later (this, for example,
pretty much excludes using fancy-but-Windows-specific things such as completion
ports; not that you really need them anyway for FSM-based architecture, see
Chapter [[TODO]] for details).

It is also possible to run both Windows and Linux servers on the server-side not
just as a part of migration from one to another one, but because of different
reasons. Just to give an idea how it may happen: you may need to integrate with a
payment provider, that requires you to use DLL, available only on Windows. Ok,
you can have that-provider’s-FSM on a different server running under Windows,
while having everything else running under Linux. Been there, done that.

 No “Essentials” edition was observed as a rental option, probably because of
license restrictions
 and while I hate such providers, throwing them away is not my decision to make

Linux-v s-W indow s: Time to Decide

To summarize my arguments above:

“

9

8

9

if you w ant to
use Linux
because you're
f amiliar w ith it
– you're f ine
regardless of
number of
servers you'll
need

DO f ight 3rd-
party
dependencies.
In spades.

if you want to use Linux because you’re familiar with it –
you’re fine regardless of number of servers you’ll need

if you want to use Windows because you’re familiar with it
– take a look at the number of servers you expect to be
using

the price of Windows license is far from negligible
(making up to 50% of the rental cost of the server,
though usually the price difference is more in 20-
30% range), so it can make a significant difference
for your ongoing costs after you launch the game

in this case, you may want to develop for Windows
first (to speed time-to-market), and to migrate to
Linux later

extreme vigilance to avoid being inadvertedly
locked-in is required (see Chapter IV for
details). On the other hand, FSMs tend to make
dependency fighting simpler.

if you’re in doubt – use Linux, it is safer that way

Things to Keep in Mind: W indow s

When developing for a specific platform, there are always platform-specific things
which you need to keep in mind. For Windows my own favorite list of DO’s and
DON’Ts goes as follows (note that this is a language-agnostic list, for C++-specific
stuff see Chapter [[TODO]]):

DO fight 3rd-party dependencies. Unnecessary dependencies tend to make
Windows less stable, less secure, the code less manageable, etc. Refer to
Chapter IV, “DIY vs Re-use: In Search of Balance” for details on “what to DIY
and what to re-use”.

DO fight 3rd-party dependencies. Re-use MUST NOT be taken lightly, and
extreme vigilance is required.

DO fight 3rd-party dependencies. In spades. While all the
developers are prone to taking some “nice” 3rd-party
component and to using it without telling anybody, from
my experience Windows developers are more likely to do
it than Linux ones.

DON’T use .NET-based stuff unless absolutely necessary.
.NET in production will cause you quite a lot of trouble. If
you want to use .NET as your own platform – well, at least
you (I hope) know why you’re using it, and will be able to
configure it to minimize the impact. If you’re
programming in not-a-.NET-language, running .NET

“

10

“

DON'T
program f or
one single
distribution.

unless absolutely necessary, is a recipe for several different disasters (ranging
from security problems to run-away 3rd-party not-really-necessary .NET
component eating all-the-available-resources).

Stay away from web services (that is, unless you’re into Web-Based
Architecture), at the very least for time-critical pieces. In general, any
technology that has a blocking RPC interface, should be avoided, as
blocking inter-process (and even worse, inter-server) calls don’t fit well
into our perfectly-non-blocking no-unnecessary-context-switching
highly-optimized FSMs, and will cause significant performance
degradation compared to them.

Stay away from COM. COM components have two pretty bad properties.
First, it is yet another technology based on blocking RPC calls (see above
about them). Second, if you’re using COM for your own components – it is
quite silly (ok, unless you’re using Visual Basic), and if you’re using it for 3rd-
party components – it is a 3rd-party dependency, you should fight as stated
above. Consider an offense of using DCOM as just an aggravated form of the
offense of using COM.

 ”safer” here can be interpreted in several different ways: from “a little bit safer
security-wise” to “safer in case if your profits are much lower than expected, so
price of the servers becomes more critical” .
 yes, I know lots of people consider COM long-dead; unfortunately, it is not

Things to Keep in Mind: Linux

Linux also has it’s fair share of DO’s and especially DON’Ts. My favourite ones are as
follows:

DO fight 3rd-party dependencies. While from my experience, the danger of
3rd-party dependencies is lower for Linux than for Windows, it still exists.

DON’T program for one single distribution. Your code
should be generic enough to allow jumping around
different distros; there is no reason to depend on
package manager or exact directory structure. If you
need these badly, move this kind of stuff into config files
(or into rarely-executed shell scripts), so your admins can
adjust directories if necessary.

As long as we’re speaking about Linux (not including
BSD), all you really need to use on your Game Server
is Linux kernel and glibc. Both will be very much the
same for all the distros (with the only difference
being kernel/glibc version).

If considering *BSD family, they are somewhat different, but as long as

11

10

11

“

DO consider
cross-platf orm
code even
outside FSMs.

you’re using POSIX APIs (and that covers 99% of what you’ll really want in
practice), the differences are negligible

DON’T use shell scripts for frequently-performed tasks. While an occasional
shell script to install your daemon is fine, invoking shell 1000 times a second is
rarely a good idea.

Pretty much the same goes for cron – DON’T try to get around cron’s 1-
minute restriction by playing tricks such as running 60 cron jobs every
minute, with the first job waiting for one second, the second one waiting
for another second, and so on.

DON’T think that threads are much faster than processes on Linux (at least
not that much as they are on Windows). And BTW, it is not that threads on
Linux are slow, it is that process creation (fork()) is fast. On the other hand,
you may still want to use threads if you’re after cross-platform development.

 the remaining 1% includes things such as epoll/kqueue

Things to Keep in Mind: A ll Platforms

In addition, there are a few things to remember about, which apply regardless of
the platform you’re developing for:

DON’T use platform-specific APIs within your FSMs (see
below about using them outside of FSMs). Leaving aside a
few narrow exceptions, your FSMs need to stay “pure”
(see Chapter V for discussion of the associated benefits),
and platform-specific APIs is #1 enemy of the code being
“pure”.

DO consider cross-platform code even outside FSMs. The
whole QnFSM can be written in a fully cross-platform
manner. Even if you find platform-specific
optimizations, it is better to have a purely cross-platform
version (at the very least, to have a baseline to compare
your optimizations against).

 been there, done that
 I’ve seen quite a few “platform-optimized” versions which were actually slower

than cross-platform ones, and even more platform-optimized stuff which was
exactly on par with the cross-platform one

[[To Be Continued…

12

12

“
13

14

13

14

« Chapter V I(b). Serv er-Side A rchitecture. Front-End Serv ers a…

 A synchronous Processing for Finite State Machines/A ctors:… »

This concludes beta Chapter VI(c) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VI(d), “Modular
Architecture: Server-Side. Programming Languages.]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Programming, System Architecture
Tagged With: game, Linux, multi-player, server, Windows

Copyright © 2014-2016 ITHare.com

[–] References
[Corbet2013] Jonathan Corbet, “NUMA scheduling progress”
[Lameter2013] Christoph Lameter, “NUMA (Non-Uniform Memory Access): An
Overview”
[IDC] “Windows 2000 Versus Linux in Enterprise Computing”
[Cybersource] “Linux vs Windows. Total Cost of Ownership Comparison”
[RFG] “TCO for Application Servers: Comparing Linux with Windows and Solaris”
[PCWorld] Katherine Noyes, “Five Reasons Linux Beats Windows for Servers”

https://lwn.net/Articles/568870/
https://queue.acm.org/detail.cfm?id=2513149
https://www.cetic.be/IMG/pdf/TCO.pdf
https://static.lwn.net/images/pdf/cybersource-tco-study.pdf
http://www-03.ibm.com/linux/whitepapers/robertFrancesGroupLinuxTCOAnalysis05.pdf
http://www.pcworld.com/article/204423/why_linux_beats_windows_for_servers.html
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/chapter-vib-server-side-architecture-front-end-servers-and-client-side-random-load-balancing/
http://ithare.com/asynchronous-processing-for-finite-state-machines-actors-from-plain-events-to-futures-with-oo-and-lambda-call-pyramids-in-between/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/game/
http://ithare.com/tag/linux/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/server/
http://ithare.com/tag/windows/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Asynchronous Processing for Finite State
Machines/Actors: from plain event processing to Futures
(with OO and Lambda Call Pyramids in between)
posted January 11, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VI(d) from the upcoming book
“Development&Deployment of Massively Multiplayer Online
Games”, which is currently being beta-tested. Beta-testing is
intended to improve the quality of the book, and provides free
e-copy of the “release” book to those who help with
improving; for further details see “Book Beta Testing“. All the
content published during Beta Testing, is subject to change
before the book is published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of Contents.]]

[[I was planning the next part of Chapter VI to be
about server-side programming languages, but have
found that to speak about them, it would be better to describe a bit more about FSMs
and an important part of them – futures and exception-related FSM-specific stuff. My
apologies for this change in plans, and I hope that the part about server-side
programming languages will be the next one]]

When programming Finite State Machines (FSMs, with Erlang/Akka-style Actors, or
more generally – non-blocking event-driven programs, being very close) in a really
non-blocking manner, two practical questions arise: “how to deal with
communications with the other A in a non-blocking way”, and “what to do with timed
actions”.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

For the purposes of this section, we’ll use C++ examples; however, leaving aside syntax,
most of the reasoning here will also apply to any other modern programming
language (with an obvious notion that the part on functional-style implementation will
need support for lambdas); one obvious example is JavaScript as it is used in Node.js
(more on it below).

Also, for the purpose of our examples, we assume that we have
some kind of IDL compiler (more on in in Chapter VII), which
takes function definitions and produces C++ stubs for them. The
idea behind an IDL is to have all the inter-FSM communications
defined in a special Interface Definition Language (see examples
below), with an IDL compiler producing stubs (and relevant
marshalling/unmarshalling code) for our programming
language(s). IDL serves two important purposes: first, it
eliminates silly-but-annoying bugs when manual marshalling is
done differently by sender and receiver; second, it facilitates
cross-language interactions.

Take 1. Naïve Approach: Plain Events (will
work, but is Plain Ugly)
Both inter-FSM communication and timed actions can be dealt
with without any deviation from FSM/Actor model, via
introducing yet another couple of input events. Let’s say that we
have a non-blocking RPC call from FSM A to a FSM B, which
returns a value. RPC call translates into a message coming from

IDL
Interf ace
def inition
language (IDL) is
a specif ication
language used
to describe a
sof tw are
component's
application
programming
interf ace (API).
IDLs describe an
interf ace in a
language-
independent
w ay, enabling

/wp-content/uploads/BB_part075_BookChapter006plus_v1.png
https://en.wikipedia.org/wiki/Interface_description_language

FSM A to FSM B (how it is delivered, is a different story, which will
be discussed in Chapter [[TODO]]). FSM B gets this message as an
input event, processes it, and sends another message to FSM A.
FSM A gets this message as an input event, and performs some
actions (which are FSM-specific, so FSM writer needs to specify
them).

In a similar manner, whenever we’re scheduling a timer, it is just a
special timer event which will be delivered by FSM framework
(=”the code outside of FSM”) to FSM more or less around
requested time.

First, let’s consider a very simple example. Let’s say our Game World FSM needs to
report that our player has gained level, to DB (so that even if our Game World crashes,
the player won’t lose level, see “Containment of Game World server failures” section
above for further discussion). In this case, our IDL may look as follows:

After this IDL is compiled, we may get something like:

Then, calling code in FSM A may look like this:

So far, so simple, with no apparent problems in sight. Now, let’s see what happens in a
more elaborated “item purchase” example. Let’s say that we want to show player the
list of items available for purchase (with items for which he has enough money on the
account, highlighted), allow her to choose an item, get it through DB (which will
deduct item price from player’s account and add item to his DB inventory), and add
the item to the game world.

Don’t worry if you think that the code in Take 1 is ugly.
It is. Skip to OO-based and function-based versions if

this one affects your sensibilities

To do this, our IDL will look as follows:

communication
betw een
sof tw are
components
that do not
share one
language

— Wikipedia —

1
2

void dbLevelGained(int user_id, int level);
 //ALL RPC calls are NON-BLOCKING!!

1
2
3
4

//GENERATED FROM IDL, DO NOT MODIFY!
int dbLevelGained_send(FSMID fsm_id, int user_id, int level);
 //sends a message to fsm_id
 //returns request id

1 dbLevelGained(db_fsm_id,user_id,level);

After this IDL is compiled, we may get something like:

And, our code in FSM A will look like the following (this is where things start getting
ugly):

1
2
3
4
5
6
7

int dbGetAccountBalance(int user_id);
list<StoreItem> dbGetStoreItems();
void dbBuyItemFromAccount(int user_id, ITEMID item);
 //MUST be a separate call to ensure data integrity without external locking,
 // see "Containment of Game World server failures" subsection for discussion

int clientSelectItemToBuy(list<StoreItem>,int current_balance);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

//GENERATED FROM IDL, DO NOT MODIFY!
#define DB_GET_ACCOUNT_BALANCE 123
#define DB_GET_STORE_ITEMS 124
#define DB_BUY_ITEM_FROM_ACCOUNT 125
#define CLIENT_SELECT_ITEM_TO_BUY 126

int dbGetAccountBalance_send(FSMID fsm_id, int user_id);
 //sends a message, returns request_id
pair<bool,int> dbGetAccountBalance_recv(Event& ev, int request_id);
 //return.first indicates if incoming message matches request_id
int dbGetStoreItems_send(FSMID fsm_id);
pair<bool,list<StoreItem>> dbGetStoreItems_recv(Event& ev, int request_id);
int dbBuyItemFromAccount_send(FSMID fsm_id, int user_id, ITEMID item);
pair<bool,bool> dbBuyItemFromAccount_recv(Event& ev, int request_id);

int clientSelectItemToBuy_send(FSMID fsm_id, const list<StoreItem>& items,
 int current_balance);
pair<bool,int> clientSelectItemToBuy_recv(Event& ev, int request_id);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

//WARNING: SEVERELY UGLY CODE AHEAD!!
void MyFSM::process_event(Event& ev) {
 switch(ev.type) {
 case SOME_OTHER_EVENT:
 //...
 //decided to make a call
 int request_id = dbGetAccountBalance_send(db_fsm_id,user_id);
 account_balance_requests.push(pair<int,int>(request_id,user_id));
 //account_balance_requests is a member of MyFSM
 //need it to account for multiple users requesting purchases
 // at the same time
 //...
 break;

 case DB_GET_ACCOUNT_BALANCE:
 for(auto rq:account_balance_requests) {
 auto ok = dbGetAccountBalance_recv(ev, rq.first);
 if(ok.first) {
 int user_id = rq.second;
 int balance = ok.second;
 //got account balance, let's get list of items now
 int request_id2 = dbGetStoreItems_send(db_fsm_id);
 store_items_requests.push(

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

 store_items_requests.push(
 pair<int,pair<int,int>>(request_id2,pair<int,int>(user_id,balance)));
 break;
 }
 MY_ASSERT(false,"Cannot happen");
 //throws an exception, more on MY_ASSERT in Chapter[[TODO]]
 }
 break;

 case DB_GET_STORE_ITEMS:
 for(auto rq:store_item_requests) {
 auto ok = dbGetStoreItems_recv(ev, rq.first);
 if(ok.first) {
 pair<int,int> user_id_and_balance = rq.second;
 list<StoreItem>& items = ok.second;
 //got everything client needs, let's send it to client now
 int request_id3 = clientSelectItemToBuy_send(user_fsm_id,
 items,user_id_and_balance.second);
 client_select_items_to_buy_requests.push(
 pair<int,int>(request_id,user_id));
 break;
 }
 MY_ASSERT(false,"Cannot happen");
 //throws an exception, more on MY_ASSERT in Chapter[[TODO]]
 }
 break;

 case CLIENT_SELECT_ITEM_TO_BUY:
 for(auto rq:store_item_requests) {
 auto ok = clientSelectItemsToBuy_recv(ev, rq.first);
 if(ok.first) {
 int user_id = rq.second;
 ITEMID selected_item = ok.second;
 //got client selection, let's try buying now
 int request_id4 = dbBuyItemFromAccount_send(db_fsm_id,
 user_id,selected_item);
 buy_item_requests.push(pair<int,pair<int,ITEMID>>(
 request_id,pair<int,int>(user_id,selected_item)));
 break;
 }
 MY_ASSERT(false,"Cannot happen");
 //throws an exception, more on MY_ASSERT in Chapter[[TODO]]
 }
 break;

 case DB_BUY_ITEM_FROM_ACCOUNT:
 for(auto rq:store_item_requests) {
 auto ok = dbBuyItemFromAccount_recv(ev, rq.first);
 if(ok.first) {
 pair<int,ITEMID> user_id_and_item = rq.second;
 bool item_ok = ok.second;
 //got DB confirmation, let's modify our game world now
 players[user_id].addItem(user_id_and_item.second);
 //phew
 break;
 }
 MY_ASSERT(false,"Cannot happen");

If you feel that this code has been beaten with an ugly
stick – that’s because it is

Over 60 lines of code with only about 5 being meaningful (and the
rest being boilerplate stuff) is pretty bad. Not only it takes a lot of
keystrokes to write, but it is even worse to read (what really is
going on is completely hidden within those tons of boilerplate
code). And it is very error-prone too, making maintenance a
nightmare. If such a thing happens once for all your 1e6-LOC
game – that’s ok, but you will need these things much more than
once. Let’s see what can we do to improve it.

Take 2. OO-Style: Less Error-Prone, but Still
Unreadable
In OO-style, we will create a Callback class, will register it with
our FSM, and then it will be FSM framework (“the code outside of
FSMs”) dealing with most of the mechanics within. Rewriting our
“item purchase” example int OO-style will change the whole thing
drastically. While IDL will be the same, both generated code and
calling code will look very differently. For OO-style asynchronous calls, stub code
generated from IDL may look as follows:

And our calling code may look as follows:

79
80
81
82
83
84

 MY_ASSERT(false,"Cannot happen");
 //throws an exception, more on MY_ASSERT in Chapter[[TODO]]
 }
 break;
 }
}

LOC
Lines of Code is
a sof tw are
metric used to
measure the
size of a
computer
program by
counting the
number of lines
in the text of the
program's
source code

— Wikipedia —

1
2
3
4
5
6
7
8
9

10
11
12
13
14

//GENERATED FROM IDL, DO NOT MODIFY!
void dbGetAccountBalance_send(FSM* fsm, /* new */ Callback* cb,
 FSMID target_fsm_id, int user_id);
 //sends a message, calls cb->process_callback() when done
int dbGetAccountBalance_parsereply(Event& ev);

void dbGetStoreItems_send(FSM* fsm, /* new */ Callback* cb, FSMID target_fsm_id);
list<StoreItem> dbGetStoreItems_parsereply(Event& ev);
void dbBuyItemFromAccount_send(FSM* fsm, /* new */ Callback* cb,
 FSMID target_fsm_id, int user_id, ITEMID item);
bool dbBuyItemFromAccount_parsereply(Event& ev);
void clientSelectItemToBuy_send(FSM* fsm, /* new */ Callback* cb,
 FSMID target_fsm_id, const list<StoreItem>& items, int current_balance);
ITEMID clientSelectItemToBuy_parsereply(Event& ev);

1
2
3

//LESS ERROR-PRONE THAN TAKE 1, BUT STILL UNREADABLE
//TO BE AVOIDED IF YOUR COMPILER SUPPORTS LAMBDAS
class BuyItemFromAccountCallback : public Callback {

https://en.wikipedia.org/wiki/Source_lines_of_code

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

class BuyItemFromAccountCallback : public Callback {
 private:
 MyFSM* fsm;
 int user_id;
 ITEMID item;

 public:
 BuyItemFromAccountCallback(MyFSM* fsm_,int user_id_, ITEMID item_)
 : fsm(fsm_),user_id(user_id_), item(item_)
 {
 }
 void process_callback(Event& ev) override {
 bool ok = dbBuyItemFromAccount_parsereply(ev);
 if(ok)
 fsm->players[user_id].addItem(user_id_and_item.second);
 }
};
class ClientSelectItemToBuyCallback : public Callback {
 private:
 MyFSM* fsm;
 int user_id;

 public:
 ClientSelectItemToBuyCallback(MyFSM* fsm_,int user_id_)
 : fsm(fsm_),user_id(user_id_)
 {
 }
 void process_callback(Event& ev) override {
 ITEMID item = clientSelectItemToBuy_parsereply(ev);
 dbBuyItemFromAccount_send(fsm,
 new BuyItemFromAccountCallback(fsm,user_id,item),
 fsm->getDbFsmId(), user_id, item);
 }
};
class GetStoreItemsCallback : public Callback {
 private:
 MyFSM* fsm;
 int user_id;
 int balance;

 public:
 GetStoreItemsCallback(MyFSM* fsm_,int user_id_, int balance_)
 : fsm(fsm_),user_id(user_id_), balance(balance_)
 {
 }
 void process_callback(Event& ev) override {
 list<StoreItem> items = dbGetStoreItems_parsereply(ev);
 clientSelectItemToBuy_send(fsm,
 new ClientSelectItemToBuyCallback(fsm, user_id),
 fsm->getClientFsmId(user_id), items, balance);
 }
};

class GetAccountBalanceCallback : public Callback {
 private:
 MyFSM* fsm;
 int user_id;

This one is less error-prone than the code in Take 1, but is still very verbose, and
poorly readable. For each meaningful line of code there is still 10+ lines of boilerplate
stuff (though it is easier to parse it out while reading, than for Naïve one).

In [Facebook] it is named “callback hell” . Well, I wouldn’t be that categoric (after all,
there was life before 2011), but yes – it is indeed very annoying (and poorly
manageable). If you don’t have anything better than this – you might need to use this
kind of stuff, but if your language supports lambdas, the very same thing can be
written in a much more manageable manner.

Take 3. Lambda Continuations to the rescue! Callback
Pyramid
As soon as we get lambda functions (i.e. more or less since C++11), the whole thing
becomes much easier to write down. First of all, we could simply replace our classes
with lambda functions. In this case, code generated from the very same IDL, may look
as follows:

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

 int user_id;

 public:
 GetAccountBalanceCallback(MyFSM* fsm_,int user_id_)
 : fsm(fsm_), user_id(user_id_)
 {
 }
 void process_callback(Event& ev) override {
 int balance = dbGetAccountBalance_parsereply(ev);
 dbGetStoreItems_send(fsm,
 new GetStoreItemsCallback(fsm,user_id, balance), fsm->getDbFsmId());
 }
};

void MyFSM::process_event(Event& ev){
 switch(ev.type) {
 case SOME_OTHER_EVENT:
 //...
 //decided to make a call
 dbGetAccountBalance_send(this,
 new GetAccountBalanceCallback(this, user_id), db_fsm_id, user_id);
 //...
 break;
 }
}

And calling code might look as follows:

Compared to our previous attempts, such a “callback pyramid” is indeed a big relief.
Instead of previously observed 50+ lines of code for meaningful 5 or so (with
meaningful ones scattered around), here we have just about 2 lines of overhead per

1
2
3
4
5
6
7
8
9

10
11
12

//GENERATED FROM IDL, DO NOT MODIFY!
void dbGetAccountBalance(FSM* fsm, FSMID target_fsm_id, int user_id,
 std::function<void(int)> cb);
 //sends a message, calls cb when done

void dbGetStoreItems(FSM* fsm, FSMID target_fsm_id,
 std::function<void(const list<StoreItem>&)> cb);
void dbBuyItemFromAccount(FSM* fsm, FSMID target_fsm_id, int user_id, ITEMID item,
 std::function<void(book ok)> cb);
void clientSelectItemToBuy(FSM* fsm, FSMID target_fsm_id,
 const list<StoreItem>& items, int current_balance,
 std::function<void(ITEMID item)> cb);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

//inside MyFSM::process_event():
//...
//decided to make a call
dbGetAccountBalance(this,db_fsm_id,user_id,
 [=](int balance) {
 //this lambda is a close cousin of
 // Take2::GetAccountBalanceCallback
 // You may think of lambda object created at this point,
 // as of Take2::GetAccountBalanceCallback
 // automagically created for you
 dbGetStoreItems(this,db_fsm_id,
 [=](const list<StoreItem>& items) {
 //this lambda is a close cousin of
 // Take2::GetStoreItemsCallback
 clientSelectItemToBuy(this,user_fsm_id,items,balance,
 //here, 'this', 'user_fsm_id', and 'balance' are 'captured'
 // from the code above
 [=](ITEMID item) {
 //this lambda is a close cousin of
 // Take2::ClientSelectItemToBuyCallback
 dbBuyItemFromAccount(this,db_fsm_id,user_id,item_id,
 [=](bool ok) {
 //this lambda is a close cousin of
 // Take2::BuyItemFromAccountCallback
 if(ok) {
 players[user_id].addItem(item_id);
 }
 }
);
 }
);
 }
);
 }
);

Don't even
think of
converting all of
your code to a
so-called
Continuation-
Passing-Style

each meaningful line (instead of previous 10(!)), and also all our meaningful lines of
code are nicely gathered in one place (and in their right order too). Phew. With all my
dislike to using lambdas just for the sake of your code being “cool” and functional, this
is one case when using lambdas makes very obvious sense (despite the syntax looking
quite weird).

In fact, this code is very close to the way Node.js programs handle asynchronous calls.
Actually, as it was mentioned in Chapter V [[TODO!: mention it there]] the whole task
we’re facing with our QnFSMs (which is “event-driven programming with a completely
non-blocking API”) is almost exactly the same as the one for Node.js, so there is no
wonder that the methods we’re using, are similar.

On Continuations

Those lambdas we’re using here, are known as “continuations”. In
general, “continuation” is a thing, which says what we should do
when we reach certain point within our logical flow. To make our
FSMs (and Node.js) work – continuations are the only feasible way
to do it (in fact, our Take 1 and Take 2 also implemented
continuations, albeit in an unusual way).

However, don’t even think of converting all of your code to a so-
called Continuation-Passing-Style (the one with an explicit
prohibition for any function to return any value, instead each and
every function taking additional function parameter to be called
with would-be return value). Full conversion to continuation-
passing-style will make your code significantly less readable, and
will hit your performance too. Think of our “callback pyramid”
code above not as a final proof of lambdas being the-utlimate-
solution-to-all-your-problems, but as of a useful pattern, which can be used to
simplify coding in this specific scenario.

Exceptions

Now, as we got rid of those ugly Take 1 and Take 2 (where any additional complexity
would make them absolutely incomprehensible), we can start thinking about adding
exceptions to our code. Indeed, we can add exceptions to the “callback pyramid”, by
adding (to each of RPC stubs and each of the lambdas) another lambda parameter to
handle exceptions (corresponding to usual ‘catch’ statement). Keep in mind that to
provide usual try-catch semantics (with topmost-function exception handler catching
all the stuff on all the levels), we need to pass this ‘catch’ lambda downstream:

“
1

w ith
'callback
pyramid' it is
not easy to
express the
concept of 'w ait
f or more than
one thing to
complete' ,
w hich leads to
unnecessary
sequencing,
adding to

As we can see, while handling exceptions with ‘callback pyramid’ is possible, it
certainly adds to boilerplate code, and also starts to lead us towards the Ugly Land
.

Limitations

For the ‘callback pyramid’ above, I see two substantial limitations.
The first one is that adding exceptions, while possible, adds to
code ugliness and impedes readability (see example above).

The second limitation is that with ‘callback pyramid’ it is not easy
to express the concept of “wait for more than one thing to
complete” , which leads to unnecessary sequencing, adding to
latencies (which may or may not be a problem for your purposes,
but still a thing to keep in mind).

On the other hand, as soon as we have lambdas, we can make
another attempt to write our asynchronous code, and to obtain
the code which is free from these two limitations.

 which is the first thing Google throws at you when you’re typing
in “node.js continuation”

Take 4. Futures

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

dbGetAccountBalance(this,db_fsm_id,user_id,
 [=](int balance, std::function<void(std::exception&)> catc) {
 dbGetStoreItems(this,db_fsm_id,
 [=](const list<StoreItem>& items, std::function<void(std::exception&)> catc) {
 clientSelectItemToBuy(this,user_fsm_id,items,balance,
 [=](ITEMID item, std::function<void(std::exception&)> catc) {
 dbBuyItemFromAccount(this,db_fsm_id,user_id,item_id,
 [=](bool ok, std::function<void(std::exception&)> catc) {
 if(ok) {
 players[user_id].addItem(item_id);
 }
 }
 ,catc);
 }
 ,catc);
 }
 ,catc);
 },
 [=](std::exception&) {//'catch'
 //do something
 }
);

“

1

latencies
(w hich may or
may not be a
problem f or
your purposes,
but still a thing
to keep in
mind).

While lambda-based ‘callback pyramid’ version is indeed a Big Fat
Improvement over our first two takes, let’s see if we can improve
it further. Here, we will use a concept known as “futures” (our
FSMFuture is similar in concept, but different in implementation,
from std::future, boost::future, and folly::Future, see “Similarities
and Differences” section below for discussion of differences
between the these). In our interpretation, “future” is a value which
is already requested, but not obtained yet. With such “futures”,
IDL-generated code for the very same “item purchase” example,
may look as follows :

And the calling code will look along the lines of:

1
2
3
4
5
6
7

FSMFuture<int> dbGetAccountBalance(FSM* fsm, FSMID db_fsm_id, int user_id);
FSMFuture<list<StoreItem>> dbGetStoreItems(FSM* fsm, FSMID db_fsm_id);
FSMFuture<void> dbBuyFromAccount(FSM* fsm, FSMID db_fsm_id,
 int user_id, ITEMID item);

FSMFuture<ITEMID> clientSelectItemToBuy(FSM* fsm, FSMID client_fsm_id,
 list<StoreItem>, int current_balance);

While being a bit more verbose than lambda-based “call pyramid” version, at least for
me personally it is more straightforward and more readable. Also, as a side bonus, it
allows to describe scenarios when you need two things to continue your calculations
(in our example – results of dbGetAccountBalance() and dbGetStoreItems()) quite
easily, and without unnecessary sequencing which was present in all our previous
versions. In other words, the future-based version as written above, will issue two first
non-blocking RPC requests in parallel, and then will wait for both of them before
proceeding further (opposed to all previous versions issuing the same calls
sequentially and unnecessary losing on latency). While writing the same parallel logic
within the previous takes is possible (except maybe for Take 3), it would result in a

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

//inside MyFSM::process_event():
//...
//decided to make a call
FSMFuture<int> balance = dbGetAccountBalance(this, db_fsm_id ,user_id);
 //sends non-blocking RPC request
FSMFuture<list<StoreItem>> items = dbGetStoreItems(this, db_fsm_id);
 //sends non-blocking RPC request

// all further calls don't normally do anything right away,
// just declaring future actions
// to be performed when the results are ready

//declare that we want to wait for both non-blocking RPC calls to complete
FSMFutureBoth<int,list<StoreItem>> balance_and_items(this, balance, items);

//declare what we will do when both balance and items are ready
FSMFuture<ITEMID> clientSelection = balance_and_items.then(
 [=]() {
 return clientSelectItemToBuy(this, user_fsm_id,
 balance_and_items.secondValue(), balance_and_items.firstValue());
 }
).exception(
 //NOTE that when we're attaching exception handler to a future,
 // FSMFuture implementation can also apply it
 // to all the futures 'downstream'
 // unless it is explicitly overridden
 [=]() {
 //handle exception
 }
);

//declare what we will do when
FSMFuture<bool> purchase_ok = clientSelection.then(
 [=]() {
 return dbBuyFromAccount(this, db_fsm_id, user_id, clientSelection.value());
 }
);

purchase_ok.then(
 [=]() {
 players[user_id].addItem(clientSelection.value());
 }
);

Perf ormance-
w ise, the
dif f erences
betw een
dif f erent code
versions
discussed above
w ill be
negligible f or
pretty much
any
conceivable
scenario.

code which is too ugly to deal with and maintain at application level; with futures, it is
much more straightforward and obvious.

Similarities and Differences
All the different takes are similar

It should be noted that for our “item purchase” example (and actually any other
sequence-of-calls scenario), all our versions are very similar to each other, with most
of the differences being about “syntactic sugar”. On the other hand, when faced with
code from Take 1, and equivalent one from Take 4, I would certainly prefer the latter
one .

Performance-wise, the differences between different code
versions discussed above will be negligible for pretty much any
conceivable scenario. Consistently with Erlang/Akka/Node.js
approaches, our unit of processing is always a message/event.
Events as such roughly correspond to context switches, and
context switches are quite expensive beasts (for x64 – very
roughly of the order of 10’000 CPU clocks, that is, if we account
for cache reloads, YMMV, batteries not included). So, even if
we’re using our non-blocking RPCs to off-load some calculations
to different threads (and not for inter-server communications,
where the costs are obviously higher), the costs of each
message/event processing are quite high, and things such as
dynamic dispatching or even dynamic allocations won’t be large
enough to produce any visible performance difference.

Differences from std::future etc.

Traditionally, discussions about asynchronous processing are
made in the context of “Off-loading” some calculations into a
different thread, doing some things in parallel, and waiting for
the result (at the point where it becomes necessary to calculate
things further). This becomes particularly obvious when looking
at std::future: among other things, it has get() method, which waits until the future
result is ready (the same goes for boost::future, and folly::Futures have wait() method
which does pretty much the same thing). As our FSMs in QnFSM model are completely
non-blocking, we are not allowed to have things such as std::future::get() or
folly::Future::wait().

Whenever an std::future (or folly::Future) completes computation, it reports back to
original future object via some kind of inter-thread notification. Also for this kind of
futures, the code in callbacks/continuations MAY (and usually will) be called from a
different thread, which means that callbacks are normally not allowed to interact with
the main thread (except for setting a value within the future).

“2

All of this
w ill happen
w ithout any
thread
synchronization.

Similarities to Node.js

In contrast, our asynchronous processing is based on the premise that whenever a
future is available, it is delivered as a yet another message to FSM::process_event(). It
stands for all our four different versions of the code (with the differences, while
important practically, being more of syntactic nature). As a consequence, all versions
of our code guarantee that all our callbacks (whether lambda or not) will always be
called from the same thread, which means that

we are allowed to use FSM object and all it’s fields from
all our callbacks (lambdas or not) and without any

thread synchronization

It allows to handle much more sophisticated scenarios than that
of linear calculation/execution. For example, if in our “item
purchase” example there is a per-world limit of number of items
of certain type, we MAY add the check for number of items which
are already present within our world, into processing of
clientSelectItemToBuy reply, to guarantee that the limit is not
exceeded. If there is only one item left, but there are many clients
willing it, all of them will be allowed to go up until to
clientSelectItemToBuy, but those who waited too long there, will
get an error message at the point after clientSelectItemToBuy
returns. All this will happen without any thread synchronization.

From this point of view, our futures (as well as the other our
Takes on the asynchronous communications) are more similar to Node.js approach
(where all the callbacks are essentially made within the same thread, so no thread
synchronizations issues arise).

Alternatively, we can see Take 3 and Take 4 as a quite special case of
coroutines/fibers. In such interpretation, we can say that there is an implicit
coroutine “yield” before each RPC call in a chain, which allows other messages to be
processed while we’re waiting for the reply. Still, when a reply comes back, we’re back
in the same context and in the same thread where we were before this implicit “yield”
point.

 context switches being that expensive is one reason why off-loading micro-
operations to other threads doesn’t work (in other words: don’t try to off-load lone
“int a+ int b” to a different thread, it won’t do any good)
 strictly speaking, in some fairly unusual deployment scenarios there can be

exceptions to this rule, but no-synchronization needed claim always stands
 which is why we have significant simplification for our lambda version compared to

the one in [Facebook]

3

4

“

2

3

4

On serializable lambdas in C++
To have all the FSM goodies (like production post-mortem etc.), we need to be able to
serialize those captured values within lambdas (this also applies to FSMs). For most of
the languages out there, pretty much everything is serializable, including lambda
objects, but for C++, serializing lambda captured values is not easy .

The best way of doing it which I currently know, is the following:

write and debug the code written as in the examples above. It won’t give you
things such as production post-mortem, or full FSM serialization, but they’re
rarely needed at this point in development (if necessary, you can always go via
production route described below, to get them)

add prefix such as SERIALIZABLELAMBDA before each such lambda; define it to
an empty string (alternatively, you may use specially formatted comment, but I
prefer empty define as more explicit)

have your own pre-processor which takes all these SERIALIZABLELAMBDAs and
generates code similar to that of in Take 2, with all the generated classes
implementing whatever-serialization-you-prefer (and all the generated classes
derived from some base class SerializableLambda or something). Complexity of
this pre-processor will depend on the amount of information you provide in your
SERIALIZABLELAMBDA macro:

if you write it as SERIALIZABLELAMBDA(int i, string s), specifying all the
captured variables with their types once again, then your pre-processor
becomes trivial

if you want to write it as SERIALIZABLELAMBDA w/o parameters, it is still
possible, but deriving those captured parameters and their types can be
not too trivial

which way to go, is up to you, both will work

in production mode, run this pre-processor before compiling

in production mode, make sure that RPC functions don’t accept std::function
(accepting class SerializableLambda instead), so that if you forget to specify
SERIALIZABLELAMBDA, your code won’t compile (which is better than if it
compiles, and fails only in runtime)

TL;DR for Asynchronous Communications in FSMs
We’ve discussed in detail asynchronous RPC calls, but handling of timer-related
messages can be implemented in a very similar way

As our FSMs are non-blocking, being asynchronous becomes the law (exactly as
for Node.js)

You will need IDL (and IDL compiler) one way or another (more on it in Chapter
[[TODO]])

Ef f ects of any
exception
happening
bef ore Modif y
stage are
trivial: as w e
didn't modif y
anything, any
exception w ill

Ways of handling asynchronous stuff in FSMs are well-known, but are quite ugly
(see Take 1 and Take 2)

With introduction of lambdas, it became much better and simpler to write and
understand (see Take 3 and Take 4)

Futures can be seen as an improvement over “call pyramid” use of lambdas
(which is consistent with findings in [Facebook])

in particular, it simplifies handling of “wait-for-multiple-results-before-
proceeding” scenarios

FSM futures, while having the concept which is similar to std::future and
folly:Future, are not identical to them

in particular, FSM futures allow interaction with FSM state from
callbacks without any thread synchronization

To get all FSM goodies in C++, you’ll need to implement serializing lambdas, see
details above

FSMs and Exceptions
One more FSM-related issue which was uncovered until now, is related to subtle
relations between FSMs and exceptions. Once again, most of our discussion (except
for the part marked “C++-specific”) will apply to most programming languages, but
examples will be given in C++.

V alidate-Calculate-Modify Pattern
One very important practical pattern for FSMs, is Validate-Calculate-Modify. The
idea behind is that most of the time, when processing incoming event/message within
our FSM, we need to do the following three things:

V alidate. check that the incoming event/message is valid

Calculate. calculate changes which need to be made to the
state of our FSM

Modify. Apply those calculated changes.

This pattern has quite a few useful applications; however, the
most important uses are closely related to exceptions. As long as
we don’t modify state of our FSM within Validate and Calculate
stages, effects of any exception happening before Modify stage
are trivial: as we didn’t modify anything, any exception will lead
merely to ignoring incoming message (without any need to
rollback any changes, as there were none; handling of on-stack
allocations depends on the programming language and is
discussed below), which exactly what is necessary most of the
time (and this has some other interesting uses, see “Exception-
based Determinism” section below). And Modify stage is usually

“

lead merely to
ignoring
incoming
message,
w ithout any
need to rollback
any changes, as
there w ere
none

Depending on

trivial enough to avoid vast majority of the exceptions.

Enforcing const-ness for V alidate-Calculate-
Modify (C++-specific)
To rely on “no-rollback-necessary” exception property within
Validate-Calculate-Modify pattern, it is important to enforce
immutability of FSM state before Modify stage. And as it was
noted in [[GDC2015 – TODO!]], no rule is good if it is not enforced.
Fortunately, at least in C++ we can enforce immutability relatively
easily (that is, for reasonable and non-malicious developers). But
first, let’s define our task. We want to be able to enforce const-ness along the
following lines:

To make it work this way, for C++ I suggest the following (reasonably dirty) trick:

While not 100% neat, it does the trick, and prevents from
accidental writing to FSM state before modify_stage_fsm() is
called (as compiler will notice modifying const this pointer, and
will issue an error). Of course, one can call modify_stage_fsm() at
the very beginning of the process_event() negating all the
protection (or use one of several dozens another ways to bypass
const-ness), but we’re assuming that you do want to benefit from
such a split, and will honestly avoid bypassing protection as long

1
2
3
4
5
6
7
8
9

10

void MyFSM::process_event(Event& ev) {
 ///VALIDATE: 'this' is const
 //validating code

 //CALCULATE: 'this' is still const
 //calculating code

 //MODIFY: 'this' is no longer const
 //modifying code
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void MyFSM::process_event(Event& ev) const {
 //yes, process_event() is declared const(!)

 //VALIDATE: 'this' is enforced const
 //validating code
 //CALCULATE: 'this' is still enforced const
 //calculate code

 //MODIFY:
 MyFSM* fsm = modify_stage_fsm();
 //modify_stage_fsm() returns const_cast<MyFSM*>(this)

 //modifying code
 // uses 'fsm' which is non-const
}

“

your game and
FSM
f ramew ork,
post_message()
f unction may
be implemented
either as as a
non-const
f unction (then
you'll need to
call it only af ter
modif y_stage_f sm()),
or as a const
f unction (and
then it can be
called bef ore
modif y_stage_f sm())

as it is possible.

Note that depending on your game and FSM framework,
post_message() function (the one which posts messages to other
FSMs) may be implemented either as as a non-const function
(then you’ll need to call it only after modify_stage_fsm()), or as a
const function (and then it can be called before
modify_stage_fsm()). To achieve the latter, your FSM framework
need to buffer all the messages which were intended to be sent via
post_message() (NOT actually sending them), and to post them
after the process_event() function successfully returns (silently
dropping them in case of exception).

Now to the goodies coming out of such separation.

Exceptions before Modification Stage are Safe,
including CPU exceptions
There are certain classes of bugs in your code which are very
difficult to test, but which do occasionally happen. Some of them
are leading to situations-which-should-never-happen (MYASSERTs throwing
exception, see Chapter [[TODO]] for further discussion), or even to CPU exceptions
(dereferencing NULL pointer and division-by-zero being all-time favourites).

If you’re following the Validate-Calculate-Modify pattern, then all such exceptions
(that is, if you can convert CPU exception into your-language-exception, see Chapter
[[TODO]] for details for C++) become safe, in a sense that offending packet is merely
thrown away, and your system is still in a valid state, ready to process the next
incoming message. Yes, in extreme cases it may lead certain parts of your system to
hang, but in practice most of the time the impact is very limited (it is much better to
have a crazy client to hang, than your whole game world to hang, to terminate, or to
end up in an inconsistent state).

This resilience to occasional exceptions has been
observed to be THAT important in practice, that I

think it alone is sufficient to jump through the hoops
above, enforcing clean separation along V alidate-

Calculate-Modify lines.

Exception-based Determinism
One of the ways to achieve determinism which was mentioned in Chapter V with
description postponed until later, is exception-based determinism.

“

Let’s consider the following scenario: your FSM MIGHT need some non-determinstic
data, but chances for it happening are fairly slim, and requesting it for each call to
process_event() would be a waste. One example of such a thing is random data from
physical RNG. Instead of resorting to “call interception” (which is not the cleanest
method available, and also won’t work well if your RNG source is slow or on a different
machine), you MAY implement determinism via exceptions. It would work along the
following lines:

RNG_data becomes one of the parameters to process_event(), but is normally
empty.

Alternatively, you MAY put it alongside with current_time to TLS, see
Chapter V for details

if, by any chance, you find out that you need RNG_data
during your CALCULATE stage with RNG_data being empty
– you throw a special exception NeedRNGData

as your VALIDATE and CALCULATE stages didn’t
change FSM state, there is nothing to rollback within
the state

on-stack variable handling will be different for C++ and
garbage-collected languages:

for C++, as long as you’re always using
RAII/std::unique_ptr<> for all on-stack resources
(which you should for C++ anyway), all such objects
will be rolled back automagically without any
additional effort from your side

for garbage-collected languages, all on-stack
objects will be cleaned by garbage collector

on receiving such an exception, the framework outside of
FSM will obtain RNG_data, and then will call MyFSM::process_event() once
again, this time providing non-empty RNG_data

this time, your code will go along exactly the same lines until you’re trying to use
RNG_data, but as you already have non-empty RNG_data, you will be able to
proceed further this time.

Bingo! You have your determinism in a clean way, without “call interception” (and all
because of clean separation between Validation-Calculation-Modification).

FSM Exception Summary
To summarize my main points about FSM and exceptions:

Validate-Calculate-Modify is a pattern which simplifies life after deployment
significantly (while it is not MUST-have, it is very-nice-to-have)

if you’re following it, enforcing it is a Good Thing(tm)

RAII
Resource
Acquisition Is
Initialization is
a programming
idiom used in
several object-
oriented
languages, most
prominently
C++, but also D,
Ada, Vala, and
Rust.

— Wikipedia —

https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

« MMOG Serv er-Side. Eternal Linux-v s-W indow s Debate

 MMOG Serv er-Side. Programming Languages »

Following it will allow you to safely ignore quite a few things-you-forgot-about
without crashing (don’t overrely on it though, it is not a silver bullet)

It also allows to achieve determinism without “call interception” via using
exception-based Determinism in some practically important cases

What are you waiting for? Do It!

[[To Be Continued…
This concludes beta Chapter VI(d) from the upcoming book
“Development and Deployment of Massively Multiplayer Games
(from social games to MMOFPS, with social games in between)”.
Stay tuned for beta Chapter VI(d), “Modular Architecture:
Server-Side. Programming Languages.]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: asynchronous, finite state machine, game, multi-player

Copyright © 2014-2016 ITHare.com

[–] References
[Facebook] Hans Fugal, “Futures for C++11 at Facebook”

https://code.facebook.com/posts/1661982097368498/futures-for-c-11-at-facebook/
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/mmog-server-side-eternal-linux-vs-windows-debate/
http://ithare.com/mmog-server-side-programming-languages/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/asynchronous/
http://ithare.com/tag/finite-state-machine/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
MMOG Server-Side. Programming Languages
posted January 18, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VI(e) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested. Beta-
testing is intended to improve the quality of the book, and
provides free e-copy of the “release” book to those who
help with improving; for further details see “Book Beta
Testing“. All the content published during Beta Testing, is
subject to change before the book is published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of Contents.]]

Going Cross-Platform
In one of the previous sections we’ve discussed choosing a platform for your MMOG
servers. However, one of the first things I’ve noted was that you should certainly
consider developing cross-platform code. In fact, this is what I am usually doing
(that is, if I can get past management, which is usually supported by a bunch of
fellow developers who neither know, nor don’t want to learn anything but their-
favorite thing). But let’s see what going cross-platform means from the
programming languages point of view.

Cross-platform C++

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

Note that f or
some out-of -
FSM pieces of

Actually, my personal favorite for cross-platform development, is cross-platform
C++. To those having any doubts: yes, C++ can be made cross-platform, I’ve done it
myself on numerous occasions. It works even better when you have your code
restricted to event-driven side-effect-free processing (a.k.a. deterministic finite-
state-machines (FSMs), see Chapter V for details). For our current discussion, one
thing is important about FSMs: as soon as your FSM becomes deterministic, it
doesn’t really have any significant interaction with the system, so it is “pure logic”
(a.k.a. “moving bits around”, and is pretty much like “pure” functions from
functional programming). And “pure logic” is inherently cross-platform (that is, as
long as you keep it “pure”).

On the other hand, to keep your logic “pure”, you’ll need to make quite significant
effort, and to be extremely vigilant when it comes to platform-specific
dependencies (see also relevant discussion in Chapter V). This is especially true for
C++.

Note that for some out-of-FSM pieces of code, you MAY want
to use platform-specific stuff as an optimization. Usually, it
works as follows (yes, I know it is really old news for all the seasoned
C++ cross-platform developers, but believe me or not, there are lots of
C++ developers out there who don’t know it, especially hardcore
zealots of Windows-specific development):

You develop a perfectly cross-platform version, which
uses only cross-platform APIs. It doesn’t really matter

“

/wp-content/uploads/BB_part073_BookChapter006d_v1.png

code, you MAY
w ant to use
platf orm-
specif ic stuf f as
an
optimization.

whether cross-platform API is a part of official C++
standard, more important question is whether it is really
implemented across the board. In practice, there are
several big sets of APIs which we can safely consider
cross-platform:

C++11 standard (C++14 is still only partially
supported across the board), including std:: library

Most of C Standard Library (see discussion on it’s
limitations in Chapter [[TODO]])

boost:: library

Berkeley sockets (while it is not strictly 100% cross-platform, for
practical purposes it is very close)

Note that POSIX standard stuff (the one which is not a part of C library) is
generally NOT cross-platform. Notable example: fork() which is missing
under Windows

Moreover, some Windows functions which look like their POSIX
counterparts and have the same signatures, exhibit different
behavior. One notable example includes Microsoft _exec*() family of
functions, which has very different semantics from POSIX exec*() .

You launch it, and it works for a while

Then, you realize that performance of your cross-platform code can be
improved for one specific platform. Just as one example – your cross-platform
version implemented inter-thread queues-with-select() (see Chapter V for the
rationale behind these queues, which are waiting either for somebody pushing
something into the queue, or for data arriving to one of the sockets) via
sockets+anonymous-pipe, and you realized that under Windows
WaitForMultipleObjects()-based version will work faster.

Ok, you’re rewriting relevant piece of code (keeping all the external
interfaces of this piece intact), and placing it under an ugly (but still
working perfectly fine) #ifdef MY_DEFINE_WINDOWS_ONLY (and
relevant portion of the cross-platform code under #ifndef
MY_DEFINE_WINDOWS_ONLY). Bingo! You have your Windows-specific
version running under Windows, and your cross-platform version
running everywhere else.

Bottom line: C++ can be made cross-platform. For further details, see Chapter
[[TODO]].

Cross-platform Languages

…the purpose of Newspeak was not only to provide a medium of expression for the world-
view and mental habits proper to the devotees of IngSoc, but to make all other modes of

thought impossible.

Almost all
cross-platf orm
programming
languages I
know are
garbage-
collected

— G. Orwell —

Another way to achieve cross-platform code is to use one of the cross-platform
languages, such as Java, Python, C#, or Erlang.

From cross-platform point of view, these languages have one significant advantage
over cross-platform C++: most of their APIs are already cross-platform, so they
don’t provide you that much opportunities to deviate into platform-specific stuff.
While going platform-specific is still possible (via JNI/Python ctypes/PInvoke or
unmanaged code/…), it is usually more difficult with cross-platform languages.

This “going platform-specific being more difficult” is
actually the main advantage of cross-platform

languages when going cross-platform

In other words, the problem with C/C++ is that they’re providing you more freedom
with going platform-specific (and yes, having more freedom is not always a good
thing). The way cross-platform languages are doing it, can be seen as an (almost)
enforcement of a self-imposed rule that “everything should be cross-platform”.

Now let’s consider these languages against our “baseline” cross-platform C++.

Pros (compared to C++)

Almost all cross-platform programming languages I know
are garbage-collected.

It means less time spent on memory management
during development, which in turn means faster
time-to-market. On the other hand, I will argue that
for an FSM model (especially in gaming context,
where memory allocations are often discouraged as
too expensive), memory management is rudimentary
either way, so the difference will be negligible (that is,
provided that you have at least one seasoned C++
developer who knows how the things should be done
at lower levels, and provided that you are using
std::unique_ptr<>).

It means no pointers, and no bugs related to misuse
of pointers (and, Ritchie save us, pointer arithmetic).
Note that once again, we’re in the realm of having too much freedom
causing trouble (and once again, it is only a question of self-discipline to
avoid using them, as references do just fine 90% of the time, and
reference-like use of pointers will fill the rest).

As noted above, keeping your code cross-platform requires much less efforts

“

1

https://en.wikipedia.org/wiki/George_Orwell

Almost all
cross-platf orm
programming
languages I
know are
garbage-
collected

in Java/Python/… than in C++.

Learning curve. C++ learning curve is steep. It is not too bad if you’re staying
within limits of the FSM, but reading a book on C++ can easily be overwhelming
(especially books which start with discussing interesting-but-not-really-
important-and-rarely-used-things such as “how to overload operators” and
multiple inheritance).

Good C++ developers are few and far between, not to mention they’re very
expensive. For most of the languages above (except for Erlang) finding a good
developer is usually significantly easier.

Cons (compared to C++)

When speaking about deficiencies of the cross-platform
programming languages, several things come to mind (note
that while the list of cons is longer than that of pros, it doesn’t
mean that cross-platform languages are inherently worse; it is
just that these cons are not as well-known as cons, so I’m
spending more time elaborating on them):

Almost all cross-platform programming languages I know
are garbage-collected. This means that they tend to suffer
from two problems:

the first problem is memory bloat (if you have any
doubts that such a problem exists – take a look at
Eclipse or at OpenHAB). I tend to attribute this
apparent bloat to the following. While garbage-
collected languages eliminate so-called “syntactic
memory leaks” (pieces of memory which cannot possibly be used), they
cannot possibly eliminate “semantic memory leaks” (pieces of memory
which can be used, but won’t be used, ever) [NoBugs2012]. And those
“semantic memory leaks” for garbage-collected languages tend to be
worse than for manually memory managed languages such as C++,
because of “we don’t need to care about memory leaks” mentality, and
because garbage collectors are obligated to stay on the absolutely safest
side, keeping in memory everything that has a slightest chance to be used
(i.e. everything reachable). Of course, memory bloat for garbage-collecting
languages can be managed (there is nothing difficult in explicitly
assigning null to a reference); however, whether after doing it they will
still provide that much speedup in development time over C++ – is not
obvious to me.

On the other hand, it should be noted that for
FSM-based development (which usually implies
states of rather limited size), the problem of
“semantic memory leaks” is usually not too bad
(based on the same reasoning why manual

“1

Semantic
Garbage
Semantic
garbage cannot

https://en.wikipedia.org/wiki/Garbage_%28computer_science%29#semantic_garbage

memory management is usually not that much of
a problem for FSM-based development), and
fixing them isn’t too difficult.

The second problem is garbage collector’s infamous
“stop the world” (mis)feature. In short – to perform
garbage collection, most of GCs out there need to
“stop the world” (i.e. to stop all the threads(!) within the
same VM) for some time. For most of the
applications, it is not a problem (as delays even of a
hundred milliseconds are so short that your
application won’t really notice them). However, if
we’re speaking about a fast-paced game such as an
MMOFPS, these delays are known to cause lots of
trouble. Even worse, when you run into such things, it is usually too late to
rewrite your whole code, which leads to really ugly workarounds such as
“let’s not run garbage collector at all for a while” (then, if your game
event, such as match, is long enough, you can easily eat all the server RAM
and even more). While it doesn’t mean that GC languages cannot possibly
work with MMOFPS, I’d suggest to be very cautious in this regard, and to
research how big “stop-the-world” pauses are for the GC used by your
target VM (also note that it is about VM, and not about language, so, say,
the same C# may exhibit very different behaviour under CLR and Mono).

As a mitigating measure, it is possible to reduce the time of
“stopping the world” effect (at the cost of some performance loss);
see, for example, “Concurrent Mark-and-Sweep” and “G1” garbage
collectors for JVM, and <gcConcurrent>/SustainedLowLatency for
CLR; they run a large portion of GC processing without “stopping
the world” (so only a small part of GC loop needs to be run in the
“stop the world” mode). From what I know, these GCs (at the cost of
minor overall performance penalty) bring pauses down to single-ms
range even for large heaps, which makes it “good enough” even for
MMOFPS; as usual, YMMV, batteries not included. For Mono, there is
a supposedly similar GC flag concurrent-sweep, though I have no
information how small the “stop-the-world” pauses are when Mono
GC runs with this flag.

As another mitigation technique (which, at least in theory, may also
work as a compliment to concurrent collectors), it is possible to
reduce “stop the world” time by splitting your system into separate
VMs (such as JVM or CLR VM) and each VM will run a separate GC.
This tends to help because the smaller your “world” is, the less time
garbage collector will need to run, so the less time “stop the world”
will take. The technique actually flies extremely good with FSMs (as
FSMs, at least our FSMs and Erlang/Akka Actors, are share-nothing,
they can be easily put into separate VMs). In the extreme case, you
may even end up with running one VM for each of “game world”

be
automatically
collected in
general, and
thus cause
memory leaks
even in
garbage-
collected
languages.

— Wikipedia —

2

FSMs. There is a price of it, however, and it is related to the
overhead brought by each of VMs; where the optimum for your game
(balancing overhead vs latencies) – you’ll need to find out yourself.

The third GC-related problem is related to
asynchronous I/O (in our context – socket I/O).
Intensive server-side asynchronous I/O tends to
cause problems with GC at least under CLR, as to
pass the buffer to an asynchronous Win32 API, it
needs to be “pinned” (i.e. cannot be relocated, what
reflects pretty badly on CLR’s copying GC), and
having too many pinned buffers may cause CLR’s GC
to stall, up to the point of being deadlocked. While
there is a workaround for it, via
SocketAsyncEventArgs (or you can always go into an
unmanaged mode, accessing Win32 APIs directly and
losing being cross-platform pretty much as we’ve
discussed it for C++ in [[TODO!]] section above), this
is a complication one needs to be aware about in a
highly-loaded network-oriented environments. Also I
have no idea whether the workaround would work as
intended under Mono.

Unless your target platform has a JIT compiler for
bytecode of your language, you’re most likely looking at 10x+ performance
penalty

Fortunately, all the languages mentioned above do have JIT , with only one
unfortunate exception (leaving discussion about Lua/LuaJIT aside until
“Scripting Languages” section). Erlang, while working on BEAMJIT, still
seems to have it only as a proof-of-concept .

Even when compared with JIT-enabled cross-platform
language, C++ performance can be made at least somewhat
better 99% of the time. On the other hand, 95% of the time
you won’t bother with such optimizations. Possible
exceptions include heavy AI and/or heavy physics
simulations (especially if they go well with SSE).

 Rust being the only exception
 I know that Microsoft prefers to call it “Execution Engine”, but

it still looks like a VM, swims like a VM, and even quacks like a
VM
 As for Python, while CPython as such doesn’t have JIT , other

Python implementations, such as native PyPy and JVM-based
Jython, do have JITs.

JIT
Just-In-Time
(JIT)
compilation,
also know n as
dynamic
translation, is
compilation
done during
execution of a
program – at
run time –
rather than
prior to
execution

— Wikipedia —

3

SSE
Streaming SIMD
Extensions (SSE)
is an SIMD
(Single
Instruction
Multiple Data)
instruction set
extension to the
x86
architecture

— Wikipedia —

1

2

3

https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

On the server
side (unlike
client-side)

protection f rom
bot w riters is

not an issue (as
server-side

code is never
exposed to

players)

Personal Preferences and FSMs

Out of the aforementioned cross-platform programming languages, I am especially
fond of Erlang’s actors (and it also reportedly has a good record for development
of large-scale distributed systems, though an overhead due to apparent lack of JIT
is significant). Java and Python are not bad either (within their own applicability
limits). I have never been a big fan of C#, in particular because it traditionally has
the blurriest line between cross-platform APIs and platform-specific stuff (which is
not really surprising as such policy makes perfect business sense for Microsoft), but
if you’re planning your servers as Windows-only – it will certainly do, and if you’re
going to go Linux – Mono MIGHT work for your too (though in the latter case it is
not that obvious).

On the other hand, I need to note that with some self-discipline, FSMs described in
Chapter V (and which are strictly equivalent to Erlang’s actors/processes), can be
easily implemented in any of these languages (and in C++ too).

Scripting Languages

We went through C++ and cross-platform languages, but we’re not done yet.

As it was mentioned in Chapter V, for game development, there
is a common practice to use scripting languages for game
logic. People writing in scripting languages include, but are
not limited to, are game designers. Moreover, on the server
side (unlike client-side) protection from bot writers is not an
issue (as server-side code is never exposed to players), so it
means that scripting languages become more feasible for the
server-side. Therefore, it seems to make perfect sense to allow
using some kind of scripting language on the server too.

Two most common scripting languages, used in games, are
Lua and JavaScript. I won’t go into comparison of these two
languages, but will just note that both will do their job when it
comes to game scripting. Just one thing worth mentioning in
this regard is that there is an internal conflict within Lua
(between main Lua team and Mike Pall/LuaJIT , who actively
dislikes changes in Lua 5.3, so LuaJIT doesn’t seem likely to
support Lua 5.3+, ever(!)); this kind of internal conflicts can be
really devastating for the language in the medium- and long-

run, which makes it an argument against Lua .

The most common concern about allowing scripting on the server side is related to
performance. However, with LuaJIT (with limitations mentioned above, and I don’t
really like them) and V8 JavaScript (which also has it’s own JIT), this is much less of a
concern than for non-JIT-ted script engines.

“

From the
50'000-f eet
point of view ,
90% of the
dif f erences
betw een
modern
mainstream
programming
languages (as
they're
normally used -
or better to say,
SHOULD be used
- at application-
level) are minor
or superf icial.

On Languages as Such

I know that I will be hit hard (once again) for not going into a
lengthy discussion about pros and cons of different
programming languages (those which I mentioned above and
those which I failed to mention). However, my strong position is
that from the 50’000-feet point of view, 90% of the differences
between modern mainstream programming languages (as
they’re normally used – or better to say, SHOULD be used – at
application-level) are minor or superficial. This is also
confirmed by Line-to-Line conversion exercise discussed in
“Line-to-Line conversions: ‘1.5 code bases'” section below.

Another observation which helps in this regard, is that there is a
tendency for modern programming languages to converge as
the time goes. For example, C++11 code is much closer to Python
code than C++03, and Java 5+ (with generics) is much closer to
C++ than Java 4- (the one without generics). Programming
languages borrow certain constructs and practices (usually
best ones, but it is not guaranteed) from each other, bringing
them closer as the time goes.

Still, there are two things which tend to be quite different
between the programming languages. The first and more
obvious one, is, of course, the difference between manual and
automated memory management. Still, with more-or-less
modern C++ (with widespread use of containers and
std::unique_ptr<>), the difference is not that drastic.

The second thing which MIGHT be quite different between the languages, is related
to support for lambdas (which, as we’ve discussed in “Take 3. Lambda
Continuations to the Rescue! Callback Pyramid” and “Take 4. Futures” subsections
above, is important). For example, lambdas in Python
[StackOverflow.PythonLambdaLoop] and C# [StackOverflow.C#LambdaLoop] have
rather strange peculiarities with regards to lambdas within loop (or maybe it’s C++
peculiarity that it behaves as intuitively expected?). However, in most cases, some
strict equivalent between the languages still exists.

One further word of caution is related to co-routines. While co-routines/fibers do
simplify development (this stands to some extent even when we compare them to
futures), they have significant practical drawbacks related to lack of “stack
snapshot” (which is necessary to implement quite a few FSM goodies, including
realistic production post-mortem, see Chapter V for details [[TODO! add section on
coroutines and “stack snapshot” to Chapter V]]). Also, their support is still much less
universal than that of lambdas.

“4

5

 it doesn’t really stand for Erlang, and I am not 100% sure whether it stands for
Lua, as I don’t have practical experience with it, but
C++/C#/Java/Python/Javascript as-you-use-them-for-application-level-
programming are all pretty much the same, saving for relatively limited amount of
oddities and peculiarities
 For C++, you can use fibers, but IIRC Java as such doesn’t support them, and

Python 2 which is still used quite a lot, doesn’t have coroutines

W hich Language is the Best? Or On Horses for Courses

Right above, we’ve described quite a few options for server-
side programming languages. The Big Question is, as usual, the
following: which one to choose?

My two cents points in this regard are the following. First,
there is no such thing as “the best language for everything”.
What we need is a language-best-for-some-specific-task. And
here there are quite a few different scenarios, from “just a
scripting language for game designers to work with” (where
C++ and even Java are pretty much out of question), to “time-
critical simulation code”, with “something for integration with
enterprise web apps” in between. As a very wild guess, you
might want to use Lua or JavaScript for the first one, C++ for
the second one, and Java/C# for the third one (been there,

seen that). Doing everything in one single language, while possible, in many cases
will be suboptimal.

My second point in this regard is that with FSMs, it is easy to combine FSMs written
in different languages, in any way you want. Personally, I’ve made such things myself
for three languages: C++, Java, and JavaScript. It went along the following lines:

Originally, the whole thing (both outside-FSMs infrastructure code and intra-
FSM code) was written in C++. Great performance, full control, no problems
with GC, everybody was really happy, etc. etc. But finding good C++ developers
isn’t easy .

As a result, at some point, it was decided to make an analytics portal and to
develop it in Java.

As pure DB access wasn’t sufficient (as they needed real-time updates, and DB
triggers didn’t look optimal at all) Java guys asked for a way to get the data
from C++ system.

4

5

horses for
courses

An allusion to
the f act that a

racehorse
perf orms best

on a racecourse
to w hich it is

specif ically
suited.

— Wiktionary —

https://en.wiktionary.org/wiki/horses_for_courses

Here w ent a
line-to-line
translation
project of
outside-FSM
inf rastructure
code into Java
(to f acilitate
w riting FSMs in
Java)

Ok, here went a line-to-line translation project of outside-
FSM infrastructure code into Java (to facilitate writing
FSMs in Java), see “Line-to-Line Translations: “1.5 code
bases”” section below for further details

This outside-FSM infrastructure Java code was
compatible at message format level with C++ code, which
means that from C++ FSM standpoint, Java-based FSM was
indistinguishable from a C++-based one, and vice versa.

So, C++ and Java FSMs could interact easily (after agreeing
on interfaces, for more details see Chapter [[TODO]]),
without no problems whatsoever. In particular, Java FSMs
were able to “subscribe” to the data “published” by C++
FSMs, and get all the updates in real-time (most of the
data necessary was already published by C++ FSMs, so Java
FSM subscribing to the data they needed, was mostly
possible without changing C++ code).

In a different project (and similar situation), a JavaScript FSM
was produced to allow server-side scripting (in addition to existing C++ FSMs). In
this case, C++ outside-of-FSM code was re-used, which called process_event()
(written in JavaScript) from within. The same approach can be (more or less easily)
extended to all the other programming languages of interest, see “Supporting
Different Environments” section below for further discussion.

In any case, all the paradigms of our FSMs were transparently maintained for all the
FSMs across all the supported languages. This included more or less the following
things:

process_event() as a single access point to our FSM, see Chapter V
current_time was passed to process_event() either as an explicit
parameter, or via TLS and current_time() call (see Chapter V for details)

timer actions (in those projects, it was timer messages, but now I suggest
same-thread futures instead, see “Take 4. Futures” subsection above)

communication interfaces (see Chapter [[TODO]]), including:
support for non-blocking RPCs (it was OO-style same-thread callbacks,
but now I suggest same-thread futures instead, see “Take 4. Futures”
subsection above)

support for state synchronization interfaces (see Chapter [[TODO]])) with
same-thread callbacks

all the recording/replay goodies described in Chapter V

 we could try to go JNI route instead, but we preferred pure Java and didn’t regret

“
6

6

With cross-
language FSMs
w e can use the
very best
language/compiler
pair f or each
specif ic job –
w hether it is
Lua/LuaJIT, or
JavaScript/V8,
or Python/PyPy,
or
Java/HotSpotVM,
or C++/LLVM

this decision

Supporting ANY language/compiler/JIT: Is It W orth the Trouble?

The next obvious question on this way is the following:

Are such cross-language things worth the trouble of
implementing them?

Well, of course, YMMV, but from my experience the answer is

Absolutely!

In such an FSM-based multi-language development paradigm you’re no longer tied
to one programming language. You may say “hey, this is what CLI/Mono (as well as
non-Java compilers into JVM bytecode) are about!” Right, but with CLI/CLR you’re
still tied to one type of VM (ok, two if we’re Windows-only).

And with FSM-based cross-language approach, we’re not
restricted to one single VM, or to the availability of specific
compilers which compile into that single VM. With cross-
language FSMs we can use the very best language/compiler
pair for each specific job – whether it is Lua/LuaJIT , or
JavaScript/V8, or Python/PyPy, or Java/HotSpotVM, or
C++/LLVM (note that none of these popular and very-well
performing combinations is possible under CLI/CLR).

I rest my case.

Supporting Different Environments

The next question (assuming that I’ve managed to sell you the
idea of using cross-language FSMs) is “how to implement
them?”

From my experience, there are two possible approaches. The
first one is to have a C++ outside-of-FSM code, and then to
integrate C++ into each of the engines you need. Usually, it is
not that difficult. For example, you can have C++ threaded
communication code running under JNI and calling your Java
MyFSM.process_event() fram there. Or under CLI, it is possible
to have unmanaged code doing pretty much the same thing. Or with LuaJIT/V8, it is
easy to have C++ app calling appropriate script engine.

“

The second approach is related to line-to-line translations.

Line-to-Line Translations: “1.5 code bases”

Originally, I’ve written a nice 1500-word piece about line-to-line translations, but
then realized that it doesn’t really warrant that many words in the context of this
book. Still, as it was promised in Chapter V, here comes a brief overview of this not-
that-well-known technique.

Let’s assume that you already have a working piece of code in C++, and want to port
in into Java (it will work pretty much the same for other languages too, like C++-to-
ActionScript for the client side, but let’s use C++-to-Java for the purposes of our
example).

The aim of line-to-line conversion is not only to port the code, but also to keep
roughly 1-to-1 correspondence between the original code and the translated code;
as we will discuss below, this correspondence is very important for further
maintenance of the port (and code maintenance is the thing which haunts all the
multiple code bases in the real world).

The idea behind is the following. When you have sufficiently straightforward and
platform-independent code in any modern OO programming language, the essence
of the code can be translated to a different OO programming language in a very
straightforward manner. For example, if your C++ code is implementing Dijkstra’s
pathfinding algorithm as follows, :7

…then, when you need to rewrite this code into, for example, Java, you can simply
take your (supposedly working) C++ code, and to write its Java equivalent along the
following lines:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

pair<map<const Vertex*,int>, map<const Vertex*,const Vertex*>>
 dijkstra(const Graph& g, const Vertex* source) {
 set<const Vertex*> Q;
 map<const Vertex*,int> dist;
 map<const Vertex*,const Vertex*> prev;

 for(const Vertex* v: g.vertexes()) {
 dist[v] = INT_MAX;
 prev[v] = NULL;
 Q.insert(v);
 }

 dist[source] = 0;

 while(Q.size()>0) {
 //find u from Q with minimum dist[u]
 const Vertex* u = NULL;
 int distU = INT_MAX;
 for(const Vertex* it : Q) {
 int distIt = dist[it];
 if(distIt < distU) {
 u = it;
 distU = distIt;
 }
 }
 //u found
 assert(u!=NULL);

 Q.erase(u);

 for(const Vertex* v : g.neighborsOf(u)) {
 int alt = dist[u] + g.length(u,v);
 if(alt < dist[v]) {
 dist[v] = alt;
 prev[v] = u;
 }
 }
 }
 return pair<map<const Vertex*,int>,map<const Vertex*,const Vertex*>>(dist,prev);
}

[[TODO: place C++ and Java side by side in a book]]

As you can see, ported Java code visually looks very similar to C++ original;
moreover, we can easily see the one-to-one correspondence between the lines of
C++ code and Java code. When we have such C++ and Java code, we don’t really have
two separate code bases, as they’re too closely related to name them separate. I

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

public class Dijkstra {
 public static Pair<TreeMap<Vertex,Integer>,TreeMap<Vertex,Vertex>>
 dijkstra(Graph g, Vertex source) {
 TreeSet<Vertex> Q = new TreeSet<Vertex>();
 TreeMap<Vertex,Integer> dist = new TreeMap<Vertex,Integer>();
 TreeMap<Vertex,Vertex> prev = new TreeMap<Vertex,Vertex>();

 for(Vertex v: g.vertexes()) {
 dist.put(v, new Integer(Integer.MAX_VALUE));
 prev.put(v, null);
 Q.add(v);
 }

 dist.put(source, new Integer(0));

 while(Q.size()>0) {
 //find u from Q with minimum dist[i]
 Vertex u = null;
 int distU = Integer.MAX_VALUE;
 for(Vertex it: Q) {
 int distIt = dist.get(it).intValue();
 if(distIt<distU) {
 u = it;
 distU = distIt;
 }
 }
 //u found
 assert u!=null;//be careful to keep your Java asserts
 // consistent with your C++ asserts;
 //see Chapter [[TODO]] for further discussion
 // on asserts in C++

 Q.remove(u);

 for(Vertex v:g.neighborsOf(u)) {
 int alt = dist.get(u).intValue() + g.length(u,v);
 if(alt < dist.get(v).intValue()) {
 dist.put(v,new Integer(alt));
 prev.put(v,u);
 }
 }
 }
 return new Pair<TreeMap<Vertex,Integer>,TreeMap<Vertex,Vertex>>(dist,prev);
 }
}

prefer to name such “C++ and some-other-language” pairs as “1.5 code bases” (at
least it is clearly more than 1 code base, and certainly less than 2).

In practice, it means that for really platform-independent C++ code, in most cases
we can produce an equivalent code in a different programming language, but with
the same semantics and (hopefully ;-)) producing exactly the same result. Moreover,

it is usually possible to produce an equivalent code
which has one-to-one line-to-line correspondence

with the original.

This last observation is extremely important in practice, for the purposes of code
maintenance. As it is pretty well-known in the industry, having two code bases very
frequently leads to major problems because of code maintenance issues. In other
words, after having changed one code base, it is often a problem to make a strictly
equivalent change in another code base. However, with line-to-line conversion and
“1.5 code bases”, this maintenance process (while still not being a picnic!) becomes
significantly simplified: after we’ve had our code bases equivalent, and we’ve made a
single change in our first code base, then making an equivalent change becomes a
breeze: just look at source control differences for the first code base, and apply an
equivalent thing to the second code base. It is important to note that

in this apply-changes-to-second-code-base process,
there is usually no need to understand the essence of

the change which was made; most of the time, the
change can be applied based only on general

understanding of inter-language equivalence rules

Here in original 1500-word piece there were examples of modifying the C++ code –
getting differences from the source control – applying those differences to Java,
but within the scope of this book, it probably would be an overkill, so I’ve eventually
decided to skip it. [[TODO!: write a separate article about it with more examples]]

 based on [Wiki.Dijkstra]
 and I’ve seen several times myself as competitors successfully started second

client with a separate code base, and then second client started to lag behind in
development, up to the point of being unplayable, with subsequent abandoning of
the second client
 in fact, I’m pretty sure that, given restricted dialect of C++, which I am normally

using for platform-independent code, it is perfectly possible to build a C++-to-Java
(or C++-to-ActionScript) compiler at source level; however, parsing C++ (which is not
a LALR(1) grammar) is difficult, so I’ve never had enough time to undertake such an

8

9

7

8

9

Porting
20'000 lines of
code took 2
w eeks f or the
f irst 80%, and
tw o months f or
the remaining
20%, and
w orked happily
ever af ter

endeavor

Line-to-Line Translations: A re They Practical?

The code above is an interesting exercise, but of course, it is
merely an example, so you may still have questions whether this
exercise scales well to larger-scale pieces of code.

As noted above, I was personally involved in an exercise of
porting C++ into Java in a Line-to-Line manner. Porting 20’000
lines of code took 2 weeks for the first 80%, and two months for
the remaining 20%, and worked happily ever after (the code
was changed since the port, but quite rarely). I don’t know how
it would scale to a million of lines of code, or to a code which is
changed twice a day, or to a code which is not as
straightforward. Still, if you’re out of other options, line-to-line
source translations may happen to work for you.

Also note that performance-wise the converted code might be
not top-notch one (while concepts and ideas are generally very
similar between the languages, subtle performance-related
details don’t). In other words, with good conversion if your
algorithms were O(N) they generally should stay O(N), but you may easily face 20%
performance hit (potentially more in extreme and fringe cases) compared to the
best possible code in target language.

One further thing to keep in mind in this regard, is that porting from C++ to Java
(C#/…) is generally simpler than the other way around. In particular, this is
because while removing manual memory management is trivial, adding it can be
quite difficult and MAY require intimate knowledge of the program internals (which
goes against the idea of purely mechanistic conversion).

Inter-Language Equivalence Testing: FSM Replay Benefits

In quite a few cases, you may need to port a part of your code from one language to
another one. It may happen, for example, to optimize the time-critical FSM, or to
have “1.5 code bases” in a line-to-line conversion manner as described right above.
And with all such conversions, one of the biggest problems is the question “how we
can be sure that the code-in-new-language and the code-in-old-language are
strictly equivalent?”

Fortunately, for FSMs there is an easy way to test the code equivalence. The
procedure goes as follows:

“record” a big chunk of inputs and outputs for FSM-being-ported (and
running old code); “recording” can be done along the lines described in

“

As soon as
you've got lots
of boilerplate

code - you
MIGHT be able

to generate it
w ith your ow n
code generator

Chapter V, and may be done even in production.

“replay” it in lab on the new code. (as described in Chapter V)

if the results are exactly the same for old code and new code, on a sufficiently
large chunk of real-world data, it means very good chances that the code is
indeed equivalent (at least within the bounds which are of practical interest).
In practice, it has been noticed that for quite a big site, if there is no bug after
the first four hours after new code deployment, there won’t be any bug in “core
logic” at all. Pretty much the same applies to record/replay testing.

if there is a non-equivalence, it can be found very quickly by simply
running the same “replay” over both languages in debugger line by line,
and comparing corresponding variables.

On Code Generators and YACC/Lex (or Bison/Flex)
One thing which doesn’t strictly belong to server-side, but
which I need to mention somewhere, is YACC/Lex. As we’ll see
later, there are quite a few cases where having your own
source-code-generator is beneficial. Two most obvious
examples include Interface Definition Language (a.k.a. IDL,
discussed in Chapter [[TODO]]), and prepared-statements-
code-generator (discussed in Chapter [[TODO]]). Other game-
specific things (usually not really comping code, but dealing
with some declarative statements and converting them to
code) might also be helpful (in general, as soon as you’ve got
lots of boilerplate code – you MIGHT be able to generate it
with your own code generator). In the (rather extreme) case
you may even be able to write your own code generator to
support co-routines-with-stack-snaphot.

While these compilers not strictly required (and you’re able to
write all the code you need by hand), they will speed up your development a lot. Just
as one example: if you need a thousand of those prepared statements, writing them
by hand in C++ (or Java/pick-your-poison), while possible, is very tedious and
error-prone. The same goes for any kind of marshalling/IDL.

Whenever you have your code generator, it always works as follows:

You have a file in your own language (usually more of declarative nature than
of imperative nature).

“

In most cases,
the best w ay to
implement such
compilers is via
Y ACC/Lex (or
Bison/Flex,
w hich is pretty
much the same
thing).

Then, you run your code generator over it, obtaining kinda-source code in
your programming language.

This generated kinda-source code MUST NEV ER EV ER be modified
manually. Instead, either source-code-in-your-own-language needs to
be modified, or your code generator.

Then, you compile kinda-source with your usual language compiler (or
interpret it, whatever)

In most cases, the best way to implement such compilers is via
YACC/Lex (or Bison/Flex, which is pretty much the same thing).
As for these generators performance is not important,
alternatively to classical YACC/Lex/Bison/Flex you may want
to look at [PLY] (Python Yacc/Lex). The idea of all of them is
pretty much the same:

you’re writing “language grammar” (in .y file, which is
more or less reminiscent of BNF forms)

you’re specifying what exactly you want to do with it as
you’re parsing (within the same .y file)

you’re compiling this .y file and obtaining your C (or
Python, in case of PLY) code

you’re running this compiled code over your source file,
and (if you’ve done everything right) are obtaining an
abstract syntax tree (AST)

as you’ve got your AST, you can generate any code you need, out of it

For further information on C-language YACC, please refer to the classical tutorial
[Niemann]. One further trick I’m using a lot for such code generators, is the
following:

define YYSTYPE as a C++ class (which will be essentially your “AST node”);
usually YYSTYPE is int, but nothing prevents you from re-defining it

define member functions for your YYSTYPE so that you add other AST nodes
into current one. Don’t be afraid to make deep copies here – you won’t notice
performance differences anyway.

use code such as { $$.add($1,$2); } within your .y file (see tutorial mentioned
about on the meaning of these magical $$ and $1/$2).

when the whole hierarchy is processed, you’ll get your whole AST at the
(logically) topmost rule of your .y file.

Due to lots of copies, this approach is damn inefficient compared to traditional
compilers, but for vast majority of our gaming purposes parser performance

“

10

« A synchronous Processing for Finite State Machines/A ctors: …

 MMOG. RTT, Input Lag, and How to Mitigate Them »

won’t matter, saving you quite a bit of development time (and as it is run only on
your development/build machines, it won’t affect performance of your runtime
code at all).

 and was also reported to fail under some YACC implementations when trying to
compile hundreds of thousand of lines, but this problem is solvable

[[To Be Continued…
This concludes beta Chapter VI(e) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VII, “Modular
Architecture: Protocols.”]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: game, multi-player, programming language, server

Copyright © 2014-2016 ITHare.com

10

[–] References
[NoBugs2012] 'No Bugs' Hare, “Memory Leaks and Memory Leaks”
[StackOverflow.C#LambdaLoop] “Captured variable in a loop in C#”, StackOverflow
[StackOverflow.PythonLambdaLoop] “What do (lambda) function closures capture
in Python?”, StackOverflow
[Wiki.Dijkstra] “Dijkstra's algorithm”, Wikipedia
[PLY] David Beazley, http://www.dabeaz.com/ply/
[Niemann] Tom Niemann, “Lex & Yacc Tutorial”

/memory-leaks-and-memory-leaks/
http://stackoverflow.com/questions/271440/captured-variable-in-a-loop-in-c-sharp
http://stackoverflow.com/questions/2295290/what-do-lambda-function-closures-capture-in-python
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://www.dabeaz.com/ply/
http://epaperpress.com/lexandyacc/download/LexAndYaccTutorial.pdf
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/asynchronous-processing-for-finite-state-machines-actors-from-plain-events-to-futures-with-oo-and-lambda-call-pyramids-in-between/
http://ithare.com/mmog-rtt-input-lag-and-how-to-mitigate-them/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/programming-language/
http://ithare.com/tag/server/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
MMOG. RTT, Input Lag, and How to Mitigate Them
posted January 25, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VII(a) from the upcoming book
“Development&Deployment of Massively Multiplayer Online Games”,
which is currently being beta-tested. Beta-testing is intended to
improve the quality of the book, and provides free e-copy of the
“release” book to those who help with improving; for further details
see “Book Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of Contents.]]

Now we’re ready to discuss what the MMOs are all about –
protocols. However, don’t expect me to discuss much of the
lava-hot “UDP vs TCP” question here – we’re not there yet
(most of this question, alongside with the ways to mitigate their respective issues, will be
discussed in detail in Chapter [[TODO]]). For now we need to understand the principles
behind the MMO operation; mapping them to specific technologies is a related but different
story.

Data Flow Diagram, Take 1
Note that if your game is fast-paced (think MMOFPS or MMORPG), the approach described with regards
to Take 1 Diagram, won’t allow you to produce a game which doesn’t feel “sluggish” (it will work, but
won’t feel responsive). However, please keep reading, as we will discuss the problems with this simple
diagram, and ways to deal with them, later.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/wp-content/uploads/BB_part076_BookChapter007a_v3.png

To see what the MMOG protocols are about, let’s first draw a very simple data flow diagram
for a typical not-so-fast MMO. As it was discussed in Chapter III, our server needs to be
authoritative. As a result, the usual flow in a simplistic case will look more or less as follows:

Despite visual simplicity of this diagram, there are still a few things to be mentioned:

All the specific delay numbers on the right side are for example purposes only. Your
Mileage May Vary, and it may vary greatly. Still, the numbers do represent a rather
typical case.

It may seem that the client here is pretty “dumb”. And yes, it is; most of the logic in this
picture (except for rendering) resides on the server side. However, in most of the games
there are some user actions which cause client-only changes (and don’t cause any
changes to the server-side game world), they can and should be kept to the client. These
are mostly UI things (like “show/hide HUD”, and usually things such as “look up”), but for
certain games this logic can become rather elaborated. Oh, and don’t forget stuff such
as purchases etc.: if you keep them in-game (see Chapter [[TODO]] for details), it will
require quite a lot of dialogs with an associated client-side logic, and these (select an
item, info, etc. etc.) are also purely client-side until the player decides to go ahead with
the purchase.

/wp-content/uploads/Fig-VII-1.png

For f ast-
paced games,
there is one big
problem w ith
the f low show n
on this
diagram, and
the name of the
problem is
“latency” (a.k.a.
'input lag')

Last but certainly not least: for fast-paced games, there is one big
problem with the flow shown on this diagram, and the name of the
problem is “latency”. It is obvious that for this simplistic data flow,
the delay between player pressing a button, and her seeing results
of herself pressing the button (which is known as “input lag”), will be
at least so-called round-trip-time (RTT) between client and server
(which is shown as 100ms for Fig VII.1, see “RTT” section below for
more discussion regarding RTT). In practice, though, there is quite
a bit added to the RTT, and for our example on Fig VII.1, 100ms RTT
resulted in 227 overall delay. And if this delay (known as “input lag”,
which is admittedly a misnomer) exceeds typical human
expectations, the game starts to feel “laggy”, all the way down to
“outright unplayable” :-(. Let’s take a closer look at these all-
important input lags.

Input Lag: the Worst Nightmare of an MMO
developer
Note: if your game is slow- or medium-paced (including casino-like games such
as poker), you can safely skip this section.

As noted above, for MMOs a lot of concerns is about relation between two times: input lag,
and user expectations about it. Let’s consider both of them in detail.

Input Lag: User Expectations

First, let’s take a look at user expectations, and of course, user expectations are highly
subjective by definition. However, there are some common observations which can be
obtained in this regard. As a starting point, let’s quote Wikipedia [Wikipedia.InputLag]:

“Testing has found that overall “input lag” (from controller
input to display response) times of approximately 200 ms

are distracting to the user.”

Let’s take this magic number of 200ms as a starting point for our analysis (give or take, the
number is also confirmed in several other sources[[TODO: add links]], and is also consistent
with human reaction time [LippsEtAl], so it is not just Wikipedia taking it out of blue).

On the other hand, let’s note that strictly speaking, it is not exactly 200ms, and it certainly
varies between different genres. Still, even for the most time-critical games the number
below 100-150ms is usually considered “good enough”, and for any real-time interaction the
lag of 300ms will be felt easily by lots of your players (though whether it will feel “bad” is a
different story). To be more specific, for the remaining part of this Chapter let’s consider two
sample games: one being a simple OurRPG with input lag tolerance of 300 ms (let’s assume it
doesn’t have fights and is more about social interactions, which makes it less critical to
delays), and another game being OurFPS with input lag tolerance of 150ms.

“

These 150-
300ms of input
lag tolerance is
just a f act of lif e
(closely related
to human
psychology/physiology/etc.)
so that w e
cannot really
do much about
it.

Let’s also note that these 150-300ms of input lag tolerance is just a fact of
life (closely related to human psychology/physiology/etc.) so that we
cannot really do much about it.

Input Lag: How Much W e Have Left for MMO

The very first problem we have is that there are several things eating out
of this 200ms allocation (even without our MMO code kicking in). This is
lag introduced by game controller, lag introduced by rendering engine
(that depends on many things, including such things as the size of
render-ahead queue), and display lag (mostly introduced by LCD
monitors).

Typical mouse lag is 3-6ms [TomsHardware.GraphicsCardsMyths], less
for gaming mice. For our purposes, let’s account for any game controller
lag as 5ms.

Typical rendering engine lags vary between 50ms and 150ms. 50ms (=3
frames at 60fps), is rather tricky to obtain, and is not that common, but
still possible. More common number (for 60fps games) is 67ms (4 frames
at 60fps), and 100-133ms are not uncommon either [Leadbetter2009].

Typical display lag (not to be confused with pixel response time, which is much lower and is
heavily advertised, but it is not the one that usually kills the game) starts from 10ms, has a
median of a kind around 40ms, and goes all the way to 100ms [DisplayLag.Display-Database].

It means that out of the original 150-300ms we originally had, we need to subtract a number
from 60ms to 255ms. Which means that in quite a few cases the game is already lagging even
before an MMO and network lag has kicked in .

To be a bit more specific, let’s note that we cannot really control such things as mouse lag
and display lag; we also cannot realistically say “hey guys, get the Absolutely Best Monitor”, so
at least we should aim for a median player with a median monitor. Which means that we
should assume that out of our 150-300 ms, we need to subtract around 45ms (5ms or so for
game controller/mouse, and 40 for a median monitor).

Now let’s take a look at the lag, introduced by a rendering engine. Here, we CAN make a
difference. Moreover, I am arguing that

for MMOs, rendering latencies are even more important
than for single-player games

The point here is that for a single-player game, if we’d manage to get overall input lag say,
below 100ms, it won’t get that much of an improvement for the player (as long as it is fair to
all the players), as this number is below typical human ability to notice things. However, for an
MMO, where we’re much closer to the magic 150-300ms because of RTTs, effects of the
reduced latency will be significantly more pronounced. In other words, the difference
between 100ms and 50ms for a single-player game won’t feel the same as the difference
between 200ms and 150ms for an MMO.

“

For the purposes of our example calculation, let’s assume we’ve managed to get a rendering
engine with a pretty good 67ms latency. This (combined with 45ms mentioned above) means
that we’ve already eaten 112ms out of our 150-300ms initial allocation. And even if everything
else will work lightning fast, we need to have RTT<40ms for OurFPS, and RTT<180ms for
OurRPG.

 in practice, it is even worse, see further discussion in “Accounting for Packet Losses and
Jitter” section below

Input Lag: Taking a Bit Back

One trick which MAY be used to get a bit of “input lag” back is by introducing client-side
animations. If, immediately after the button press, client starts some animation (or makes
some sound, etc.), while at the same time sending the request to the server side – from end-
user perspective the length of this animation is “subtracted” from the “input lag”. For
example, if in a shooter game you’ll add a 50ms trigger pulling animation (while sending the
shot right after the button press) – from player’s perspective, the “Input Lag” will start 45ms
later, so we’ll get these 45ms back. Adding tracers to the shoots is known to create a feeling
that bullets travel with limited speed, buying another 3 or so frames (50 ms) back (however,
tracers are more controversial at least at close distances).

While capabilities of such tricks are limited, when dealing with the Input Lag, every bit counts,
so you should consider if they are possible for your game.

[[TODO? – add another diagram to illustrate it and/or add it to further diagrams?]]

RTT

Now let’s take a look at that RTT monster, which is the worst nightmare for quite a few of
MMO developers out there. RTT (=”Round-Trip Time”) depends greatly on the player’s ISP
(and especially on the “last mile”), but even in a very ideal case, there are hard limits on “how
low you can go with regards to RTT”. Very roughly, for RTT and, depending on the player’s
location, you can expect ballpark numbers shown in Table VII.1 (this is assuming the very best
ISPs etc.; getting worse is easy, getting significantly better is usually not exactly realistic):

Player Connection RTT (not accounting for “last mile”)

On the same-city “ring” or “Internet

Exchange” as server (see

[Wikipedia.InternetExchanges], but keep in

mind that going out of the same city will

increase RTT)

~10-20 ms

Inter-city, cities separated by distance D

At the very least, 2*D/ c (c being speed of

light within optical fiber, roughly c /1.5,

or ~2e8 m/s). Practically, add around 20-

1

1

2

fib fib

vacuum

50ms depending on the country.

Trans-US (NY to SF)
At the very least (limited by c) ~42 ms; in

practice – at least 80 ms.

Trans-atlantic (NY to London)
At the very least (limited by c) ~56 ms

[Grigorik2013]; in practice – at least 80 ms.

Trans-pacific (LA to Tokyo)
At the very least (limited by c) ~90 ms, in

practice – at least 120ms.

A Really Long One (NY to Sydney)
At the very least (limited by c) ~160 ms

[Grigorik2013]; in practice – at least 200 ms.

In addition, you need to account for player’s “last mile” as described in Table VII.2:

A dditional “last-mile” RTT

Added by player’s “last mile”:

cable

[Grigorik2013] reports ~25ms, my own experience for games

is about 15-20ms

Added by player’s “last mile”:

DSL

[Grigorik2013] reports ~45ms, my own experience for games

is more like 20-30ms

Added by player’s Wi-Fi ~2-5 ms

Added by player’s concurrent

download
Anywhere from 0 to 300-500ms

Several things to keep in mind in this regard:

If your server is sitting with a good ISP (which it should), it will be pretty close to the
backbone latency-wise. This means that in most of “good” cases, real player’s latency will
be one number from Table VII.1, plus one or more numbers from Table VII.2 (and
server’s “last mile” latency can be written off as negligible); it is still necessary to
double-check it (for example, by pinging from another server).

The numbers above are for hardware servers sitting within datacenters. Virtualized
servers within the cloud tend to have higher RTTs (see Chapter [[TODO]] for further
discussion), with occasional delays (when your cloud neighbour suddenly started to eat
more CPU/bandwidth/…) easily going into multiple-hundreds-of-ms range . BTW,
you can get cloud without virtualization (which will eliminate these additional delays),
more on it in Chapter [[TODO]].

fib

fib

fib

fib

3

3

No, better
bandw idth
doesn't
necessarily
mean better
latency

Within the
same (large)

LAN-based games (with wired LAN having RTTs below 1 ms) cannot be really compared
to MMOs latency-wise. If your MMO needs comparable-to-LAN RTT latency to be
playable – sorry, it won’t happen (but see below about the client-side prediction which
may be able to alleviate the problem in many cases, though at the cost of significant
complications)

No, CDN won’t work for games (at least not those traditional CDNs which are used to
improve latencies for web sites)

And while we’re at it, three things that you’ll certainly need to tell to your players with regards
to RTT/latency:

no, better bandwidth doesn’t necessarily mean better latency (this
will be necessary to tell answering questions such as “how comes
that as soon as I’ve got better 30Mbit/s connection, your servers
started to lag on me?”)

it is easy to show whatever-number-we-want in the client as a
“current latency” number, but comparisons of the numbers
reported by different games are perfectly pointless (this actually is
a Big Fat Argument to avoid showing the numbers at all, though
publishing the number is still a Business Decision).

When saying “it was much better yesterday”, are you sure that
nobody in your household is running a huge download?

 this monster is quietly hiding behind the curtain of LAN until you start to test with real-
world RTTs
 the difference can be attributed to downloads which tend to cause longer RTTs; also

gamers tend to invest in better connectivity

Back to Input Lag

Ok, from Table VII.1 and Table VII.2 we can see that in the very best case (when both your
server and client are connected to the very same intra-city ring/exchange, everything is top-
notch, last mile is a non-overloaded cable, no concurrent downloads running in the vicinity of
the client while playing, etc. etc.) – we’re looking at 35-45ms RTT. When we compare it to our
remaining 40-180ms, we can say “Great! We can have our cake and eat it too, even for
OurFPS!” And it might indeed work (though it won’t be that bright, see complications in
“Accounting for Losses and Jitter” subsection below). On the negative side, it means having a
server on each and every city exchange, and losing (or at least penalizing) lots of players who
don’t have this kind of connectivity .

Within the same (large) country, the best-possible RTT goes up to
around 80-100ms. Which means that with a simple diagram on Fig VII.1
we MIGHT be able to handle OurRPG, but not OurFPS (though again, see
complications below). Country-specific servers are very common, and
are not that difficult to implement and maintain, but they still restrict
flexibility of your players (and also can have adverse effects on “player
critical mass” [[TODO! add discussion on “critical mass” to Chapter I]].
Single-continent servers (with RTTs in the range of 100-120ms) are close

“

2

3

“

country, the
best-possible

RTT goes up to
around 80-

100ms.

cousins of country-specific ones, and are also frequently used for fast-
paced games.

Purely geographically, for US the best server location for a time-critical
game would be somewhere in Arkansas . More realistically (and taking
into account real-world cables), if trying to cover whole US with one
single server, I’d seriously consider placing it at a Dallas or Chicago

datacenter, it would limit the maximum RTT while making the games a bit more fair.

If you want a world-wide game, then maximum-possible RTT goes up to 220ms. Worse than
that, there is also significant difference for different players. While simple data flow shown on
Fig VII.1 might still fly for a relatively slow-paced world-wide RPG (think Sims), but MMOFPS
and other combat-related things are usually out of question.

Data Flow Diagram, Take 2: Fast-Paced Games Specifics
Note: if your game is slow- or medium-paced (including casino-like games such as poker), you can safely
skip this section.

Note 2: if your game is fast-paced (think MMOFPS or MMORPG), the approach described with regards to
Take 2 Diagram, still isn’t likely to produce a game which doesn’t feel “laggy”. However, please keep
reading, as we will discuss the remaining problems, and the ways to deal with them, in Take 3.

Ok, our calculations above seem to show that we can get away with a simplistic diagram from
Fig. VII.1 even for some of fast-paced fps-based games.

Well, actually, we cannot, at least not yet: there is one more important network-related
complication which we need to take into account. This is related to mechanics of the Internet
(and to some extent – to the mechanics of simulation-based games).

Internet is Packet-Based, and Packets can be Lost

First of all, let’s talk about mechanics of the Internet (only those which we need to deal with at
the moment). I’m not going to go into any details or discussions here, let’s just take it as an
axiom that

when the data is transmitted across the Internet, it always
travels within packets,

and each of these packets can be delayed or lost

This stands regardless of exact protocol being used (i.e. whether we’re working on top of
TCP, UDP, or something really exotic such as GRE). In addition, let’s take as another axiom
that

each of these packets has some overhead

“

For TCP the
overhead is 40+
bytes per
packet, f or UDP
– it is usually 28
bytes per packet
(that's not
accounting f or
Ethernet
headers).

For TCP the overhead is 40+ bytes per packet, for UDP – it is usually 28
bytes per packet (that’s not accounting for Ethernet headers, which add
their own overhead). For our current purposes, exact numbers don’t
matter too much, let’s just note that for small updates they’re
substantial.

Now let’s see how these observations affect our game data flow.

Cutting Overhead

The first factor we need to deal with, is that for a fast-paced game
sending out a world update in response to each and every input is not
feasible. This (at least in part) is related to the per-packet overhead
we’ve mentioned above. If we need to send out an update that some PC
has started moving (which can be as small as 8 bytes), adding overhead of
28-40 bytes on top of it (which would make 350-500% overhead) doesn’t
look any good.

That’s at least one of the reasons why usually simulation is made within a pretty much
classical “game loop”, but with rendering replaced with sending out updates:

With this approach, we’re processing all the updates to the “game world” one “network tick”
at a time. Size of the “network tick” varies from one game to another one, but 50ms per tick
(i.e. 20 network ticks/second) is not an uncommon number (though YMMV may vary
significantly(!)).

Note that on the server-side (unlike for client-side game loop from Chapter V) the choice of
different handling for time steps is limited, and it is usually the variation above (the one
waiting for remainder of the time until the next “tick”) which is used on the server-side.
Moreover, usually it is written in ad-hoc-FSM (a.k.a. event-driven) style, more or less along
the following lines:

“

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

while(true) {
 TIMESTAMP begin = current_time();
 process_input();
 update();
 //update() normally includes all the world simulation,
 // including NPC movements, etc.
 post_updates_to_clients();
 //here, we're effectively combining all the world updates
 // which occurred during current 'network tick'
 // into as few packets as possible,
 // effectively cutting overhead
 TIMESTAMP elapsed = current_time()-begin;
 if(elapsed<NETWORK_TICK)
 sleep(NETWORK_TICK-elapsed);
}

If w e w ill
stay w ithin the
simple schema

show n on Fig.
VII.1 – then each

lost packet w ill
mean visible

(and
unpleasant)

ef f ects: on
player's screen

everything w ill
stop f or a

moment, and
then “jump” to

the correct
position w hen

the next packet
arrives.

Accounting for Losses and Jitter

So far so good, but we still didn’t deal with those packet losses and sporadic delays (also
known as “jitter”).

If we won’t do anything (and will stay within the simple schema shown on
Fig. VII.1) – then each lost (or substantially delayed) packet will mean
visible (and unpleasant) effects on the player’s screen: everything will
stop for a moment, and then “jump” to the correct position when the
next packet arrives.

To deal with it we need to introduce a buffer on the client side, so that if
the packet traveling from server to the client is lost or delayed, we have
time to wait for it to arrive (or for its retransmitted copy, sent in case of
packet loss, to arrive). This is very much the same thing which is routinely
done for other jitter-critical stuff such as VoIP.

The delay we need to introduce with this buffer, depends on many
factors, but even with the most aggressive UDP-based algorithms (such
as the ones which re-send the whole state on each network tick, or the
one described at the very end of
[GafferOnGames.DeterministicLockstep], see Chapter [[TODO]] for
further discussion), the minimum we can do is having a buffer of one
network tick to account for one-lost-packet-in-a-row. In practice, the
buffer of around three “network ticks” is usually desirable (that’s for
really aggressive retransmit policies mentioned above).

If going TCP route, we’re speaking about retransmit delays of the order
of RTT, which will usually force us to have buffer delays of the order of
N*RTT (like 3*RTT) , which is substantially higher. These delays-in-
case-of-packet-loss are one of the Big Reasons why TCP is not popular
(to put it mildly) among the developers of fast-paced games. More on it
in Chapter [[TODO]].

One thing which should be noted in this regard, is that to some extent this buffer MAY be
somewhat reduced due to render-ahead buffering used by the rendering engine. It would be
incorrect, however, to say that you can simply subtract the time of render-ahead buffer by the
rendering engine (by default 3 frames=50ms for DirectX) from the time which we need to add
for RTT purposes. Overall, this is one of those things which you’ll need to find out for yourself.

Take 2 Diagram

These two considerations discussed above (one related to overhead and game loop, and

1
2
3
4
5
6
7
8
9

void MyFSM::process_event(TIMESTAMP current_time,
 const Event& event) {
 //'event' contains ALL the messages that came in
 // but are not processed yet
 process_input(event);
 update();
 post_updates_to_clients();
 post_timer_event_to_myself(SLEEP_UNTIL,current_time+NETWORK_TICK);
}

“

4

another related to client-side buffer) lead us to the diagram on Fig VII.2:

If we calculate all the delays on the way (using some not-too-unreasonable assumptions
mentioned on Fig VII.2), we can see that for RTT=100ms overall delay reaches really annoying
350-400ms (as always, YMMV). As “normal” latency tolerances (as discussed above) are within
150-300ms, this in turn means that for the majority of fast-paced simulation games out there,
implementing your system along the lines of this diagram will lead to really “laggy” player
experience .

One additional problem with this approach is that we effectively have our visual frame rate
equal to “network tick”; as “network ticks” are usually kept significantly lower than 60 per
second (in our examples it was 20 per second) – it means that we’ll be rendering at 20fps
instead of 60fps, which is certainly not the best thing visually.

It leads us to the next iteration of our flow diagram, which introduces substantial (and non-

/wp-content/uploads/Fig-VII-2.png

The next
thing w e can do,
is to go beyond
interpolation,
and to do some
extrapolation.

trivial) client-side processing.

Data Flow Diagram, Take 3: Client-Side Prediction and
Interpolation
Note: if your game is slow- or medium-paced (including casino-like games such as poker), you can safely
skip this section too.

So, we have these two annoying problems: one is lag, and another one is client-side frame
rate. To deal with them, we need to introduce some client-side processing. I won’t go into too
much details here; for further discussion please refer to the excellent series on the subject by
Gabriel Gambetta: [Gambetta]; while he approaches it from a bit different side, all the
techniques discussed are exactly the same.

Client-Side Interpolation

The first thing we can do, is related to the client-side update buffer (the one we have just
introduced for Take 2). To make sure that we don’t render at “network tick” rate (but
rendering at 60fps instead), we can (and should) interpolate the data between the “current
frame” (the last one within the update buffer), and “previous frame” in the update buffer. This
will make the movement smoother and we’ll get back our 60fps rendering rate. Such client-
side interpolation is quite a trivial thing and doesn’t lead to any substantial complications.
On the negative side, while it does make movement smoother, it doesn’t help to improve input
lag .

Client-Side Extrapolation a.k.a. Dead Reckoning

The next thing we can do, is to go beyond interpolation, and to do some
extrapolation. In other words, if we have not only object positions, but
also velocities (which can be either transferred as a part of the “World
Update” message or calculated on the client-side), then – in case if we
don’t have the next update yet because the packet got delayed – we can
extrapolate the object movement to see where it would move if nothing
unexpected happens.

The simplest form of such extrapolation can be done by simple
calculation of x1=x0+v0, but can also be more complicated, taking into
account, for example, acceleration. This is known as “dead reckoning”,
though the latter term is used in several similar, but slightly different
cases, so I’ll keep using the term “extrapolation” for the specific thing
described above.

The benefit of such extrapolation is that we can be more optimistic in our buffering, and not
to account for the worst-case, when 3 packets are lost (extrapolating instead in such rare
cases). In practice it often means (as usual, YMMV) that we can reduce the size of our buffer
down to one outstanding frame (so at each moment we have both “current frame” and
“previous frame”, but nothing else).

Running into the W all, and Server Reconciliation

“

What if w hen
w e're

extrapolating
NPC's

movement, he
runs into the

w all?

On the flip side, unlike interpolation, extrapolation causes significant
complications. The first set of complications is about internal
inconsistencies. What if when we’re extrapolating NPC’s movement, he
runs into the wall? If this can realistically happen within our
extrapolation, causing visible negative effects, we need to take it into
account when extrapolating, and detect when our extrapolated NPC
collides, and maybe even to start an appropriate animation. How far we
want to go on this way – depends (see also “Client-Side Prediction”
section below), but it MAY be necessary.

The second set of extrapolation-related issues is related to so-called
“server reconciliation”. It happens when the update comes from the
server, but our extrapolated position is different from server’s one. This
difference can happen even if we’ve faithfully replicated all the server-
side logic on the client side, just because we didn’t have enough

information at the point of our extrapolation. For example, if one of the other players has
pressed “jump” and this action has reached the server, on our client-side we won’t know
about it at least for another 100ms or so, and therefore our perfectly faithful extrapolation
will lead to different results than the server’s one. This is the point when we need to
“reconcile” our vision of the “game world” with the server-side vision. And as our server is
authoritative and is “always right”, it is not that much a reconciliation in a traditional sense,
but “we need to make client world look as we’re told”.

On the other hand, if we implement “server reconciliation” as a simple fix of coordinates
whenever we get the authoritative server message, then we’ll have a very unpleasant visual
“jump” of the object between “current” and “new” positions. To avoid this, one common
approach (instead of jumping your object to the received position) is to start new prediction
(based on new coordinates) while continuing to run “current” prediction (based on currently
displayed coordinates), and to display “blended” position for the “blending period” (with
“blended” position moving from “current” prediction to “new” prediction over the tick). For
example: displayed_position(dt) = current_predicted_position(dt) * (1-alpha(dt)) +
new_predicted_position(dt) * alpha(dt), where alpha(t) = dt/BLENDING_PERIOD, and 0 <=
dt < BLENDING_PERIOD.

[[TODO: other methods?]]

Client-Side Prediction

With client-side interpolation and client-side extrapolation, we can reduce latencies a bit; in
our example on Fig. VII.2 we should be able to get back around 50ms (and also get real frame
rate up to 60fps). However, even after these improvements it is likely that the game will feel
“sluggish” (in our example, we’ll have the overall input lag at 300+ms, which is still pretty bad,
especially for a fast-paced game).

To improve things further, it is common to use “Client-Side Prediction”.
The idea here is to start moving player’s own PC as soon as the player has
pressed the button, eliminating this “sluggish” feeling completely.
Indeed, within the client we do know what PC is doing – and can show it;
and if we’re careful enough, our prediction will be almost-the-same as the
server authoritative calculation, at least until the PC is hit by something

“

The idea here
is to start
moving player's
ow n PC as soon
as the player
has pressed the
button,
eliminating this
“sluggish”
f eeling
completely.

that has suddenly changed trajectory (or came out of nowhere) within
these 300ms or so.

On the negative side, Client-Side Prediction causes quite serious
discrepancies between “game world as seen by server” and “game world
as seen and shown by client”. In a sense, it is similar to the “reconciliation
problem” which we’ve discussed for “Client-Side Extrapolation”, but is
usually more severe than that (due to significantly larger time gap
between the extrapolation and reconciliation). One of the additional
things to be kept in mind here, is that keeping a list of “outstanding” (not
confirmed by server yet) input actions, and re-applying them after
receiving every authoritative update is usually necessary, otherwise quite
unpleasant visual effects can arise (see [Gambetta.Part2] for further
discussion of this phenomenon).

In addition, the problem of PC-running-into-the-wall (once again, in a manner similar to
client-side extrapolation, but with more severe effects due to larger time gap) usually needs
to be addressed.

To make it even more complicated, inter-player interactions can be not as well-predictable
as we might want, so making irreversible decisions (like “the opponent is dead because I hit
him and his health dropped below zero”) purely on the client side is usually not the best idea
(what if he managed to drink a healing potion which you don’t know about yet as the server
didn’t tell you about it?). In such cases it is better to keep the opponent alive on the client
side for a few extra milliseconds, and to start the rugdoll animation only when the server does
say he’s really dead; otherwise visual effects like when he was starting to fall down, but then
sprang back to life, can be very annoying.

Take 3 Diagram

Adding these three client-side things gets us to the following Fig VII.3:

“

As we can see, processing of the authoritative data coming from server is still quite slow
(despite an about 50ms improvement due to reducing size of client-side buffer, which
became possible due to relying on client-side extrapolation when the server packet is
delayed). But the main improvement in perceived responsiveness for those-actions-initiated-
by-player (and it is these actions which cause the “laggish” feeling, as timing of the actions by
the others is not that obvious) comes from the Client-Side Prediction “shortcut”. Client-Side
Prediction is processed purely on the client-side, from receiving controller input, through
client-side prediction, and directly into rendering, without going to server at all, which (as
you might have expected) helps latency a damn lot. Of course, it is just a “prediction”, but if it
is 99% correct 99% of the time (and in the remaining cases the difference is not too bad) – it
is visually ok.

/wp-content/uploads/Fig-VII-3.png

The
remaining
problem is that
there is still a
signif icant (and
unavoidable)
lag betw een any
update-made-
by-server and
the moment
w hen our
player w ill see
it.

So, with Fig VII.3 (and especially with client-side prediction) we’ve
managed got quite an improvement at least for those actions initiated by
PC; at 112ms the game won’t feel too sluggish. But can we say that with
these numbers, everything is really good now? Well, sort of, but not
exactly. The remaining problem is that there is still a significant (and
unavoidable) lag between any update-made-by-server and the moment
when our player will see it. This (as [Gambetta.Part4] aptly puts it) is
similar to living in the world where speed of light is slow, so we see what’s
going on, with a perceivable delay.

In turn, for some Really Fast-Paced games (think shooters) it leads to
unpleasant scenarios when I’m as a player making a perfect shoot from a
laser weapon, but I’m missing because I’m actually aiming at the
position-of-the-other-player which I can see, and it is an inherently old
position of the player (behind by 200ms or so even compared to server’s
authoritative world, and even more compared to his own vision). And this
is the point where we’re getting into realm of controversy, known as Lag
Compensation.

Lag Compensation

The things we’ve discussed above, are very common, and are known to
work well. The next thing, known as Lag Compensation (see also [Gambetta.Part4]), is much
more controversial.

Lag Compensation is aimed to fix the problem outlined above, the one when I’m making a
perfect shot, and missing because I’m actually aiming at the old position of the other player.

The idea behind Lag Compensation is that the server (keeping an authoritative copy of
everything) can reconstruct the world at any moment, so when it receives your packet saying
you’re shooting with your timestamp (and all the other data such as angle at which you’re aiming
etc. etc.) , it can reconstruct the world at the moment of your shot (even according to your
representation), and make a judgement whether you hit or missed, based on that information.
This can be used to compensate for the delay, and therefore to make your “clean shots” much
better.

On the other hand (in addition to some other oddities described in [Gambetta.Part4]), Lag
Compensation is wide open to cheating . If I can send my timestamp, and server will
implicitly trust it – I am able to cheat the server, making the shot a bit later while pretending
it was made a bit earlier.

In other words, Lag Compensation can be used to
compensate not only for Network Lag, but also for Player

Lag (poor player reaction), as they’re pretty much
indistinguishable from the server point of view

While effects of cheating can be mitigated to a certain extent by putting a limit on “how much
client timestamp is allowed to differ from server timestamp”, it is still cheating (and as soon
as the potential for cheating is gone, so is any benefit from compensation).

“

That’s exactly why Lag Compensation is controversial, and I suggest to avoid it as long as
possible. If you cannot avoid it – good luck, but be prepared to cheaters starting to abuse
your game as soon as you’re popular enough.

On the other hand, three client-side techniques above (Client-Side Interpolation, Client-Side
Extrapolation, and Client-Side Prediction) do not make server trust the client, and are
therefore inherently impossible to this kind of abuse.

There Are So Many Options! W hich ones do I need?

With all these options on the table, an obvious question is “hey, what exactly do I need for my
game?” Well, this is a Big Question, with no good answer until you try it for your specific game
(over real link and/or over latency simulator). Still, there are some observations which may
help to get a reasonable starting point:

if your game is slow-paced or medium-paced (i.e. actions are in terms of “seconds”) – all
chances are that you’ll be fine with the simplest dataflow (the one shown on Fig VII.1)

if your game is MMORPG or MMOFPS – you’ll likely need either the dataflow on Fig VII.2,
or the one on Fig VII.3

in this case, it is often better to start with the simpler one from Fig VII.2 and add
things (such as Client-Side Interpolation, Client-Side Extrapolation, Client-Side
Prediction) gradually, to see if you’ve already got the feel you want without going
into too much complications

if after adding all the “Client-Side *” stuff you still have issues – you may need to
consider Lag Compensation, but beware of cheaters!

for really serious development, you may need to go beyond these techniques
(and/or combine them in unusual ways), but these will probably be too game-
specific to discuss them here. In any case, what can be said for sure is that you
certainly need to know about the ones discussed in this Chapter, before trying to
invent something else .

[[To Be Continued…
This concludes beta Chapter VII(a) from the upcoming book
“Development and Deployment of Massively Multiplayer Games (from
social games to MMOFPS, with social games in between)”. Stay tuned for
beta Chapter VII(b), “Publishable State”]]

[–] References
[Wikipedia.InputLag] “Input Lag”, Wikipedia
[LippsEtAl] David B. Lipps, Andrzej T . Galecki, James A. Ashton-Miller, “On the Implications of
a Sex Difference in the Reaction Times of Sprinters at the Beijing Olympics”, PLOS ONE
[TomsHardware.GraphicsCardsMyths] Filippo L. Scognamiglio Pasini, “The Myths Of
Graphics Card Performance: Debunked”, tom's Hardware
[Leadbetter2009] Richard Leadbetter, “Console Gaming: The Lag Factor”
[DisplayLag.Display-Database] “Display Input Lag Database”
[Wikipedia.InternetExchanges] “List of Internet exchange points by size”
[Grigorik2013] Ilya Grigorik, “High Performance Browser Networking”, Chapter 1
[GafferOnGames.DeterministicLockstep] Glenn Fiedler, “Deterministic Lockstep”

https://en.wikipedia.org/wiki/Input_lag
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026141
http://www.tomshardware.com/reviews/graphics-card-myths,3694-4.html
http://www.eurogamer.net/articles/digitalfoundry-lag-factor-article
http://www.displaylag.com/display-database/
https://en.wikipedia.org/wiki/List_of_Internet_exchange_points_by_size
http://chimera.labs.oreilly.com/books/1230000000545/ch01.html
http://gafferongames.com/networked-physics/deterministic-lockstep/

« MMOG Serv er-Side. Programming Languages

 MMOG: W orld States and Reducing Traffic »

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: client, game, multi-player, network, protocol, server

Copyright © 2014-2016 ITHare.com

[Gambetta] Gabriel Gambetta, “Fast-Paced Multiplayer”
[Gambetta.Part2] Gabriel Gambetta, “Fast-Paced Multiplayer (Part II): Client-Side Prediction
and Server Reconciliation”
[Gambetta.Part4] GabrielGambetta, “Fast-Paced Multiplayer (Part IV): Headshot! (AKA Lag
Compensation)”

http://www.gabrielgambetta.com/fpm1.html
http://www.gabrielgambetta.com/fpm2.html
http://www.gabrielgambetta.com/fpm4.html
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/mmog-server-side-programming-languages/
http://ithare.com/mmog-world-states-and-reducing-traffic/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/network/
http://ithare.com/tag/protocol/
http://ithare.com/tag/server/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
MMOG: World States and Reducing Traffic
posted February 1, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VII(b) from the upcoming book
“Development&Deployment of Massively Multiplayer Online
Games”, which is currently being beta-tested. Beta-testing is
intended to improve the quality of the book, and provides free e-
copy of the “release” book to those who help with improving; for
further details see “Book Beta Testing“. All the content published
during Beta Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of Contents.]]

Ok, so we’ve finished describing data flows which may
apply to your game, and can now go one level deeper,
looking into specifics of those messages going between client and server. First, let’s take a
closer look at the message that tends to cause most of trouble at least for fast-paced
simulation-based games. This is “World Update” message from Fig. VII.1-Fig. VII.3, which
in turn is closely related to Publishable World State.

Server-Side, Publishable, and Client-Side Game World States
Among aspiring simulation-based game developers, there is often a misunderstanding
about Game World State – “Why we need to care about different states for our Game

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/wp-content/uploads/BB_part077_BookChapter007b_v1.png

The most
important
reason to
minimize
bandw idth is
that traf f ic is
expensive.

World, and cannot have only one state, so that Server-Side State is the same as Client-Side
One?”

The answer is that “Well, depending on your game, you MIGHT be able to have one state,
but for simulation games, in many cases you won’t” . The problem here is purely technical,
but very annoying – it is a problem of bandwidth.

The most important reason to minimize bandwidth is that traffic is
expensive. While traffic prices go down and, as of beginning of 2016,
you can get unmetered 1Gbit/s for around $500-1000/month, and
unmetered 10GBit/s for around $3-5K/month, it is still far from
being free. On the other hand, if you’re too wasteful with your traffic
(like trying to send all the updates to all the meshes over the network),
it simply won’t fit into your player’s “last mile” (connection from him
to his ISP). And if you’ve done a good job already, still keep in mind
that, as an additional incentive, making your Publishable State smaller
tends to make updates to it smaller, and the smaller updates are – the
less chances you have to overload your player’s “last mile” (and
overloading “last mile” inevitably leads to latencies going through the
roof for that specific player).

Note that here we’re not discussing systems based on so-called
“deterministic lockstep” network models; with all their simplicity, they don’t work well for
MMOs (in fact, [GafferOnGames.SnapshotsAndInterpolation] doesn’t recommend it for
Internet games with over 4 players).

 interestingly, sometimes reducing server packet size MAY help even if client’s “last mile”
overload is caused by a concurrent download, as there are some routers out there
configured to give preference to smaller packets; unfortunately, I don’t have stats on how
widespread this effect is in practice

Client-Side State
Let’s consider an example MMORPG game, OurRPG. Let’s assume that our players can
move within some 3D world, talk, fight, gain experience, and so on. Physics-wise, let’s
assume that we want to have rigid body physics and ragdoll animations, but our fights are
very simple and don’t really simulate physics and have fight movements animated instead
(think “Skyrim”).

If we have our game as a single-player, the only thing we will need, would be a Client-Side
State – complete with all the meshes (with thousands of triangles per character), textures,
and so on.

Server-Side State
Now, as we’re speaking about MMOs, we need a Server-Side State. And one thing we can
notice about this Server-Side State is that it doesn’t need to be as detailed as Client-Side

“

1

1

In practice,
f or most

classical RPGs
you can get
aw ay w ith

simulating each
of your PCs and

NPCs as a box
(parallelepiped),

or as a prism
(say, hexagonal

or octagonal
one).

State.

As we don’t need to render anything on the server side,
we usually can (and SHOULD) use much more low-poly 3D

models on the server side

Actually, to keep the number of our servers within reason, we need to
leave only the absolute minimum of processing on the server side,
and this absolute minimum is defined as “drop everything which
doesn’t affect gameplay”. In practice, for most classical RPGs (those
without karate-like fights where limb positions are essential for
gameplay) you can get away with simulating each of your PCs and
NPCs as a box (parallelepiped), or as a prism (say, hexagonal or
octagonal one). Cylinders are also possible, though these usually
apply if you don’t really make a classical polygon-based 3D
simulation. Models of your server-side rooms can (and SHOULD) also
be simplified greatly – while you do need to know that there is a wall
there with a lever to be pulled in the middle, in most cases you don’t
need to know the exact shape of the lever.

In extreme cases, you won’t even need 3D on server side at all. While
this is not guaranteed, start your analysis from checking if you can
get away with 2D server-side simulation – even if you will need 3D,
such analysis will help you to drop quite a few things which are
unnecessary on the server side.

For OurRPG, however, we do need 3D on the server side (well, we
want to simulate rigid body stuff and ragdolls, not to mention multi-

level houses). On the other hand, we don’t need more than hexagonal prism (with
additional attributes such as “attacking/crouching/…” and things such as “animation
frame number”) to represent our PCs/NPCs; when it comes to rigid objects simulated on
the server-side – they also can be represented using only a few dozens triangles each.

When we need to simulate ragdoll on the server-side – we won’t even try to simulate
movements of all the limbs. What we will do, however, is calculate movement of the center
of mass of the dying character. While for some games this may happen to result in too-
unrealistic movements, for some other games we might be able to get away with it (and
doing it this way will save lots of CPU power on the server-side), so that’s what we’ll try
first.

This polygon reduction will lead to a drastic simplification from the classical Client-Side
State (the one we’ll need to render the game).

Publishable State
Now, as we’ve got Server-Side State and Client-Side State, we need to pass the data from
the Server-Side to the Client-Side. To do it, we’ll need another state – let’s name it
Publishable State.

“

to represent
PCs/NPCs, w e
usually can
(and theref ore
SHOULD) throw
aw ay all the
meshes, and use
only a tuple of
(x,y,z,x-y-
angle,animation-
state,animation-
f rame)

And one thing to note about Publishable State is that it usually SHOULD be simpler than
Server-Side state. When discussing simplifications of the Publishable State compared to
Server-Side state, let’s observe the following:

As a rule of thumb, Publishable State MAY be simplified compared to Server-Side
State. For example, for OurRPG the following simplifications are possible:

to represent PCs/NPCs, we usually can (and therefore
SHOULD) throw away all the meshes, and use only a tuple of
(x,y,z,x-y-angle,animation-state,animation-frame)

in addition to the tuple required for rendering, there
likely to be dozens of fields such as “inventory”,
“relationships with the others”, and so on; whether they
need to be published, depends on your client-side
logic.

By default (and until proven that you need
specific field for the client side), avoid publishing
these things. The smaller your publishable state is
– the better.

In some cases, however, you may need them. For
example, if your game allows to steal something
from PC/NPC, then your client’s UI will likely
want to show other character’s inventory to find
out what can be stolen. This information about
the other character’s inventory MAY be obtained
by request, or MAY be published. In the latter
case, it becomes a part of publishable state. Note
that making inventory publishable won’t have too
bad effect on the update size, as it will be optimized via delta
compression (see “Delta Compression” subsection below); on the
other hand, it will increase traffic during initializations/transitions,
so depending on your game it still MAY make sense to exclude
inventory from publishable state and make this information available
on request from a client.

Even if you need such rarely-changing fields as a part of your
publishable state, you usually SHOULD separate them from the
frequently-changed ones (for example, into separate structs or
something). This is related to them having different timing
requirements, which potentially lead to different retransmit policies,
and it is simpler to express these policies when you have separate
structs. For example, inventory is updated rarely, and is usually quite
tolerant to delays of the order of 3*RTT or so; as a result, it is usually
unwise to be too aggressive with re-sending it (in other words, it is
usually ok to send it once and to wait for 2*RTT for confirmation
before re-sending it). On the other hand, coordinates and other
rendering-related stuff do need to be updated in real-time, so you
should be quite aggressive with re-sending them. More discussion on
re-transmission policies will be provided in Chapter [[TODO]].

to represent rigid objects, we again SHOULD throw away all the meshes and use

“

23

If w e'd try to
transf er all the
thousands of
triangles every
“netw ork tick”
w hile our
character is
moving, w e'd
need to send
around
100Kbytes per
“netw ork tick”
per character,
and if our PC
can see 20
characters at
the same time,
and w e're using
20 “netw ork
ticks” per
second, w e'll
end up w ith
40MBytes/second/player

only (x,y,z,x-y-angle,x-z-angle,y-z-angle) tuple.

Whenever we CAN make Publishable State smaller, we SHOULD do it (see reasoning
about reducing bandwidth above).

 actually, we can use this representation for Server-Side too, but it may or may not be
convenient for the Server-Side. On the other hand, removing meshes is an almost-must for
Publishable State
 whether we need velocities to be published is not that obvious, see “Dead reckoning”

section below

Why Not Keep them The Same?
Now let’s go back to the question – why not use the very same Client-
Side State as Server-Side State and as Publishable State? The answer
is simple – because of bandwidth. Just compare – if we’d try to
transfer all the thousands of triangles every “network tick” while our
character is moving, we’d need to send around 100Kbytes per
“network tick” per character, and if our PC can see 20 characters at
the same time, and we’re using 20 “network ticks” per second, we’ll
end up with 100KBytes/tick/character * 20characters/player *
20ticks/second = 40MBytes/second/player; this would in turn mean
that we can fit only 30 players in that $5K/month 10Gbit/s channel
(not to mention that only a few people will be able to play the game),
Big Ouch! With our Publishable State (and even before any
compression techniques are used) it is more like 50
bytes/tick/character, or (with the same assumptions) is much more
manageable 50bytes/tick/character * 20characters/player *
20ticks/second = 20KBytes/second/player.

Throw in the reduced Server-Side CPU load (which you will be paying
for) for simplified Server-Side State, and the need to have simplified
Server-Side State and Publishable State becomes obvious.

 here we’re implying that we’ve implemented “interest management”
to avoid sending unnecessary stuff, see “Interest Management”
section below for further discussion
 it can be reduced further (see “Compression” section below), but for

the moment this 3+ orders of magnitude improvement will suffice.

Non-Sim Games and Summary
For non-simulation games (such as social games or blackjack), the
difference between different States is much less pronounced, and in
many cases Server-Side State MAY be the same as Publishable State
(though Client-Side State often will still be different). For example, whenever a card is

2

3

“4

5

4

5

dealt for a blackjack game, usually it is represented as an immediate update of the Server-
Side State to reflect that the card is already dealt, and update to Server-Side State is
immediately pushed to the Client. All the animation of the card being dealt, is processed
purely on the Client-Side (so that Client-Side State is updated without any input from the
Server while the card is flying across the table).

On the other hand, even if we try to generalize our findings over the whole spectrum of the
MMO games (from social ones to MMOFPS), two observations can be made. First of all,
whatever our game is, the following inequation should stand:

Publishable State <= Server-Side State <= Client-Side
State

The second observation is the following:

we SHOULD work hard on reducing the size of
Publishable State

Publishable State: Delivery, Updates, Interest Management, and
Compression
Ok, so we’ve decided on our Publishable State (and have done it in a reasonably optimal
way), and know how to update it on the server side. The next question we face is “How to
deliver this Publishable State (including updates) from Server to Client?”

Of course, the most obvious way of doing it would be just to transfer the whole state once
(when the client is connected), and then to transfer updates whenever the update of the
Game World occurs (which may be “each network tick” for quite a few simulation-based
games out there).

However, very often we can do better than that traffic-wise. And as reducing traffic is a
Good Thing(tm) both for the reducing server costs and player’s latencies, let’s take a
closer look at these optimizations.

Interest Management: Traffic Optimization AND Preventing
Cheating
Interest Management deals with sending each client only those updates within the Game
World, which it needs to render the scene. It is very important for quite a few games out
there.

Mathematically
speaking,

w ithout Interest
Management,

the amount of
data on our

servers w ill
need to send (to

all players
combined), is

O(N^2). Interest
Management

reduces this
number to O(N).

Let’s consider OurRPG mentioned above, and the Publishable State
which needs to transfer 50 bytes/network-tick/character. Now let’s
assume that OurRPG is a big world with 10000 players. Transferring
all the data about all the players to all the players would mean
transferring
10000characters*50bytes/tick/character*20ticks/second =
10MBytes/second to each player, and 100GBytes/second total (and
that’s with our Publishable State being reasonably optimal, i.e.
without transferring meshes). However, if we notice that out of that
10000 players each given player can see only 20 other players (which
is the case most of the time for most of the more-or-less realistic
scenes) – then we can implement “Interest Management” and send
each player only those updates-which-are-of-interest-to-her (in
other words, sending only those things which are needed for
rendering). Then, we need to send only
20characters*50bytes/tick/character*20ticks/second =
20KByte/second to each player (200MBytes/second total), MUCH
better.

Mathematically speaking, without Interest Management, the amount
of data on our servers will need to send (to all players combined), is
O(N^2). Interest Management (if properly implemented) reduces
this number to O(N). The same thing from a bit different perspective

can be stated as

Interest Management normally allows to establish a
capping on amount of traffic sent to each player,

regardless of total number of players in the game.

In practice, implementations of the Interest Management can vary significantly. In the
simplest form, it can be a sending only information of those characters which are
currently within certain radius from the target player (or even “send updates only to
players within the same “zone”). In more complicated implementations, we can take into
account walls etc. between players. The latter approach will also help to address “see-
through-walls” cheating.

This also leads us to a second advantage of Interest Management:

Interest Management (if properly implemented) MAY
allow you to address “lifting fog-of-war” and “see-

through-walls” cheats

The logic here is simple: if the client doesn’t receive information on what is going on in
“fog-of-war” areas or behind the wall, then no possible hacking of the client will allow to
reveal this information, making this kind of attacks pretty much hopeless.

“

An extreme
case of this
class of cheats
w ould be f or an
(incredibly
stupid) poker
site w hich has
pocket cards
data as a part of
Publishable
State and
doesn't
implement any
Interest
Management.

An extreme case of this class of cheats would be for an (incredibly
stupid) poker site which has pocket cards data as a part of
Publishable State and doesn’t implement any Interest Management. It
would mean that such an implementation will send pocket cards to all
the clients (and then clients won’t show other players’ cards until the
flag show_all_cards is sent from the server). DON’T DO THIS – the
client will be hacked very soon, with pocket card revealed to cheaters
from the very beginning of the hand (ruining the whole game). Interest
Management (or even better – excluding pocket cards from
Publishable State altogether, with, say, point-to-point delivery of
pocket cards) is THE ABSOLUTE MUST for this kind of games. More
or less the same stands for quite a few MMORTS out there, where
lifting “fog of war” via cheating would give way too much unfair
advantage.

Note that when choosing you Interest Management algorithm, you
need to think about worst-case scenarios when a large chunk of your
players gather in the same place (what about that wedding ceremony
which everybody will want to attend?). This can be really unpleasant,
and you do need to think how to handle it well in advance. If going
beyond the most obvious (and BTW working pretty well) solution of
“we don’t have any Big Events, so it won’t be a problem” – things may
become complicated (and if your game is a 3D one – the same
scenarios can easily bring the number of triangles to be rendered on
the client-side, beyond any reasonable limits, bringing any graphics
card to its knees). One of the ways to deal with it – is to limit the number of transferred-
characters to a constant limit (ensuring that O(N) thing), and when this limit is exceeded –
to render the rest as a “generic crowd” simulated purely by client-side and wandering by
some simple rules (and the same “generic crowd” people can be rendered as really-low-
poly models to deal with polygon numbers issue).

Before Compression: Minimizing Data
One thing which needs to be mentioned even before we start to compress our Publishable
State, is that most of the time we can (and SHOULD) minimize the amount of data we want
to include into our Publishable State. Way too often it happens that we’re publishing data
field in an exactly the same form as it is available on the Server-Side, and this form is
usually redundant, leading to unnecessary data being transferred over the network. A few
common minimization rules of thumb:

DON’T transfer doubles; while double operations are cheap (at least on x86/x64),
transferring them is not. In 99% of cases, transferring a float instead won’t lead to
any noticeable changes.

DO think about replacing floats with fixed-point numerics (in fact, an integer with an
understanding where the point is, or more precisely – what is the multiplier to be
used to convert from Server-State data to Publishable State and vice versa)

one pretty bad example of float being obviously too much, is transferring angle
for an RPG. In most cases, having it transferred as 2-byte fixed-point with lower

“

7 bits being fraction, will cover all your rendering needs with an ample reserve

for coordinates, calculations are more complicated, but as long as we need a
fixed spatial resolution (and for rendering this is exactly what we need), fixed-
point encodings are inherently more efficient than floating-point ones, as we
don’t need to transfer exponent for fixed-point. In addition, with standard
floats it is more difficult to use non-standard number of bits. For example, if we
have a 10000m by 10000m RPG world, and want to have positioning with a
precision of 1cm, then we need 1e6 possible values for each coordinate. With
fixed-point numerics, we can encode each coordinate with 20 bits, for 40 bits (5
bytes) total. With floats, it will take 2*32 bits = 8 bytes (that’s while having
comparable spatial resolution(!)), or 60% more (and if we’d transfer doubles – it
would go up to 16 bytes, over 3x loss compared to fixed-point encoding).

yet another case for transferring fixed-point numerics is all kinds of currencies
(actually, it is cents which are transferred, and the rest is just interpretation)

Compression
Now we have our Publishable State with a proper Interest Management, and want to
reduce our traffic further. Let’s name those techniques which help us to take whatever-
we-want-to-publish (after Interest Management has filtered out whatever is not
necessary for the specific client), and to deliver it to the client in an optimized way,
“Compression Techniques”. Note that we’ll interpret “Compression” much broader than
usual ZIP or JPEG compression (and it will have quite a few things which are not typically
used for compression), but essentially all of “Compression Techniques” are still following
exactly the same pattern:

take some data on the source side of things (server-side in our case)

“compress” it into some kind of “compressed data”

transfer the compressed data over the Internet

“decompress” it back on the receiving side (with or without data loss, see on
“lossless” vs “lossy” compression below)

to get more-or-less-the-same data on the target side of things.

Also let’s note that some of the techniques described below, while being well-known, are
usually not named “compression”; still, I think naming them “Compression Techniques” (as
a kind of “umbrella” term) makes a lot of sense and provides quite useful classification.

To make our compression practical and limited (in particular, to avoid using global
states), let’s define more strictly what “Compression Techniques” can and cannot do:

“Compression Techniques” are allowed to keep a buffer (of limited size) of past
values on both sides (just like ZIP/LZ77 does)

we MAY refer to the buffer (explicitly or implicitly) to reduce the amount of data
sent

using this buffer creates complications when working over UDP, but there are
known ways of handling it which will be discussed in Chapter [[TODO]]

“Compression Techniques” are allowed to know about the nature of specific fields
we’re transferring; these specifics can be described, for example, in IDL (see Chapter
[[TODO]] for more details)

in particular, if we have two fields, one of which is coordinate, and another one
is velocity along the same coordinate, this relation MAY be used by our
“Compression Technique”

“Compression Techniques” are allowed to rely on game-specific
constants, as long as they’re game-wide

for example, if we know that for OurRPG the usual pattern
when user presses “forward” button, is “linear acceleration
of A m/s^2 until speed reaches V, then constant speed” –
we ARE allowed to use this knowledge (alongside with A and
V constants) to reduce traffic

“Compression Techniques” are NOT allowed to use anything
else. In other words, we won’t consider things like client-side-
extrapolation-which-takes-into-account-running-into-the-wall,
as “Compression” (doing it would require “Compression” to
know wall positions, and we want to keep our “Compression”
within certain practical limits).

“Compression Techniques” can be either “lossless” or “lossy”. If
compression is “lossy”, we MUST be able to put some limits on
the maximum possible “loss” (for example, if our compression
transfers “x” coordinate in a lossy manner, so that client_x MAY
differ from server_x, we MUST be able to limit maximum
possible (server_x – client_x)). In the sections below, all the
compression techniques are lossless unless stated otherwise.

Now let’s start discussing various flavours of compression.

Delta Compression

Arguably the most well-known compression is so-called “delta compression”. Actually,
there are two subtly different things known under this name in the context of games.

The first flavour of “delta compression” is about skipping those fields of the game state
which exist in the publishable state, but which didn’t change since the last update (usually,
you’re just transferring a bit saying “these field didn’t change” instead). This kind of “delta
compression” is an extremely common technique (known at the very least since Quake)
which is applicable to any type of field, whether it is numerical or not. This, in turn, allows
publishing such rarely changing things as player’s inventories (though see note in
“Publishable State” section above about omitting inventory from publishable state
completely, or about making it available on demand; while not always possible, this is
generally preferable).

The second flavour of “delta compression” is a close cousin of the
first one, but is still a bit different. The idea here is to deal with
situations when a numerical field changes (so skipping the field
completely is not really an option), but instead of transferring new

Lossy
compression
Lossy
compression
(irreversible
compression) is
the class of data
encoding
methods that
uses inexact
approximations
(or partial data
discarding) to
represent the
content.

— Wikipedia —

VLQ
A variable-
length quantity

https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Variable-length_quantity

value, to transfer a difference between “new value” and “old value”
(pretty much like (A)DPCM is doing for audio signals). For example, if
the field is an x coordinate, and has had an “old value” of 293.87, “new
value” is likely to be “293.88”, and is unlikely to be 0, so spectrum of
differences becomes strongly skewed towards values with smaller
absolute value, that enables further optimizations. The gain here can
be obtained by either simply using less bits to encode the difference,
or to play around with variable-length encodings such as VLQ, or to
rely on running another layer of compression (such as Huffman
compression, see “Classical Compression” subsection below) which
will generally encode more-frequently-occurring-bytes (in this case –
zeros) with less bits.

Let’s note that the second flavour of “delta compression” can also be
made “lossy”: we MAY round the delta transferred, as long as we’re sure that pre-defined
loss limits are not exceeded. Note that ensuring of loss limits usually requires server to
keep track of the current value on the client side, so that rounding errors, while
accumulating, still remain below the loss limit (and are corrected when the limit is about
to be exceeded).

Dead Reckoning as Compression

Another big chunk of simulation-related “Compression Techniques”
is known as “dead reckoning”. Note that despite obvious similarities,
use of “dead reckoning” for the purposes of compression is subtly
different from it’s use for client-side extrapolation (see “Client-Side
Extrapolation a.k.a. Dead Reckoning” section above) When using
dead reckoning for client-side extrapolation purposes we’re trying
to deal with latency: we don’t have information on the client-side
(yet), and trying to predict the movement instead, reducing
perceivable latency; to do it, no server-side processing is required,
and there is no precision loss. When using dead reckoning for
compression purposes, we do know exact movement, and know on
the server side how exactly the client will behave, so we can use this
knowledge as a Compression Technique to reduce traffic (normally –
as a “lossy” compression); for compression purposes, we do need
server-side processing and “data loss” threshold.

The idea with a classical “dead reckoning” is to use velocities to
“predict” the next value of the coordinate, while putting a limit on
maximum deviation of the server-side coordinate from the client-
side coordinate, so from “Compression” point of view it is a “lossy”
technique with a pre-defined limit on data loss.

Let’s consider an example. Let’s say that we have tuple (x,vx) as a part
of our publishable state, and that at a certain moment client has it as
(x0,vx0), and that server knows this (x0,vx0) for this specific client.
Now, an update comes in to the server side, which needs to make it
(x1,vx1). Server calculates (x0+vx0,vx0) as a “predicted” state, and sees

(VLQ) is a
universal code
that uses an
arbitrary
number of
binary octets
(eight-bit bytes)
to represent an
arbitrarily
large integer.

— Wikipedia —

Dead
reckoning

In navigation,
dead reckoning

or dead-
reckoning (also

ded f or deduced
reckoning or

DR) is the
process of

calculating
one's current

position by
using a

previously
determined

position, or f ix,
and advancing

that position
based upon

know n or
estimated

speeds over

6

7

8

9

https://en.wikipedia.org/wiki/Dead_reckoning

Not only
coordinates can
be compressed
using dead
reckoning-like
compression;
actually, pretty
much anything
w hich can be
predicted w ith
high
probability, can
benef it f rom it.

if it is “too different” from (x1,vx1). If it is not too different – server
can skip sending any update for this coordinate (and if it is too
different – the second flavour of “delta compression” can be used to
send a message fixing the difference).

For further discussion of the classical “dead reckoning” as compression (with a discussion
of associated visual effects), see, for example, [Gamasutra.DeadReckoning].

One last note – not only coordinates can be compressed using dead
reckoning-like compression; actually, pretty much anything which can
be predicted with high probability, can benefit from it. One practical
example of such non-coordinates compressable by dead reckoning, is
animation frame number (that is, if you need to transfer it).

 in literature, it is usually considered to be one single “Dead
Reckoning” algorithm (part of “DIS” a.k.a. IEEE1278) which reduces
both perceivable latency and traffic. However, due to differences in
both the effects and implementation, I prefer to consider these two
uses of Dead Reckoning separately
 while it can be made lossless, it won’t get much in terms of

compression, so the lossless variation is almost-never used
 as noted above, when using UDP, this is tricky, but doable, see

Chapter [[TODO]] for further details
 ”too different” here is the same as “exceeding pre-defined loss limit”
 despite the title, most of the discussion within is not about latency,

but about reducing traffic with a pre-defined threshold, which we
refer to as one of “Compression Techniques”

Dead Reckoning as Compression: V ariations

“Dead reckoning” as described above, is certainly not the only way to use kinematic
equations to optimize traffic. Possible variations include such things as:

using “delta compression” (the second variety described above) to encode data when
the “loss limit” is exceeded

using accelerations in addition to velocities (and predicting velocities based on
accelerations)

calculating velocities/accelerations (using previous values in the buffer) instead of
transferring them

use of smoothing algorithms to avoid sharp change of coordinates when the
correction is issued. These are similar to the smoothing algorithms used for server
reconciliation (see “Running into the Wall, and Server Reconciliation” section above),
and the same smoothing algorithm can be used for both purposes. Whether to
consider smoothing a part of compression (or a post-compression handling) – is not
that important and it depends.

using knowledge about the game mechanics to reduce traffic further.

elapsed time
and course

— Wikipedia —

9

10

“6

7

8

9

10

It is possible
to have a
compression
algorithm
optimized f or
small updates;
one example of
such an
algorithm is an
“LZHL”
algorithm

As one example, if in OurRPG velocity of PC always grows in a linear manner with
fixed acceleration until it reaches a well-defined limit – this can be used to
calculate “predicted speed” and to avoid sending updates along this typical
pattern.

Classical Compression

Classical lossless compression (such as ZIP/deflate) usually uses two
rather basic algorithms. The first one usually revolves around LZ77
(with the idea being to find similar stuff in the earlier buffer and to
transfer a reference instead of verbatim stream). The second
algorithm is usually related to so-called Huffman coding, with the
idea being to find out what symbols occur in the stream more
frequently than the others, and to use less bits to encode these more-
frequently-used symbols. Of course, there are lots of further
variations around these techniques, but the idea stays pretty much
the same. ZIP’s deflate is basically a combination of LZ77 and
Huffman.

Unfortunately, classical compression algorithms, such as deflate, are
not well-suited for game-related compression. One of the reasons

behind is that (as it was shown for deflate in [DrDobbs.OnlineCompression], these
algorithms are usually not optimized to handle small updates (in other words, “flush”
operation, which is required to send an update, is expensive for ZIP and other traditional
stream-oriented algorithms).

On the other hand, it is possible to have a compression algorithm
optimized for small updates; one example of such an algorithm is an
“LZHL” algorithm in the very same [DrDobbs.OnlineCompression] by
my esteemed translator. Like deflate, it is a combination of LZ77-like
and Huffman-like compression, unlike deflate, it is optimized for
small updates.

If nothing else, you can always try to use Huffman (or Huffman-like, as
described in [DrDobbs.OnlineCompression]) coding for your packets.
I won’t go into too much details of Huffman algorithm as such here (it
is described very well in [Wiki.Huffman]), but one trick which may help
here with regards to games, is the following. Usually, implementations
of Huffman algorithm transfer “character frequency tables” as a part
of compressed data; this leads to the complications in case of lost
packets (or, if you transfer the table for each packet, they will become
huge). For games, it is often possible to pre-calculate character
frequency table (for example, by gathering statistics in a real game
session) and to hardcode this frequency table both into the server and
into the client. In this case, lost packets won’t affect frequency tables
at all, and this variation of Huffman will work trivially over both TCP
and UDP. Note though that usually gains from Huffman are rather limited (even if your
data has lots of redundancies, don’t expect to gain more than 20% compression from pure
Huffman), but it is usually better than nothing.

LZ77
LZ77 is the

lossless data
compression

algorithm
published by

Abraham
Lempel and

Jacob Ziv in
1977.

— Wikipedia —

11

12

“
13

https://en.wikipedia.org/wiki/LZ77_and_LZ78#LZ77

 and its close cousins such as LZ78 and LZW
 or a bit more efficient but much slower arithmetic coding
 note that LZHL as such won’t work directly over UDP, and some significant adaptation

will be necessary to make it work there; for TCP and TCP-like streams, however, it has
been seen to work very well

Combining Different Compression Mechanisms and Law of Diminishing
Returns

It is perfectly possible to use different compression mechanisms together. For example:

for relatively static data (such as inventory), delta compression (1st variation),
followed by classical compression, can be used

for very dynamic coordinate-like data – dead reckoning (as a lossy compression),
with dead reckoning using delta compression (2nd variation), using VLQ to encode
differences, can be used

Note that the examples above are just that – examples, and optimal case for your game
may vary greatly.

One further thing to note when combining different compression mechanisms, is that all
of them are merely reducing redundancy in your data, so even if they’re not conflicting
directly, traffic reduction from applying two of them simultaneously, will almost
universally be less than the sum of reductions from each of them separately. In other
words, if one compression gives you 20% traffic reduction and another one – another 20%,
don’t expect two of them combined to give you 20%+20%=40% or 1-(0.8*0.8)=36%
reduction – most likely, it will be less than that .

 examples of such direct conflicts would be trying to use dead reckoning after classical
compression, or using LZ77 compression after Huffman compression

 while there are known synergies between different compression algorithms, notably for
LZ77 followed by Huffman, they’re very few and far between

Traffic Optimization: Recommendations

When speaking about optimizing traffic, I usually recommend the following order of doing
it:

minimize your Server-Side State. It is important not only to minimize traffic, but also
to minimize server-side CPU load

11

12

13

14

15

14

15

Minimize
your
Publishable
State. Be
aggressive:
throw aw ay
everything, and
add f ields to
your
Publishable
State only w hen
you cannot live
w ithout them

minimize your Publishable State. Be aggressive: throw away
everything, and add fields to your Publishable State only when
you cannot live without them

split your Publishable State into several groups with different
timing requirements

make sure to use “Delta Compression” (the first variation above)
to allow skipping updates for non-changing objects

treat “non-changing objects” broadly; for example, for
many games out there an object which keeps moving with
the same speed in the same direction, can be treated as
“non-changing” (alternatively, you can handle it via “dead
reckoning”)

think about “Dead Reckoning” compression, keeping adverse
visual effects in check (and reducing threshold if necessary)

don’t forget about variations, they may make significant
difference depending on specifics of your game

think about running Classical Compression on top of the data
compressed by previous techniques, but don’t hold your breath
over it

deflate as such won’t work for most of the games (due to
the cost of “flush”, see above)

LZHL works for TCP, but adapting it for UDP will require an additional effort
(and will hurt efficiency too)

Huffman with pre-populated frequency tables (see above) will work for UDP,
but the gains are limited

when combining different compression techniques, keep in mind that their order is
very important

I strongly suggest to separate all types of compression from the rest of your code
(including simulation code)

moreover, I strongly suggest to say that compression code should be generated
by your IDL compiler based on specifications in IDL, instead of writing
compression ad-hoc. More on IDL in Chapter [[TODO]].

[[To Be Continued…
This concludes beta Chapter VII(b) from the upcoming book
“Development and Deployment of Massively Multiplayer Games (from
social games to MMOFPS, with social games in between)”. Stay tuned
for beta Chapter VII(c), “Point-to-Point Communications”]]

“

[–] References
[GafferOnGames.SnapshotsAndInterpolation] Glenn Fiedler, “Snapshots and
interpolation”, Gaffer on Games
[Gamasutra.DeadReckoning] Jesse Aronson, “Dead Reckoning: Latency Hiding for

http://gafferongames.com/networked-physics/snapshots-and-interpolation/
http://www.gamasutra.com/view/feature/131638/dead_reckoning_latency_hiding_for_.php

« MMOG. RTT, Input Lag, and How to Mitigate Them

 MMOG. Point-to-Point Communications and non-blocking RPCs »

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: client, compression, game, multi-player, network, protocol, server

Copyright © 2014-2016 ITHare.com

Networked Games”, Gamasutra
[DrDobbs.OnlineCompression] Sergey Ignatchenko, “An Algorithm for Online Data
Compression”
[Wiki.Huffman] “Huffman coding”, Wikipedia

http://www.drdobbs.com/an-algorithm-for-online-data-compression/184403560
https://en.wikipedia.org/wiki/Huffman_coding
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/mmog-rtt-input-lag-and-how-to-mitigate-them/
http://ithare.com/mmog-point-to-point-communications-and-non-blocking-rpcs/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/compression/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/network/
http://ithare.com/tag/protocol/
http://ithare.com/tag/server/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
MMOG. Point-to-Point Communications and non-
blocking RPCs
posted February 8, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VII(c) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

After we’ve discussed Publishable State, the next thing we’ll need for our MMO is
Point-to-Point communications. While Publishable State is mostly about servers
communicating with clients, Point-to-Point communications can happen either
between client and server, or between two servers. These two types of Point-to-
Point communications have quite a bit in common, but there are also substantial
differences.

Note that differences between TCP and UDP are still beyond the scope until
Chapter [[TODO]]; for now we’re speaking of what we need, and not about how to
implement it.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

RPCs
Regardless of the nature of Point-to-Point communications (whether it’s being
between client and server, or between two servers), they share certain common
properties.

In particular, it is common for games to implement point-to-point
communications as non-blocking Remote Procedure Calls (RPCs). While this is not
required (and you can use simple message exchange instead – with either hand-
written or IDL-based marshalling), non-blocking RPCs tend to speed up
development significantly.

It should be noted, however, that while non-blocking
RPC are perfectly viable for games, you Really

SHOULD keep away from blocking RPC (as in DCE
RPC/COM/CORBA)

The reason for it is the following. With games, you SHOULD use event-driven/FSM
programming (if I didn’t manage to convince you about it in Chapter V, just trust
most of game developers out there, and take a note of most of them using FSMs at
least to some extent; in particular, classical game loop and simulation loop are
FSMs). And with event-driven FSMs, any blocking operation (especially the one
which involves waiting for remote entity) is a Big No-No.

/wp-content/uploads/BB_part078_BookChapter007c_v1.png

Implementing Non-Blocking RPCs
To implement non-blocking RPCs, you need a way to specify
signatures of your remotely-callable functions; such
specification defines the interface (and often protocol, though
see more on encodings in [[TODO!]] section below) between
RPC caller and RPC callee. Sometimes (like in Unity), it is done
by adding certain attributes ([RPC]/[ClientRpc]/[Command]
method attributes in Unity) to existing functions/methods.

However, usually I prefer to have my own explicit IDL (with an
IDL compiler) instead. The reason for this preference for a
separate IDL is that whenever we specify RPC signatures right
in the code, it means that having them in the code-written-in-
a-different-language, we’ll need at least to specify them once
again in the second language (what makes code maintenance
extremely error-prone).

We’ll discuss implementation of your own IDL in the [[TODO]]
section, but for the purposes of our current discussion it
doesn’t really matter whether we’re using intra-language RPC
specifications (like in Unity), or our own external IDL (as we’ll
discuss below).

 in theory, you could use one language as an IDL for another one, but I haven’t seen
such things (yet?)

Specifics of Non-blocking RPCs
Non-blocking RPCs have some peculiarities, both for implementing them, and for
using them. In general, there are two cases for non-blocking RPCs.

The first case is a non-blocking RPC, which returns void (and can’t throw any
exceptions). For such void RPCs, everything is simple – caller just marshals RPC
parameters, and sends a message to the callee, and the callee unmarshals it and
executes RPC call, that’s about it. From all the points of view (except for pure
syntax), calling such an RPC is the same as sending a message (with all the
differences being of purely syntactic nature).

A typical example of such an RPC (as defined in an IDL) is something along the
following lines:

STRUCT Input {
 bool left;

IDL
An interf ace
description
language or
interf ace
def inition
language (IDL),
is a
specif ication
language used
to describe a
sof tw are
component's
application
programming
interf ace (API).

— Wikipedia —

1

1

https://en.wikipedia.org/wiki/Interface_description_language

Non-void
RPCs are

signif icantly
more

complicated to
implement, and

most of the
popular game

engines out
there do NOT
support them

 bool top;
 bool right;
 bool bottom;
 bool shift;
 bool ctrl;
};

void move_me(Input in);

Non-void RPCs

The second (and much more complicated) case for RPCs is an RPC which either
returns a value, or is allowed to throw an exception (or both). An example IDL for
such a non-void RPC is the one from Chapter VI:

int dbGetAccountBalance(int user_id);

These non-void RPCs are significantly more complicated to
implement, and most of the popular game engines out there
do NOT support them (see Chapter [[TODO]] for more
information about Unity/Photon and Unreal Engine).

The main issue with implementing non-void RPCs is for the
caller to specify what to do when the function returns (or
throws an exception). There are many ways of doing it, they
were discussed in Chapter VI, section “Asynchronous
Processing for Finite State Machines/Actors: from plain event
processing to Futures (with OO and Lambda Call Pyramids in
between)” (with FSMFutures being my personal favorite at the
moment). On the other hand, while implementing them is
difficult, once they are available, they do simplify development
significantly, so you will want to use them if your engine
supports them.

Whenever your engine doesn’t support
non-void-RPCs, you’ll usually need to make

another RPC call in the opposite direction when
you’re done

In this case, our last example will need to be rewritten along the following lines:

//Game World Server to DB Server:
void dbGetAccountBalance(FSMID where_to_reply, int user_id);

//DB Server to Game World Server:

“

In other
w ords, you can
w rite your code
'as if ' all-your-
code-w ithin-
the-same-FSM
executed w ithin
the same thread

void gameWorldGotAccountBalance(int user_id, int balance);

or in more general manner:

//Game World Server to DB Server:
void dbGetAccountBalance(FSMID where_to_reply, int request_id, int user_id);

//DB Server to Game World Server:
void gameWorldGotAccountBalance(int request_id, int balance);

While this will work, it is quite cumbersome and inconvenient (substantially worse
than even Take 2 from Chapter VI).[[TODO! add these RPC to Chapter VI as “Take
1a”]]

Same-thread operation

Another thing to understand about non-blocking RPCs is that
due to non-blocking nature, other things can happen within
the same FSM while the RPC is executed. This can be seen as
either blessing (as it allows for essentially parallel execution
while staying away from any thread synchronization), or a
curse (as it complicates understanding), but needs to be kept
in mind at all the times you are dealing with non-blocking
RPCs. One positive thing to note in this regard is that for most
sane implementations, and regardless of using any of the ways
to report back described in Chapter VI, you don’t need to care
about thread synchronization (as all the
callbacks/lambdas/futures will be called in the context of the
same thread). In other words, you can write your code “as if”
all-your-code-within-the-same-FSM executed within the same
thread (and whether it will be actually the same thread or not,
is not that important); from a bit different perspective, you
can think of all the callbacks “as if” they’re essentially the same as co-routines (but
using a different syntax).

Client-to-Server and Server-to-Client Point-to-Point
communications
Now, as we’ve discussed the similarities between point-to-point communications,
we need to describe differences. And arguably the most important difference
between Client-to-Server and Server-to-Server communications, is related to
disconnects. As a rule of thumb, for Server-to-Server communications the
disconnects are extremely rare, and all the disconnects are transient (that is,
unless your whole site is down). It means that we can expect that they are restored
really quickly, which in turn means that we can try to hide temporary loss of
connectivity from application layer. On the other hand, for Client-to-Server (and

“

How ever, as
soon as w e

realize that
packets can be
lost, handling

inputs becomes
a bit dif f erent.

Server-to-Client) communications, this “restored really quickly” observation
doesn’t stand, and dealing with disconnects becomes an important part of
application logic.

Let’s speak about Client-to-Server and Server-to-Client communications first.

Inputs
One thing which you’ll inevitably need to transfer from client to server, is player
inputs. For a non-simulation game (think blackjack, stock exchange, or social
game), everything is simple: you’ve got an input – you’re sending it to the server
right away.

For simulation games, however, it is not that trivial. Traditionally, simulation-
based games usually operate in terms of “simulation ticks”, and usually single-
player games are just polling the state of keyboard/mouse/controller on each tick.
As a result, when moving from a single-player simulation game to the network one,
it is rather common to mimic this behaviour just by client sending state of
(keyboard+mouse+controller) to the server on each tick (which becomes a “network
tick”). An alternative (also pretty common) approach would send only changes to
this (keyboard+mouse+controller) state; this can be done either as soon as the state
is changed, or again on “tick”.

As long as there are no disconnects (nor packet loss), there is
no that much difference between these approaches. However,
as soon as we realize that packets can be lost, handling inputs
becomes a bit different.

If we’re transferring state of player’s input devices on each
tick, then in case of lost packet PC will effectively stop on the
server-side; moreover, at the same time, if we implement
Client-Side Prediction, it will be running on the client side.

On the other hand, if we’re transferring only changes to
keyboard/mouse/controller state, then in case of packets
being lost, our PC will keep running for some time (until we
detect disconnect) even if player has already released the
button; this may potentially lead to PC running off the cliff

even if the player’s actions didn’t cause it (just by disconnect happened at an
unfortunate time).

A kind of “hybrid” approach is possible if we’re using client-to-server
acknowledgment packets (which will arise in a pretty much any game world state
publishing schema, see Chapter [[TODO]] for further discussion) to distinguish
between “player is still keeping the button pressed” and “we have no idea, as the

“ 2

For example,
you have a
Good-Bad-Ugly-
style shootout,
and compensate
f or the lag, then
the Bad guy,
w hile having
w orse reaction,
could
compensate f or
it by sending
“shoot” input
packet w ith an
input
timestamp
w hich is 50ms
earlier than the

packet got lost” situations. In other words, if an acknowledgment arrived, but
without any information about the keyboard state change – then we know for sure
what is going on on the client side, if there is no acknowledgment – then
something is wrong, so our server can stop PC before he runs off the cliff.

Overall, there is no one universal answer to these questions, so you’ll basically need
to pick one schema, try it, and see if it works and feels fine for your purposes in
case of pretty bad connections.

 that is, beyond capabilities of input buffer [[TODO!: add input buffer to Fig
VII.2/VII.3]]
 and if keyboard state change has happened, it can and SHOULD be combined with

the acknowledgment IP packet to save on bandwidth, but this is a bit different
story, discussed in Chapter [[TODO]]

Input Timestamping

One issue which is often associated with inputs, is client-side
input timestamp (in practice, usually it will be a tick-stamp).
This is indeed necessary to facilitate things such as Lag
Compensation described in “Lag Compensation” subsection
above. On the other hand, as soon as server starts to trust this
timestamp, this trust (just as about any kind of trust out there)
can be abused. For example, if within your game you have a
Good-Bad-Ugly-style shootout, and compensate for the lag,
then the Bad guy, while having worse reaction, could
compensate for it by sending “shoot” input packet with an
input timestamp which is 50ms earlier than the real time,
essentially gaining an unfair advantage for these 50ms. In
general, such cheating (regardless of way of implementing it)
is a fundamental problem of any kind of lag compensation, so
you should be really sure how to handle various abuse
scenarios before you introduce it.

 no, measuring pings instead of relying on input timestamps
doesn’t prevent the cheat, it just makes the cheat a bit more
complicated

“Macroscopic” Client Actions

In addition to sending bare input to server, client usually
needs to implement some actions which go beyond it.

3

2

3

“

4

4

real time,
essentially
gaining an
unf air
advantage f or
these 50ms.

Examples of such “macroscopic” actions include such
sequences of inputs as:

player looking at object (usually processed purely on
client-side)

client showing HUD saying that “Open” operation is
available because object under the cursor is container
(again, processed purely on the client-side)

client pressing “Action” button (which means “Open” in this context)

client showing container inventory (obtained via an RPC call, or taken from
Publishable State)

player choosing what to take out

only then client invoking a Client-to-Server RPC such as
take_from_container(item_id, container_id)

For such RPC calls as take_from_container(), disconnect during the call can be
simply ignored in most cases (so that player will need to press a button again
when/if the connection is restored)

Another set of “macroscopic” actions (usually having even longer chains of events
before RPC call is issued) is related to dialog-based client-side interactions such
as in-game purchases. In these cases, all the interactions (except, maybe, for some
requests for information from the server) usually stay on the client-side until the
player decides to proceed with the purchase; when this happens, Client-to-Server
RPC call containing all the information necessary to proceed with the purchase, is
issued.

For such RPC calls, handling of disconnect during an RPC call is not that obvious. If
you want to be player-friendly (and usually you should be), you need to consider
two scenarios. The first one is when the disconnect is transient, and client is able to
reconnect soon; then, you need a mechanism to detect whether your RPC call has
reached the server, to get the result if it did, and to re-issue the call if it didn’t; this
would allow to make disconnect look really transient for the player, and to show
the result of the purchase as if the disconnect has never occurred. To implement it,
you’ll need to implement both re-sending of RPC call on the client side, and dealing
with duplicates on the server-side, in a manner similar to the one described in
“Server-to-Server” Communications section below.

The second
scenario occurs
w hen the RPC
call is
interrupted by
disconnect
bef ore
obtaining the
reply, and
disconnect
takes that long
that client gets
closed (or
server gets
restarted).

The second scenario occurs when the RPC call is interrupted
by disconnect before obtaining the reply, and disconnect takes
that long that client gets closed (or server gets restarted). In
this case, the only things we can practically do for the player,
are not directly related to the communication protocols (but
they still need to be done). Two most common features that
help to make player not that unhappy in this second scenario,
are (a) to send her an e-mail if the “purchase” RPC call has
reached the server (it doesn’t help to vent frustration if the call
didn’t reach the server), and (b) to provide her with a way to
see the list of all her purchases from the client when she’s back
online (which we need to do anyway if we want to be player-
friendly).

Server-to-Client

While server does send a lot of information to client (both as a
part of Publishable State, and as replies to Client-to-Server
RPC calls), it is not too common to call RPC from the server
side.[[TODO!: add note to Chapter VI/”Asynchronous” that it is
not too common to do it this way, and that it is usually client-
side-driven rather than server-side-driven]]

On the other hand, in some cases such RPC calls (especially
void RPC calls without the need to process reply on the server
side) are helpful. One such example is passing pocket cards to the client in a poker
game. This will allow to exclude pocket cards from Publishable State (which in
absence of Interest Management allows for rampant cheating, as was described in
“Interest Management: Traffic Optimization AND Preventing Cheating” section
above).

Server-to-Server Communications
As noted above, from the point of application layer Server-to-Server
communications can be made seamless (hiding disconnects, including those
resulting from FSM relocations, from application layer). However, this comes at the
cost of infrastructure level doing this work behind the scene. One fairly common
protocol which does achieve seamless handling of disconnects, implements two
related but distinct features.

First, as noted above, we’ll be usually dealing with “non-blocking RPC calls” anyway.
To support some kind of callback (whether being OO, lambda, or future), we’ll need
to keep a list of “outstanding RPC requests” (with their respective IDs) on the caller
side anyway. And as soon as we have this list of “outstanding RPC calls”, we have
sufficient information to re-send RPC request in case of lost packet/disconnect.

“

5

As soon as w e
have these tw o
parts of
processing – w e
can say that our
Server-to-
Server
communication
is tolerant to all
kinds of
transient inter-
server
disconnects.

On the other hand, this technique, while guaranteeing that we
will get at least one RPC request on the callee side for each RPC
call on the caller side, doesn’t guarantee that it will be the only
one. In other words, if implementing only the logic described
above, duplicate RPC calls on callee side can happen for a
single RPC call on the caller side. While making all the RPC
calls idempotent would solve this problem, in practice making
sure that each and every call is idempotent at the application
layer, is not exactly realistic.

That’s why a second part of processing (this time – on the
callee side) needs to be added. For example, we can make the
callee side keep the list of “recently-processed RPC
request_ids” (with associated replies), and if some request
with an ID from this list comes in – we should just to provide
the associated reply without calling anything on the callee
side. This scenario may legitimately happen if the connection
was lost-and-restored after the request was received, but
before the reply was acknowledged, but the handling
mentioned above, guarantees that everything is handled “as if”

disconnect has never happened.

As soon as we have these two parts of processing (in practice,
it will be a bit more complicated, as information on “which
replies can be dropped from the list” will need to be
communicated too, plus, most likely, we’ll need to implement
handshakes to distinguish between new connection and the
broken one) – we can say that our Server-to-Server
communication is tolerant to all kinds of transient inter-
server disconnects. This is necessary not only to deal with
inter-server disconnects at TCP level (which are extremely
rare in practice), but is also one of prerequisites to deal with
scenarios when we’re restoring/moving an FSM (see Chapter
VI, section “Failure Modes and Effects” for details).

An alternative (similar, but not identical) way of dealing with
such transient-disconnect issues, is to create two “guaranteed
delivery” message streams (going into opposite directions),
with each of the streams keeping its own list of
“unacknowledged messages”, and re-sending them on loss-
and-restore of underlying connection; on the receiving side, a
simple “last ID processed” is sufficient to filter out all the
duplicates.

Idempotence
Idempotence is
the property of

certain
operations in
mathematics

and computer
science, that

can be applied
multiple times

w ithout
changing the

result beyond
the initial

application.
— Wikipedia —

“

6

5

https://en.wikipedia.org/wiki/Idempotence

« MMOG: W orld States and Reducing Traffic

 as noted in Chapter VI, section “On Inter-Server Communications”, we’ll probably
use TCP for inter-server communications anyway, so such re-send will need to
happen only on TCP disconnect/reconnect
 that is, assuming that message IDs are guaranteed to be monotonous

[[To Be Continued…
This concludes beta Chapter VII(c) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VII(d), “IDL:
Encodings, Mappings, and Backward Compatibility”]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: client, game, multi-player, network, protocol, RPC, server

Copyright © 2014-2016 ITHare.com

5

6

/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/mmog-world-states-and-reducing-traffic/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/network/
http://ithare.com/tag/protocol/
http://ithare.com/tag/rpc/
http://ithare.com/tag/server/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
IDL: Encodings, Mappings, and Backward Compatibility
posted February 15, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VII(d) from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of
Contents.]]

As we’ve discussed those high-level protocols we need, I mentioned Interface
Definition Language (IDL) quite a few times. Now it is time to take a closer look at
it.

Motivation for having IDL is simple. While manual marshalling is possible, it is a
damn error-prone (you need to keep it in sync at least at two different places – to
marshal and to unmarshal), not to mention too inconvenient and too limiting for
further optimizations. In fact, the benefits of IDL for communication were realized
at least 30 years ago, which has lead to development of ASN.1 in 1984 (and in 1993 –
to DCE RPC).

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

How ever, f or
most game and
game-like
communications
I still pref er to
have my ow n
IDL.

These days in game engines, quite often a (kinda) IDL is a part
of the language/engine itself; examples include
[RPC]/[Command]/[SyncVar] tags in Unity 5, or
UFUNCTION(Server)/UFUNCTION(Client) declarations in
Unreal Engine 4. However, for most game and game-like
communications I still prefer to have my own IDL. The reason
for it is two-fold: first, standalone IDL is inherently better
suited for cross-language use, and second, none of in-
language IDLs I know are flexible enough to provide reasonably
efficient compression for games; in particular, per-field
Encodings specifications described below are not possible

 and even if Encodings (along the lines described below) are
implemented as a part of your programming language, they
would make it way too cumbersome to read and maintain

IDL Development Flow
With a standalone IDL (i.e. IDL which is not a part of your programming language),
development flow (almost?) universally goes as follows:

you write your interface specification in your IDL

“
1

1

/wp-content/uploads/BB_part079_BookChapter007d_v2g.png

Modif ying
generated code
usually
qualif ies as a
Really Bad Idea

IDL does NOT contain any implementation, just function/structure
declarations

you compile this IDL (using IDL compiler) into stub functions/structures in
your programming language (or languages)

for callee – you implement callee-side stub functions in your programming
language

for caller – you call the caller-side stub functions (again in your programming
language). Note that programming language for the caller may differ from the
programming language for callee

One important rule to remember when using IDLs is that

Never Ever make manual modifications to the code
generated by IDL compiler.

Modifying generated code will prevent you from modifying the
IDL itself (ouch), and usually qualifies as a Really Bad Idea. If
you feel such a need to modify your generated code, it means
one of two things. Either your IDL declarations are not as you
want them (then you should modify your IDL and re-compile
it), or your IDL compiler doesn’t do what you want (then you
need to modify your IDL compiler).

Developing your own IDL compiler

Usually I prefer to develop my own IDL compiler. From my
experience, costs of such development (which are of the order
of several man-weeks provided that you’re not trying to be
overly generic) are more than covered with additional flexibility (and ability to
change things when you need) it brings to the project.

With your own IDL compiler:

whenever you feel the need to change marshalling to a more efficient one
(without any changes to the caller/callee code) – no problem, you can do it

whenever you need to introduce an IDL attribute to say that this specific
parameter (or struct member) should be compressed in a different manner
(again, without any changes to the code) – no problem, you can add it

whenever you want to add support for another programming language – no
problem, you can do it

“

2

you can easily have ways to specify the technique to extend interfaces (so that
extended interfaces stay 100% backwards-compatible with existing
calls/callees), and to have you IDL compiler check whether your two versions
of the IDL guarantee that the extended interface is 100% backwards-
compatible. While techniques to keep backward compatibility are known for
some of the IDLs out there (in particular, for ASN.1 and for Google Protocol
Buffers), the feature of comparing two versions of IDL for compatibility, is
missing from all the IDL compilers I know[[IF Y OU KNOW A N IDL COMPILER
W HICH HA S A N OPTION TO COMPA RE TW O V ERSIONS OF IDL FOR
BA CKW A RD COMPA TIBILITY – PLEA SE LET ME KNOW]]

Now to the queston “how to write your own IDL compiler”. Very briefly, the most
obvious and straightforward way is the following:

write down declarations you need (for example, as a BNF). To start with your
IDL, you usually need only two things:

declaring structures

declaring RPCs

in the future, you will probably want more than that (collections being
the most obvious example); on the other hand, you’ll easily see it when it
comes

then, you can re-write your BNF into YACC syntax

then, you should be able to write the code to generate
Abstract Syntax Tree (AST) within YACC/Lex (see the
discussion on YACC/Lex in Chapter VI).

As soon as you have your AST, you can easily generate
whatever-stubs-you-want.

 see section “Publishable State: Delivery, Updates, Interest
Management, and Compression” above for discussion of
different compression types

IDL + Encoding + Mapping
Now, let’s take a look at the features which we want our IDL to
have. First of all, we want our IDL to specify protocol that goes
over the network. Second, we want to have our IDL compiler to
generate code in our programming language, so we can use
those generated functions and structures in our code, with
marshalling for them already generated.

AST
In computer
science, an
abstract syntax
tree (AST), or
just syntax tree,
is a tree
representation
of the abstract
syntactic
structure of
source code
w ritten in a
programming
language.

— Wikipedia —

2

https://en.wikipedia.org/wiki/Abstract_syntax_tree

When looking at existing IDLs, we’ll see that there is usually one single IDL which
defines both these things. However, for a complicated distributed system such as
an MMO, I suggest to have it separated into three separate files to have a clean
separation of concerns, which simplifies things in the long run.

The first file is the IDL itself. This is the only file which is strictly required. Other
two files (Encoding and Mapping) should be optional on per-struct-or-function
basis, with IDL compiler using reasonable defaults if they’re not specified. The idea
here is to specify only IDL to start working, but to have an ability to specify better-
than-default encodings and mappings when/if they become necessary. We’ll see an
example of it a bit later.

The second file (“Encoding”) is a set of additional declarations
for the IDL, which allows to define Encodings (and
IDL+Encodings effectively define over-the-wire protocol). In
some sense, IDL itself is similar to ASN.1 language as such, and
IDL encodings are similar to ASN.1 “Encoding Rules”. IDL
defines what we’re going to communicate, and Encodings
define how we’re going to communicate this data. On the other
hand, unlike ASN.1 “Encoding Rules”, our Encodings are more
flexible and allow to specify per-field encoding if necessary.

Among other things, having Encoding separate from IDL
allows to have different encodings for the same IDL; this may
be handy when, for example, the same structure is sent both to
the client and between the servers (as optimal encodings may
differ for Server-to-Client and Server-to-Server
communications; the former is usually all about bandwidth,
but for the latter CPU costs may play more significant role, as
intra-datacenter bandwidth usually comes for free until
you’re overloading the Ethernet port, which is not that easy
these days).

The third file (“Mapping”) is another set of additional
declarations, which define what kind of code we want to generate to use for our
programming language. The thing here is that the same IDL data can be “mapped”
into different data types; moreover, there is no one single “best mapping”, so it all
depends on your needs at the point where you’re going to use it (we’ll see examples
of it below). Changing “Mapping” does NOT change the protocol, so it can be safely
changed without affecting anybody else.

In the extreme case, “Mapping” file can be a file in your target programming
language.

ASN.1
Abstract Syntax

Notation One
(ASN.1) is a

standard and
notation that

describes rules
and structures

f or
representing,

encoding,
transmitting,
and decoding

data in
telecommunications

and computer
netw orking.
— Wikipedia —

https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

Example: IDL
While all that theoretical discussion about IDL, Encodings, and Mappings is
interesting, let’s bring it a bit down to earth.

Let’s consider a rather simple IDL example. Note that this is just an example
structure in the very example IDL; syntax of your IDL may vary very significantly
(and in fact, as argued in “Developing your own IDL compiler” section above, you
generally SHOULD develop your own IDL compiler – that is, at least until somebody
makes an effort and does a good job in this regard for you):

This IDL declares what we’re going to communicate – a structure with current state
of our Character.

 yes, I remember that I’ve advised to separate inventory from frequently-updated
data in “Publishable State” section, but for the purposes of this example, let’s keep
them together

Example: Mapping
Now let’s see how we want to map our IDL to our programming language. Let’s
note that mappings of the same IDL MAY differ for different communication
parties (such as Client and Server). For example, mapping for our data above MAY
look as follows for the Client:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

PUBLISHABLE_STRUCT Character {
 UINT16 character_id;
 NUMERIC[-10000,10000] x;//for our example IDL compiler, notation [a,b] means
 // “from a to b inclusive”
 //our Game World has size of 20000x20000m
 NUMERIC[-10000,10000] y;
 NUMERIC[-100.,100.] z;//Z coordinate is just +- 100m
 NUMERIC[-10.,10.] vx;
 NUMERIC[-10.,10.] vy;
 NUMERIC[-10.,10.] vz;
 NUMERIC[0,360) angle;//where our Character is facing
 //notation [a,b) means “from a inclusive to b exclusive”
 enum Animation {Standing=0,Walking=1, Running=2} anim;
 INT[0,120) animation_frame;//120 is 2 seconds of animation at 60fps

 SEQUENCE<Item> inventory;//Item is another PUBLISHABLE_STRUCT
 // defined elsewhere
};

3

3

In this case, IDL-generated C++ struct may look as follows:

On the other hand, for our Server, we might want to have inventory implemented as a
special class Inventory, optimized for fast handling of specific server-side use
cases. In this case, we MAY want to define our Server Mapping as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

MAPPING(“CPP”,“Client”) PUBLISHABLE_STRUCT Character {
 UINT16 character_id;//can be omitted, as default mapping
 // for UINT16 is UINT16
 double x;//all 'double' declarations can be omitted too
 double y;
 double z;
 double vx;
 double vy;
 double vz;
 float angle;//this is the only Encoding specification in this fragment
 // which makes any difference compared to defaults
 // if we want angle to be double, we can omit it too
 enum Animation {Standing=0,Walking=1, Running=2} anim;
 //can be omitted too
 UINT8 animation_frame;//can be omitted, as
 // UINT8 is a default mapping for INT[0,120)

 vector<Item> inventory;//can be also omitted,
 // as default mapping for SEQUENCE<Item>
 // is vector<Item>
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

struct Character {
 UINT16 character_id;
 double x;
 double y;
 double z;
 double vx;
 double vy;
 double vz;
 float angle;
 enum Animation {Standing=0,Walking=1, Running=2} anim;
 UINT8 animation_frame;
 vector<Item> inventory;

 void idl_serialize(int serialization_type,OurOutStream& os);
 //implementation is generated separately
 void idl_deserialize(int serialization_type,OurInStream& is);
 //implementation is generated separately
};

As we see, even when we’re using the same programming language for both Client-
Side and Server-Side, we MAY need different Mappings for different sides; in case
of different programming languages such situations will become more frequent.
One classical (though rarely occurring in practice) example is that
SEQUENCE<Item> can be mapped either to vector<Item> or to list<Item>,
depending on the specifics of your code; as specifics can be different on the
different sides of communication – you may need to specify Mapping.

Also, as we can see, there is another case for non-default Mappings, which is
related to making IDL-generated code to use custom classes (in our example –
MyInventory) for generated structs (which generally helps to make our generated
struct Character more easily usable).

Mapping to Existing Classes
One thing which is commonly missing from existing IDL compilers is an ability to
“map” an IDL into existing classes. This can be handled in the following way:

you do have your IDL and your IDL compiler

you make your IDL compiler parse your class definition in your target
language (this is going to be the most difficult part)

you do specify a correspondence between IDL fields and class fields

your IDL generates serialization/deserialization functions for your class
generally, such functions won’t be class members, but rather will be free-
standing serialization functions (within their own class if necessary),
taking class as a parameter

in languages such as C++, you’ll need to specify these
serialization/deserialization functions as friends of the class (or to
provide equivalent macro)

1
2
3
4
5
6
7
8
9

10
11
12
13

MAPPING(“CPP”,“Server”) PUBLISHABLE_STRUCT Character {
 // here we're omitting all the default mappings
 float angle;
 class MyInventory inventory;
 //class MyInventory will be used as a type for generated
 // Character.inventory
 //To enable serialization/deserialization,
 // MyInventory MUST implement the following member functions:
 // size_t idl_serialize_collection_get_size(),
 // const Item& idl_serialize_collection_get_item(size_t idx),
 // void idl_deserialize_collection_reserve_size(size_t),
 // void idl_deserialize_collection_add_item(const Item&)
};

I w ant Y OU to
read page 2!

Continued on Page 2... Further topics
include IDL Encodings (including Delta
Compression, rounding, etc.) and IDL

Backward Compatibility

Example: Encoding
We’ve already discussed IDL and Mapping (and can now use our generated stubs
and specify how we want them to look). Now let’s see what Encoding is about. First,
let’s see what will happen if we use “naive” encoding for our C++ struct Character,
and will transfer it as a C struct (except for inventory field, which we’ll delta-
compress to avoid transferring too much of it). In this case, we’ll get about
60bytes/Character/network-tick (with 6 doubles responsible for 48 bytes out of
it).

Now let’s consider the following Encoding:

Here we’re heavily relying on the properties of
MYENCODING1, which is used to marshal our struct. For the

“

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

ENCODING(MYENCODING1) PUBLISHABLE_STRUCT Character {
 VLQ character_id;
 DELTA {
 FIXED_POINT(0.01) x;//for rendering purposes, we need our coordinates
 //only with precision of 1cm
 //validity range is already defined in IDL
 //NB: given the range and precision,
 // 'x' has 20'000'000 possible values,
 // so it can be encoded with 21 bits
 FIXED_POINT(0.01) y;
 FIXED_POINT(0.01) z;
 FIXED_POINT(0.01) vx;
 FIXED_POINT(0.01) vy;
 FIXED_POINT(0.01) vz;
 }
 DELTA FIXED_POINT(0.01) angle;//given the range specified in IDL,
 // FIXED_POINT(0.01) can be encoded
 // with 16 bits
 DELTA BIT(2) Animation;//can be omitted, as 2-bit is default
 // for 3-value enum in MYENCODING1
 DELTA VLQ animation_frame;
 DELTA SEQUENCE<Item> inventory;
};

VLQ
A variable-

http://ithare.com/idl-encodings-mappings-and-backward-compatibility/2/
https://en.wikipedia.org/wiki/Variable-length_quantity

example above, let’s assume that MYENCODING1 is a quite
simple bit-oriented encoding which supports delta-
compression (using 1 bit from bit stream to specify whether
the field has been changed), and also supports VLQ-style
encoding; also let’s assume that it is allowed to use rounding
for FIXED_POINT fields.

As soon as we take these assumptions, specification of our
example Encoding above should become rather obvious; one
thing which needs to be clarified in this regard, is that DELTA
{} implies that we’re saying that the whole block of data within
brackets is likely to change together, so that our encoding will
be using only a single bit to indicate that the whole block
didn’t change.

Now let’s compare this encoding (which BTW is not the best possible one) to our
original naive encoding. Statistically, even if Character is moving, we’re looking at
about 20 bytes/Character/network-tick, which is 3x better than naive encoding.

Even more importantly, this change in encoding can
be done completely separately from all the

application code(!) – merely by changing Encoding
declaration

It means that we can develop our code without caring about specific encodings,
and then, even at closed beta stages, find out an optimal encoding and get that 3x
improvement by changing only Encoding declaration.

Such separation between the code and Encodings is in fact very useful; in
particular, it allows to use lots of optimizations which are too cumbersome to think
of when you’re developing application-level code.

To continue our example and as a further optimization, we can add dead
reckoning, and it can be as simple as rewriting Encoding above into

length quantity
(VLQ) is a

universal code
that uses an

arbitrary
number of

binary octets
(eight-bit bytes)
to represent an

arbitrarily
large integer.

— Wikipedia —

How much
can be gained
by each of such
specialized
encodings – still
depends on the
game, but if you
can try-and-test
a dozen of
dif f erent
encodings
w ithin a f ew
hours – it w ill
usually allow
you to learn

When manipulating encodings is this simple, then
experimenting with encodings to find out a reasonably optimal
one becomes a breeze. How much can be gained by each of
such specialized encodings – still depends on the game, but if
you can try-and-test a dozen of different encodings within a
few hours – it will usually allow you to learn quite a few things
about your traffic (and to optimize things both visually and
traffic-wise too).

Backward Compatibility
One very important (and almost-universally-ignored) feature
of IDLs is backward compatibility. When our game becomes
successful, features are added all the time. And adding a
feature often implies a protocol change. With Continuous
Deployment it happens many times a day.

And one of the requirements in this process is that the new
protocol always remains backward-compatible with the old
one. While for text-based protocols backward compatibility
can usually be achieved relatively easily, for binary protocols
(and games almost-universally use binary encodings due to the
traffic constraints, see “Publishable State: Delivery, Updates,

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ENCODING(MYENCODING2) PUBLISHABLE_STRUCT Character {
 VLQ character_id;
 DELTA {
 DEAD_RECKONING(0.02) {//0.02 is maximum acceptable coordinate
 // deviation due to dead reckoning
 FIXED_POINT(0.01) x;
 FIXED_POINT(0.01) vx;
 }
 DEAD_RECKONING(0.02) {
 FIXED_POINT(0.01) y;
 FIXED_POINT(0.01) vy;
 }
 DEAD_RECKONING { //by default, maximum acceptable deviation
 // due to dead reckoning
 // is the same as for coordinate
 // (0.01 in this case)
 FIXED_POINT(0.01) z;
 FIXED_POINT(0.01) vz;
 }
 }//DELTA
 DELTA FIXED_POINT(0.01) angle;
 DELTA BIT(2) Animation;
 DELTA VLQ animation_frame;
 DELTA SEQUENCE<Item> inventory;
};

“

4

introduce a
concept of

quite a f ew
things about
your traf f ic
(and to optimize
things both
visually and
traf f ic-w ise
too).

Interest Management, and Compression” section above for
discussion) it is a much more difficult endeavour, and requires
certain features from the IDL.

What we need from an IDL compiler is a
mode when it tells whether one IDL

qualifies as a “backward-compatible
version” of another one

Ok, this feature would certainly be nice for code maintenance (and as a part of
build process), but are we sure that it is possible to implement such a feature? The
answer is “yes, it is possible”, and there are at least two ways how it can be
implemented. In any case, let’s observe that two most common changes of the
protocols are (a) adding a new field, and (b) extending an existing field. While
other protocol changes (such as removing a field) do happen in practice, it is
usually rare enough occurrence, so that we will ignore it for the purposes of our
discussion here.

The first way to allow adding fields is to have field names (or other kind of IDs)
transferred alongside with the fields themselves. This is the approach taken by
Google Protocol Buffers, where everything is always transferred as a key-value pair
(with keys depending on field IDs, which can be explicitly written to the Protocol
Buffer’s IDL). Therefore, to add a field, you just adding a field with a new field-ID,
that’s it. To be able to extend fields (and also to skip those optional-fields-you-
dont-know-about), you need to have size for each of the fields, and Google
Protocol Buffers have it too (usually implicitly, via field type). This approach works
good, but it has its cost: those 8-additional-bits-per-field (to contain the field
ID+type) are not free.

The second way to allow adding fields into encoded data is a bit more
complicated, but allows to deal with not-explicitly-separated (and therefore not
incurring those 8-bits-per-field cost) data streams, including bitstreams. To
add/extend fields to such non-discriminated streams, we may implement the
following approach:

introduce a concept of “fence” into our Encodings. There
can be “fences” within structs, and/or within RPC calls

one possible implementation for “fences” is
assuming an implicit “fence” after each field; while
this approach rules out certain encodings, it does
guarantee correctness

5

6

“

“f ence” into our
Encodings

between “fences”, IDL compiler is allowed to
reorder/combine fields as it wishes (though any
such combining/reordering MUST be strictly
deterministic).

across “fences”, no such reordering/combining is allowed

then, adding a field immediately after the “fence” is guaranteed to be
backward-compatible as soon as we define it with a default value

within a single protocol update, several fields can be added/extended
simultaneously only after one “fence”

to add another field in a separate protocol update, another “fence” will
be necessary

extending a field can be implemented as adding a (sub-)field, with a special
interpretation of this (sub-)field, as described in the example below

 such as XML-based
 that is, until we’re throwing everything away and rewriting the whole thing from

scratch
 Google Protocol Buffers use overhead of 8 bits per field; in theory, you may use

something different while using key-value encodings, but the end result won’t be
that much different

Let’s see how it may work if we want to extend the following Encoding:

Let’s assume that we want to extend our UINT16 character_id field into UINT32,
and to add another field UINT32 some_data. Then, after making appropriate

4

5

6

1
2
3
4
5
6
7
8
9

10
11
12
13
14

ENCODING(MYENCODINGA) PUBLISHABLE_STRUCT Character {
 UINT16 character_id;
 DELTA {
 FIXED_POINT(0.01) x;
 FIXED_POINT(0.01) y;
 FIXED_POINT(0.01) z;
 FIXED_POINT(0.01) vx;
 FIXED_POINT(0.01) vy;
 FIXED_POINT(0.01) vz;
 }
};
//MYENCODINGA is a stream-based encoding
// and simply serialized all the fields
// in the specified order

changes to the IDL, our extended-but-backward-compatible Encoding may look as
follows:

As we can see, for the two most common changes of the protocols, making a
compatible IDL is simple; moreover, making an IDL compiler to compare these two
IDLs to figure out that they’re backward-compatible – is trivial. Formally, IDL B
qualifies as a backward-compatible version of IDL A, if all of the following stands:

IDL B starts with full IDL A

after IDL A, in IDL B there is a FENCE declaration

after the FENCE declaration, all the declarations are either EXTEND
declarations, or new declarations with specified DEFAULT.

On Google Protocol Buffers
Google Protocol Buffers is one IDL which has recently got a lot of popularity. It is
binary, it is extensible, and it is reasonably efficient (or at least not unreasonably
inefficient). Overall, it is one of the best choices for a usual business app.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

ENCODING(MYENCODINGA) PUBLISHABLE_STRUCT Character {
 UINT16 character_id;
 DELTA {
 FIXED_POINT(0.01) x;
 FIXED_POINT(0.01) y;
 FIXED_POINT(0.01) z;
 FIXED_POINT(0.01) vx;
 FIXED_POINT(0.01) vy;
 FIXED_POINT(0.01) vz;
 }
 //Up to this point, the stream is exactly the same
 // as for "old" encoding

 FENCE

 EXTEND character_id TO UINT32;
 //at this point in the stream, there will be additional 2 bytes placed
 // with high-bytes of character_id
 // if after-FENCE portion is not present – character_id
 // will use only lower-bytes from pre-FENCE portion

 UINT32 some_data DEFAULT=23;
 // if the marshalled data doesn't have after-FENCE portion,
 // application code will get 23
};

Theref ore,
w hile I agree
that Google
Protocol
Buf f ers are
good enough f or
most of the
business apps
out there, I
insist that f or
games you
usually need
something
better. MUCH
better.

« MMOG. Point-to-Point Communications and non-blocking RP…

However, when it comes to games, I still strongly prefer my
own IDL with my own IDL compiler. The main reason for it is
that in Google Protocol Buffers there is only one encoding, and
the one which is not exactly optimized for games. Delta
compression is not supported, there are no acceptable ranges
for values, no rounding, no dead reckoning, and no bit-
oriented encodings. Which means that if you use Google
Protocol Buffers to marshal your in-app data structures
directly, then compared to your own optimized IDL, it will cost
you in terms of traffic, and cost a lot.

Alternatively, you may implement yourself most of the
compression goodies mentioned above, and then to use
Google Protocol Buffers to transfer this compressed data, but
it will clutter your application-level code with this
compression stuff, and still won’t be able to match traffic-wise
some of the encodings possible with your own IDL (in
particular, bit-oriented streams and Huffman coding will be
still out of question).

Therefore, while I agree that Google Protocol Buffers are good
enough for most of the business apps out there, I insist that for
games you usually need something better. MUCH better.

 that is, unless you’re using Google Protocol Buffers just to transfer pre-
formatted bytes, which usually doesn’t make much sense

[[To Be Continued…
This concludes beta Chapter VII(d) from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Stay tuned for beta Chapter VIII, “Engine-Centric
Architecture: Unity 5, Unreal Engine 4, and Photon Server
from MMO point of view”]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

“

7

7

/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/mmog-point-to-point-communications-and-non-blocking-rpcs/

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: client, game, IDL, marshalling, multi-player, network, protocol, server

Copyright © 2014-2016 ITHare.com

http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/client/
http://ithare.com/tag/game/
http://ithare.com/tag/idl/
http://ithare.com/tag/marshalling/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/network/
http://ithare.com/tag/protocol/
http://ithare.com/tag/server/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Unity 5 vs UE4 vs Photon vs DIY for MMO
posted February 22, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VIII from the upcoming book “Development&Deployment of
Massively Multiplayer Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book, and provides free e-
copy of the “release” book to those who help with improving; for further details
see “Book Beta Testing“. All the content published during Beta Testing, is
subject to change before the book is published.

To navigate through the book, you may want to use Development&Deployment
of MMOG: Table of Contents.]]

By this point, we’ve discussed all the major parts of Modular MMOG
Architecture. Now we are in a good position to take a look at some of
the popular game engines and their support for MMOG, aiming to find
out how they support those features which we’ve described for
Modular Architecture.

There are lots of game engines out there, so we’ll consider only the most popular
ones: Unity 5, Unreal Engine 4, and Photon Server (which is not a game engine in a
traditional sense, but does provide MMOG support on top of the existing game
engines). Note that comparing graphics advantages and disadvantages of Unity vs
UE, as well as performance comparisons, pricing, etc. are out of scope; if you
want to find discussion on these issues, Google “Unity 5 vs UE4”, you will easily
find a ton of comparisons of their non-network-related features. We, however,
are more interested in network-related things, and these comparisons are not
that easy to find (to put it mildly). So,

Let the comparison begin!

DIY
Do it yourself ,
also know n as

DIY , is the
method of

building,
modif ying, or

repairing
something

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/wp-content/uploads/BB_part080_BookChapter008_v1.png
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
https://en.wikipedia.org/wiki/Do_it_yourself

As usual,
support of CLI
on non-MS
platf orms
requires Mono
w hich is not
exactly 100%
compatible w ith
CLR, but f rom
w hat I've heard,
most of the time
it w orks

Unity 5
Unity 5 is a very popular (arguably the most popular) 3D/2D game engine. It supports tons of different
platforms (HTML5 support via IL2CPP+emscripten included, though I have no idea how practical it is),
uses .NET CLI/CLR as a runtime, and supports C#/JS/Boo (whatever the last one is) as a
programming language. One thing about Unity is that it targets a very wide range of games, from first-
person shooters to social games (i.e. “pretty much anything out there”).

As usual, support of CLI on non-MS platforms requires Mono which is not exactly
100% compatible with CLR, but from what I’ve heard, most of the time it works
(that is, as long as you adhere to the “write once – test everywhere” paradigm).

Another thing to keep in mind when dealing with Unity is that CLR (as a pretty
much any garbage-collected VM, see discussion in Chapter VI) suffers from certain
potential issues. These issues include infamous “stop-the-world”; for slower
games it doesn’t really matter, but for really fast ones (think MMOFPS) you’ll need
to make sure to read about mitigation tricks which were mentioned in Chapter VI.

Event-driven Programming/FSMs

Unity is event-driven by design. Normally the game loop is hidden from sight, but
it does exist “behind the scenes”, so everything basically happens in the same
thread, so you don’t need to care about inter-thread synchronisation, phew. From
our point of view, Unity is an ad-hoc FSM as defined in Chapter V.

In addition, Unity encourages co-routines. They (as co-routines should) are
executed within the same thread, so no inter-thread synchronisation is necessary.
For more discussion on co-routines and their relation to other asynchronous
handling mechanisms, see Chapter VI. [[TODO! – add discussion on co-routines
there]]

One thing Unity event-driven programs are missing (compared to our ad-hoc FSMs discussed in
Chapter V) is an ability to serialise the program state; it implies that Unity (as it is written now) can’t
support such FSM goodies discussed in Chapter V as production post-mortem, server fault tolerance,
replay-based testing, and so on. While not fatal, this is a serious disadvantage, especially when it comes
to debugging of distributed systems (see “Distributed Systems: Debugging Nightmare” section in Chapter V for
relevant discussion).

 or at least “as if” it happens in the same thread

Unity for MMOG

When using Unity for MMOG, you will notice that it deals with one single Game World, and that
separation between Client and Server is quite rudimentary. In “Engine-Centric Development Flow”
section below we’ll see that this might be either a blessing (if your game is more on “Client-Driven
Development Flow” side) or a curse (for “Server-Driven Development Flows”). On the other hand, in
any case it is not a show-stopper.

w ithout the
direct aid of

experts or
prof essionals

— Wikipedia —

“

1

1

Y ou SHOULD
NOT use

Command
requests to

allow the client
to modif y state

of the PC on the
server directly

Communications: HLAPI

Communication support in Unity 5 (known as UNet) is split into two separate API levels: High-Level
API (HLAPI), and Transport-Level API (LLAPI). Let’s take a look at HLAPI first.

One potential source of confusion when using HLAPI, is an HLAPI term “Local
Authority” as used in [UNet]. When the game runs, HLAPI says that usually a client
has an “authority” over the corresponding PC. It might sound as a bad case of
violating the “authoritative server” principle (that we need to avoid cheating, see
Chapter III), but in fact it isn’t. In HLAPI-speak, “client authority” just means that
the client can send [Command] requests to the server (more on [Command]s
below), that’s pretty much it, so it doesn’t necessarily give any authority to the
client, phew.

On the other hand, you SHOULD NOT use [Command] requests to allow the client
to modify state of the PC on the server directly; doing this will violate server
authority, widely opening a door for cheating. For example, if you’re allowing a
Client to send a [Command] which sets PC’s coordinates directly and without any
server-side checks, you’re basically inviting a trivial attack when a PC controlled
by a hacked client can easily teleport from one place to another one. To avoid it,

instead of making decisions on the client-side and sending
coordinates resulting from player’s inputs, you should send the
player’s inputs to the server, and let the (authoritative) server

simulate the world and decide where the player goes as a result
of those inputs

State Synchronization

In HLAPI, basically you have two major mechanisms – “state synchronization” and RPCs.

State synchronization is a Unity 5’s incarnation of Server State -> Publishable State -> Client State
process which we’ve discussed in Chapter VII. In Unity 5, state synchronization can be done via simple
adding of [SyncVar] tag to a variable [UNetSync], it is as simple as that.

Importantly, Unity does provide support for both distance-based and custom interest management.
Distance-based interest management is implemented via NetworkProximityChecker, and custom one –
via RebuildObservers() (with related OnCheckObservers()/OnRebuildObservers()).

For quite a few games, you will need to implement Interest
Management. Not only it helps to reduce traffic, it is also

necessary to deal with “see through walls” and “lifting fog of
war” cheats

On top of [SyncVars], you may need to implement some (or all) of the Client-Side stuff discussed in
Chapter VII (up to and including Client-Side Prediction); one implementation of Client-Side
Prediction for Unity is described in [UnityClientPrediction].

“

2

While Unity
does use per-
f ield delta
compression (or
a reasonable
f acsimile), it
cannot possibly
implement most
of the
compression
w hich w e've
discussed in
'Compression'
section of
Chapter VII.

Y ou can still
use HLAPI
despite its

shortcomings

So far so good, but the real problems will start later. In short – such
synchronization is usually quite inefficient traffic-wise. While Unity seems to use
per-field delta compression (or a reasonable facsimile), it cannot possibly
implement most of the compression which we’ve discussed in “Compression”
section of Chapter VII. In particular, restricting precision of Publishable State is
not possible (which in turn makes bitwise streams pretty much useless), dead
reckoning is out of question, etc. Of course, you can create a separate set of
variables just for synchronization purposes (effectively creating a Publishable
State separate from your normal Client State), but even in this case (which BTW
will require quite an effort, as well as being a departure from HLAPI philosophy,
even if you’re formally staying within HLAPI) you won’t be able to implement many
of the traffic compression techniques which we’ve discussed in Chapter VII.

These problems do not signal the end of the world for HLAPI-based development,
but keep in mind that at a certain stage you may need to re-implement state sync
on top of LLAPI; more on it in “HLAPI Summary” subsection below.

 see Chapter VII for discussion on Interest Management

RPCs (a.k.a. “Remote A ctions”)

In Unity 5, RPCs were renamed into “Remote Actions”. However, not much has
changed in reality (except that now there is a [Command] tag for Client-to-Server
RPC, and [ClientRpc] tag for Server-to-Client RPC). In any case, Unity RPCs still MUST be void. As it was
discussed in Chapter VII, this implies quite a few complications when you’re writing your code. For
example, if you need to query a server to get some value, then you need to have an RPC call going from
client to server ([Command] in Unity), and then you’ll need to use something like
Networking.NetworkConnection.Send() to send the reply back (not to mention that all the matching
between requests and responses needs to be done manually). In my books it qualifies as “damn
inconvenient” (though you certainly can do things this way).

In addition, Unity HLAPI seems to ignore server-to-server communications completely.[[PLEA SE
CORRECT ME IF I’M W RONG HERE]]

 pun intended

HLA PI summary

As noted above, for quite a few simulation games, HLAPI’s [SyncVar] won’t provide
“good enough” traffic optimization. But does it make HLAPI hopeless? IMHO the
answer is “no, you can still use HLAPI despite its shortcomings”. HLAPI’s
[SyncVar] will work reasonably good for early stages of development (that
includes testing, and probably even over-the-Internet small-scale testing),
speeding development up. And then, when/if your game is almost-ready to launch
(and if you’re not satisfied with your traffic measurements), you will be able to
rewrite [SyncVars] into something more efficient using LLAPI. It is not going to be
a picnic, and you’ll need to allocate enough time for this task, but it can be done.

As for RPCs calls (and network events) – due to their only-void nature, they’re not
exactly convenient to use (to put it mildly), but if you have nothing better (and you

won’t as long as you’re staying within Unity’s network model) – you’ll have to deal with it yourself, and
will be able to do it too.[[IF Y OU KNOW SOME W ORKA BLE LIBRA RIES PROV IDING non-v oid RPCs

“

2

3

3

“

Just as
advertised,
Unity Transport
Layer API (a.k.a.
LLAPI), is an
extremely thin
layer on top of
UDP.

All-in-all,
Unity 5/UNet

does a decent
job if you w ant

to try
converting

your existing
single-player

game into a
low -player-

number multi-
player one.

in Unity, PLEA SE LET ME KNOW]]

In addition, I need to note that the absence of support for Server-to-Server communications is very
limiting for quite a few games out there. Having your server side split into some kind of micro-services
(or even better, Node.js-style nodes) is a must for any sizeable server-side development, and having
your network/game engine to support interactions between these nodes/micro-services is extremely
important. While manual workarounds to implement Server-to-Server communications in Unity are
possible, doing it is a headache, and integrating it with game logic is a headache even more . This is
probably one of the Biggest Issues you will face when using Unity for a serious MMOG development.

Communications: LLAPI

Just as advertised, Unity Transport Layer API (also known as LLAPI), is an
extremely thin layer on top of UDP. There is no RPC support, no authentication, no
even IDL or marshalling (for this purpose you can use .NET BinaryFormatter,
Google Protocol Buffers, or write something yourself).

For me, the biggest problem with LLAPI lies with its IP:Port addressing model.
Having to keep track at application level all those IP/port numbers is a significant
headache, especially as they can (and will) change. Other issues include lack of IDL
(which means manual marshalling for any not-so-trivial case, and discrepancies
between marshalling of different communication parties tend to cause a lot of
unnecessary trouble), lack of explicit support for state synchronization, and lack
of RPCs (even void RPCs are better than nothing from development speed point of
view).

On the positive side, LLAPI provides you with all capabilities in the world – that is,
as long as you do it yourself. Still, it is that cumbersome that I’d normally suggest
to avoid it at earlier stages of development, and introduce only when/if you have problems with HLAPI.

 don’t ask why it is named LLAPI and not TLAPI

Unity 5/UNet Summary

All-in-all, Unity 5/UNet does a decent job if you want to try converting your
existing single-player game into a low-player-number multi-player one. On the
other hand, if you’re into serious MMO development (with thousands of
simultaneous players), you’re going to face quite a few significant issues; while
not show-stoppers, they’re going to take a lot of your time to deal with (and if you
don’t understand what they’re about, you can easily bring your whole game to the
knees).

If going Unity way, I would suggest to start with HLAPI to get your game running
as a MMO. Most likely, when using HLAPI for a serious MMOG, you’ll face traffic
problems with replicated states (and/or cheating) when number of players goes
up, but to have your prototype running HLAPI is pretty good. At this stage you’ll
probably need to rewrite the handling of your Publishable State, most likely on
top of LLAPI. This rewrite can include all those optimizations we’ve spoke
about, and is going to be quite an effort. On the positive side, it can usually be
done without affecting the essence of your game logic, so with some luck and
experience, it is not going to be too bad.

Additionally, you’ll also have issues with server-to-server communications (which
are necessary to split your servers into manageable portions). You can either

“

4

4

“

Unreal
Engine is more
oriented
tow ards f irst-
person games,
and (arguably)
does it better.

implement these on top of LLAPI, or to use good old TCP sockets, but in any case you will stay even
without RPCs, just with bare messages. While I’ve seen such message-based architectures to work for
quite large projects, they are a substantial headache in practice .

At this point you might think that your problems are over, but actually the next problem you’re going to
face, is likely to be at least as bad as the previous ones. As soon as a number of your players goes above
a few hundred, you’ll almost certainly need to deal with load balancing (see Chapter VI for discussion
on different ways of dealing with load balancing). And Unity as such won’t help you for this task, so
you’ll need to do it yourself. Once again, it is doable, but load balancing is going to take a lot of efforts
to do it right .

Unreal Engine 4
Unreal Engine 4 is a direct competitor of Unity, though it has somewhat different
positioning. Unlike Unity (which tries to be a jack of all trades), Unreal Engine is
more oriented towards first-person games, and (arguably) does it better. Just as
Unity, UE also supports a wide range of platforms (with differences from Unity
being of marginal nature), and does have support for HTML (also using
emscripten, and once again I have no idea whether it really works).

As of UE4, supported programming languages are C++ and UE’s own Blueprints.
At some point, Mono team has tried to add support for C# to UE4, but dropped
the effort shortly afterwards .

It should be noted that UE4’s variation of C++ has its own garbage collector (see,
for example, [UnrealGC]). Honestly, I don’t really like hybrid systems which are
intermixing manual memory management with GC (they introduce too many
concepts which need to be taken care of, and tend to be rather fragile as a result),
but Unreal’s one is reported to work pretty well.

 as of beginning of 2016, support for HTML5 in UE4 is tagged Experimental

Event-driven Programming/FSMs

Unreal Engine is event-driven by design. As with Unity, normally game loop is hidden from sight, but
you can override and extend it if necessary. And exactly as with Unity or our FSMs, everything happens
within the same thread, so (unless you’re creating threads explicitly) there is no need for thread
synchronization.

On the negative side of things, and also same as Unity, UE’s event-driven programs don’t have an
ability to serialize the program state, and (same as with Unity), it rules out certain FSM goodies.

UE for MMOG

Just like Unity, UE doesn’t really provide a way to implement a clean separation between the client and
the server code (while there is a WITH_SERVER macro for C++ code, it is far from being really cleanly
separated). More on advantages and disadvantages of such “single-Game-World” approach in
“Engine-Centric Development Flow” section below.

UE Communications: very close to Unity 5 HLAPI

“
5

5

There is not
much to discuss

here, as both
replication and

RPCs are very
close to Unity
counterparts

w hich w ere
discussed

above.

Photon
Server is quite a
dif f erent beast
f rom Unity and
Unreal Engine

Just like Unity, UE4 has two primary communication mechanisms: state
synchronization (“Replication” in UE-speak), and RPCs. There is not much to
discuss here, as both replication and RPCs are very close to Unity counterparts
which were discussed above.

In particular, replication in UE4 is very similar to Unity’s [SyncVars] (with a
different syntax of UPROPERTY(Replicated) and DOREPLIFETIME()). UE4’s RPCs
(again having a different syntax of UFUNCTION(Client)/UFUNCTION(Server))
are again very similar to that of Unity HLAPI (with the only-void restriction, no
support for addressing and for server-to-server communications, and so on).

Interest management in UE4 is based on the concept of being “network relevant”
and is dealt with via AActor::NetCullDistanceSquared() and
AActor::IsNetRelevantFor() functions (ideologically similar to Unity’s
NetworkProximityChecker and RebuildObservers respectively).

Being so close to Unity 5 means that UE4 also shares all the drawbacks described
for Unity HLAPI above; it includes sub-optimal traffic optimization for replicated

variables, void-only RPCs, and lack of support for server-to-server communications; see “HLAPI
summary” section above for further discussion.

On the minus side compared to Unity 5, UE4 doesn’t provide LLAPI, so bypassing these drawbacks as it
was suggested for Unity, is more difficult. On the other hand, UE4 does provide classes to work
directly over sockets (look for FTcpSocketBuilder/FUdpSocketBuilder), and implementing a (very
thin) analogue of LLAPI is not that much of a headache. So, even in this regard the engines are very close
to each other. As a result, for UE4 MMO development I still suggest about-the-same development path
as discussed in “Unity 5/UNet Summary” section for Unity, starting from Replication-based game, and
moving towards manually controlled replication (implemented over plain sockets) when/if the need
arises.

Photon Server
Photon Server is quite a different beast from Unity and Unreal Engine: unlike
Unity/UE, Photon isn’t an engine by itself, but is rather a way to extend a game
developed using an existing engine (such as Unity or Unreal) into an MMO. It is
positioned as an “independent network engine”, and does as advertised – adds its
own network layer to Unity or to Unreal. As a result, it doesn’t need to care about
graphics etc., and can spend more effort of MMO-specific tasks such as load
balancing and matchmaking service.

As Photon is always used on top of existing game engine, it is bound to inherit
quite a few of its properties; this includes using game engine graphics and most of
scripting. One restriction of Photon Server is that server-side always runs on top
of Windows .NET and APIs are written with C# in mind (I have no idea how it feels
to use other .NET languages with Photon, and whether Photon will run reasonably
good on top of Mono). For the client-side, however, Photon supports pretty much every platform you
may want, so as long as you’re ok with your servers being Windows/.NET – you should generally be fine.

Functionally, Photon Server is all about simulated worlds consisting of multiple rooms; while it can be
considered a restriction, this is actually how most of MMOs out there are built anyway, so this is not as
limiting as it may sound. In short – as we’ve discussed it briefly in Chapter VII [[TODO! – add discussion
on Big Fat World there]], if your MMO needs to have one Big Fat World, you’ll need to split it into
multiple zones anyway to be able to cope with the load.

Within Photon Server, there are two quite different flavours for networked game development: Photon

“

“
6

7

Photon
Server SDK

doesn't
explicitly
support a

concept of
synchronized

state

On the
positive side
(and unlike all
the netw ork
engines
described

Server SDK and Photon Cloud / PUN.

 or should I rather say underneath existing game engine?
 Exit Games also provide Photon/Realtime and Photon/Turnbased cloud products, but I know too

little about them to cover them here [[TODO! – try to learn more about them]]

Photon Server SDK: Communications

IMPORTANT: Photon Server SDK is not to be confused with Photon Cloud/PUN, which will be discussed below.

Unfortunately, personally I didn’t see any real-world projects implemented over Photon Server SDK,
and documentation on Photon Server SDK is much less obvious than on Photon Cloud and PUN, so I
can be missing a few things here and there, but I will try my best to describe it. [[PLEA SE CORRECT ME
IF I’M MISSING SOMETHING HERE]]

First of all, let’s note that Photon Server SDK doesn’t explicitly support a concept
of synchronized state. Instead, you can BroadcastEvent() to all connected peers,
and handle this broadcast on all the clients to implement state synchronization.
While BroadcastEvent() can be used to implement synchronized state, there is
substantial amount of work involved in making your synchronization work reliably
(I would estimate the amount of work required to be of the same order of
magnitude as implementing synchronised states on top of Unity’s LLAPI). In
addition, keep in mind that when relying on BroadcastEvent(), quite a few traffic
optimizations won’t work, so you may need to send events to individual clients
(via SendEvent()).

From RPC point of view, Photon Server does have kinda-RPC. Actually, while it is
named Photon.SocketServer.Rpc, it is more like message-based request-response
than really a remote procedure call as we usually understand it. In other words,
within Photon Server (I’m not speaking about PUN now) I didn’t find a way to declare
a function as an RPC, and then to call it, with all the stubs being automagically

generated for you. Instead, you need to create a peer, to send an operation request over the peer-to-peer
connection, and while you’re at it, to register an operation handler to manage operation response.

This approach is more or less functionally equivalent to Take 1 from “Take 1. Naïve Approach: Plain
Events (will work, but is Plain Ugly)” section of Chapter VI; as Take 1 is not the most convenient thing to
use (this it to put it very mildly), it will become quite a hassle to work with it directly. In addition, I have
my concerns about Peer.SetCurrentOperationHandler() function, which seems to restrict us to one
outstanding RPC request per peer, which creates additional (and IMHO unnecessary) hassles.

On the positive side (and unlike all the network engines described before), Photon
Server does support such all-important-for-any-serious-MMO-development
features as Server-to-Server communication and Load Balancing.

Photon Cloud / PUN: Communications

IMPORTANT: Photon Cloud / PUN is not to be confused with Photon Server SDK, which is
discussed above.

The second flavour of Photon-based development is Photon Cloud with Photon
Unity Networking (PUN). While Photon Cloud/PUN is implemented on top of
Photon Server which was discussed above, the way Photon Server is deployed for
Photon Cloud/PUN, is very different from the way you would develop your own
game on top of Photon Server SDK .

7

6

7

“

“

bef ore), Photon
Server does
support such
f eatures as
Server-to-
Server
communication
and Load
Balancing.

I w ant Y OU to
read page 2!

The key problem with Photon Cloud is that basically you’re not allowed to run your
own code on the server. While there is an exception for so-called “Photon Plugins”,
they’re relatively limited in their abilities, and what’s even even worse, they require
an “Enterprise Plan” for your Photon Cloud (which as of beginning of 2016 doesn’t
even have pricing published saying “contact us” instead, ouch).

And as long as you’re not allowed to run your own code on the server-side, you
cannot make your server authoritative, which makes dealing with cheaters next-
to-impossible. That’s the reason why I cannot recommend PUN for any serious
MMO development, at least until you (a) realize how to deal with cheaters given
limited functionality of Photon Plugins, and (b) get a firm quote from Exit Games
regarding their “Enterprise Plan” (as noted above, lack of publicly available quote is usually a pretty
bad sign of it being damn expensive).

This restriction is a pity, as the rest of PUN is quite easy to use (more or less in the same range as Unity
HLAPI, but with manual serialization of synchronization states, what is IMHO more of a blessing rather
than a curse, as it allows for more optimizations than [SyncVars]). Still, unless you managed to figure
out how to implement an authoritative server over PUN (and how to pay for it too), I’d rather stay away
from it, because any game without an authoritative server carries too much risk of becoming a
cheaterfest.

 BTW, I do sympathize Chris Wegmann in this regard and do realize that allowing foreign code on
servers opens more than just one can of worms, but still having an authoritative server is that
important, that I cannot really recommend Photon Cloud for any serious MMO

Keep reading for a Huge Table comparing 40+ different
network-related parameters of Unity 5, UE4, and Photon

Summary
The discussion above (with some subtle details added too) is summarized in the table below.

In this table, the rightmost column represents what I would like to see from my own DIY game network
engine. In this case, while the network engine itself is DIY, there is a big advantage of pushing all these
things into the network engine and to separate them from the game logic. The more things are
separated via well-defined interfaces, the less cluttered your game logic code becomes, and the more
time you have for really important things such as gameplay; in the extreme case, this difference can
even mean the difference between life and death of your project. Also keep in mind that if going a DIY
route, for any given game you won’t need to implement all the stuff in the table; think what is important
for your game, and concentrate only on those features which you really need. For example, UDP
support and dead reckoning are not likely to be important for a non-simulation game, and HTTP
polling isn’t likely to work for an MMOFPS.

[[PLEA SE CORRECT ME IF SOMETHING LOOKS W RONG HERE!]]

8

8

“

http://ithare.com/unity-5-vs-ue4-vs-photon-vs-diy-for-mmo/2/

Features (those

IMO most

important ones

are in bold)

Unity 5

(HLA PI)

Unity 5

(LLA PI)

Unreal

Engine 4

Photon

Serv er SDK

Photon

Cloud / PUN

My ideal

DIY

netw ork

engine

(along the

lines of

this book)

 Platforms

Desktop Win / MacOS / SteamOS
Win / MacOS

/ SteamOS Win / MacOS

Whatever

tickles your

fancy

Consoles PS / Xbox / Wii PS / XBox PS / Xbox / Wii

Whatever

floats your

boat

Mobile IOS / Android / WinPhone
iOS /

Android
iOS / Android / WinPhone

Whatever

butters

your biscuit

HTML 5 Yes / Websockets Experimental Yes / Websockets Yes

Server Windows / Linux
Windows /

Linux
Windows Only

Windows /

Linux

 Languages

C/C++ Sort Of Yes Client Only Yes

Garbage-

Collected
C#/CLI No C#/CLI

C#/Any,

Java/Any,

etc.

Scripting JS/CLI, Boo/CLI “Blueprints” Client Only

JS/Any (incl

JS/V8 and

Node.js),

Python/Any,

etc.

Unity 5

(HLA PI)

Unity 5

(LLA PI)

Unreal

Engine 4

Photon

Serv er SDK

Photon

Cloud / PUN

My ideal

DIY

9 10 11

12

 Programming
Ev ent-driv en Yes Yes Yes Yes Yes Yes

Deterministic

Goodies No No No No No Yes

v oid non-

blocking RPCs
Yes No Yes No Yes Yes

non-v oid non-

blocking RPCs
No No No No No Yes

Futures for RPCs No No No No No Yes

Co-routines Yes Yes No Yes Yes Yes

Clear Client-

Serv er

Separation

No (favors

Client-

Driven

Development

Flow)

No (favors

Client-

Driven

Development

Flow)

No (favors

Client-

Driven

Development

Flow)

Yes (favors

Server-

Driven

Development

Flow)

No (favors

Client-

Driven

Development

Flow)

Whatever

you prefer

 Graphics

3D Yes Yes
External: Unity, Unreal

Engine
External

2D Yes Yes External: Cocos2X External

Model-View-

Controller
DIY DIY DIY No Yes

2D+3D Views on

the same game
No No DIY No Yes

Unity 5

(HLA PI)

Unity 5

(LLA PI)

Unreal

Engine 4

Photon

Serv er SDK

Photon

Cloud / PUN

My ideal

DIY

 Netw orking – General

Support for

A uthoritativ e

Serv er

Y es Y es Y es Y es No Y es

 Netw orking – Marshalling/IDL

In-

13
14

15

16

17

18

19

20

21

IDL In-Language No In-Language No Language External

State

Synchronization
Yes DIY Yes DIY DIY Yes

Clear Serv er-

State –

Publishable

State – Client

State separation

No N/A No N/A No Yes

Cross-language

IDL
No N/A No No N/A Yes

IDL Encodings No N/A No No N/A Yes

IDL Mappings No N/A No No N/A Yes

Interest

Management
Yes DIY Yes DIY DIY Yes

Client-Side

Interpolation
DIY DIY DIY DIY DIY DIY

Client-Side

Extrapolation
DIY DIY DIY DIY DIY DIY

Client-Side

Prediction
DIY DIY DIY DIY DIY DIY

Delta

Compression

(whole fields)

Automatic DIY Automatic DIY DIY Controlled

Delta

Compression

(field increments)

No DIY No DIY DIY Yes

Variable Ranges,

Rounding-when-

Transferring, and

Bit-Oriented

Encodings

No DIY No DIY DIY Yes

Dead Reckoning No DIY No DIY DIY Yes

21

22 22 22

Revision-Based

Large Objects

Sync [[TODO! Add

to Chapter VII]]

No DIY No DIY DIY Yes

VLQ No DIY No DIY DIY Yes

Huffman coding No DIY No DIY DIY Yes

IDL Backward

Compatibility

Support

No N/A No No N/A Yes

Unity 5

(HLA PI)

Unity 5

(LLA PI)

Unreal

Engine 4

Photon

Serv er SDK

Photon

Cloud / PUN

My ideal

DIY

 Netw orking – A ddressing/A uthentication

A ddressing

Model

“Client” /

”Server”
IP:Port

“Client” /

”Server”
IP:Port

“Client” /

”Server”

By server

name for

servers,

player ID /

“connected

client” for

players

Player

Authentication
DIY DIY DIY DIY DIY Yes

Serv er-to-Serv er

Communications
No DIY No Yes No Yes

 Netw orking – Supported Protocols

UDP Yes Yes Yes Yes Yes Yes

TCP No No No Yes Yes Yes

WebSockets Yes (only for WebGL apps?) ? Yes Yes Yes

HTTP No No No Yes Yes Yes

 Scalability/Deployment Features

Inter-World

Only

[[TODO!:

describe

Inter-World

Only

[[TODO!:

describe Both Inter-

23
24

23
24

23

25 25

The f irst
development

Load Balancing No No No inter-world

/ intra-

world

balancing in

Chapter VI]]

inter-world

/ intra-

world

balancing in

Chapter VI]]

world and

Intra-world

Front-End

Servers
No No No No No Optional

 Unmanaged code is possible, but cumbersome
 actually, UE4 is using a somewhat-garbage-collected dialect of C++
 on server side unmanaged C++ may work
 Mono tried to add support for C#, but this effort looks abandoned
 replay testing, production post-mortem, server failure handling
 to enable deterministic goodies while using either futures or co-routines, a source pre-processor

will be necessary
 to use futures with deterministic goodies enabled, a source pre-processor will be necessary
 to use co-routines with deterministic goodies enabled, or for a language which doesn’t support

them explicitly, a source pre-processor will be necessary
 yes, graphics comparison is intentionally VERY sketchy here
 in particular, can use Unity or Unreal Engine for rendering
 in particular, can use Cocos2X or a homegrown 2D library for rendering
 Photon Plugins MAY allow for a way out, but this needs separate analysis
 Last time I’ve checked, Photon has had only RPC part as declarative IDL; Publishable State was via

manual serialization
 it is possible to separate them, but it requires efforts
 i.e. there is no way to address anything except for “Client” on Server, and “Server” on Client; this

addressing model is too restrictive, and effectively excludes server-to-server communication
 quite cumbersome in practice
 support reportedly planned

Engine-Centric Development Flow
Ok, so we’ve got that nice table with lots of different things to compare. Still, the Big Question of “What
should I use for my game?” remains unanswered. And to answer it, we’ll need to speak a bit about
different development flows (which are not to be confused with data flows(!)).

In general, for a pretty much any game being developed, there are two possible development scenarios
which heavily depend on the nature of your MMO game.

Server-Driven Development Flow

The first development scenario occurs when the logic of your MMOG does not
require access to game assets. In other words, it happens when the gameplay is
defined by some internal rules, and not by object geometry or levels. Examples of
such games include stock exchanges, social games, casino-like games, some of
simpler simulators (maybe snooker simulator), and so on.

What is important for us in this case, is that you can easily write your game logic
(for your authoritative server) without any 3D models, and without any
involvement of graphics artist folks. It means that for such development server-

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

“

scenario occurs
w hen the logic
of your MMOG

does not
require access
to game assets.

From w hat
I've seen and
heard, if you're
using a 3rd-
party game
engine, and
your game is
suitable f or
Server-Driven
Development
Flow , starting
w ith Unity 5
HLAPI is
probably your
best bet.

side has no dependencies whatsoever, and that server-side becomes a main
driver of the things, plain and simple. And all the graphical stuff acts as a mere
rendering of the server world, without any ability to affect it.

In this kind of Server-Driven development workflow game designers are working
on server logic, and can express their ideas without referring to essentially-3D or
essentially-graphical things such as game levels, character geometry, or similar.

If your game allows it, Server-Driven development is a Good Thing(tm). It is generally simpler and
more straightforward than a Client-Driven one. Developing, say, a social game the other way around is
usually a Pretty Bad Idea. However, not all the MMOGs are suitable for such Server-Driven
development, and quite a few require a different development workflow.

 as discussed above in Chapter VII, from data flow point of view it will happen anyway when the game
is running, but from game designer point of view it might be different, see “Client-Driven
Development” section below

Serv er-Driv en Dev elopment Flow : Personal Suggestions

From what I’ve seen and heard, if you’re using one of the engines above (and not
your own one), and your game is suitable for Server-Driven Development Flow,
starting with Unity 5 HLAPI (and rewriting necessary portions into LLAPI when/if
it becomes necessary) is probably your best bet. UE4, as it is even more
simulation-world-oriented, is less likely to be suitable for the games which fit
Server-Driven Development Flow, but if it is – you can do it with UE4 too.

Photon Server SDK might work for Server-Driven development flow too, though
you IMO should stay away from Photon Cloud and PUN at least until you realize
how Photon Plugins will help to deal with cheaters, and figure out Photon Cloud
Enterprise pricing (as noted above, Enterprise plan is necessary to run Photon
Plugins).

And of course, a DIY engine can really shine for such development scenarios (using
some game engine or 2D/3D engine for client-side rendering purposes).

Client-Driven Development Flow

For those games where your game designers are not only laying out the game
rules, but are also involved in developing graphical things such as game levels,
Server-Driven development flow described above, tends to fall apart fairly quickly.
The problem here lies with the fact that game designers shouldn’t (and usually
couldn’t) think in terms of servers and clients. When thinking in terms of
“whenever character comes to city X and doesn’t have level 19, he is struck into his
face”, there is no way to map this kind of the world picture into servers and clients. In such cases, from
Game Designer perspective there is usually a single Game World which “lives” its own life, and
introducing separation between client and server into the picture will make their job so much more
difficult that their performance will be affected badly, quite often beyond any repair .

Games which almost universally won’t work well with Server-Driven development
flow and will require a Client-Driven approach described below, are MMORPGs
and MMOFPS.

For such games, the following approach is used pretty often (with varying degrees
of success):

26

26

“

Games w hich
almost
universally
w on't w ork w ell
w ith Server-
Driven
development
f low and w ill
require a
Client-Driven
approach
described
below , are
MMORPGs and
MMOFPS.

If you're
using one of the
engines above
(and not your
ow n one), and
your game
requires Client-
Driven
Development
Flow , you may
w ant to start
w ith a single-
player Unity 5,

develop a game using existing game engine “as if” it is a single-player game.
There is only one Game World, and both game designers and 3D artists
who can work within a familiar environment, are able to test things right
away, and so on

at this stage there is no need to deal with network at all: there is no
[SyncVars], no RPCs, nothing

at certain point (when the engine as such is more or less stable), start a
project to separate server from the client. This may include one or more of
the following:

dropping all the textures from the server side

using much less detailed meshes for the server side; in the extreme
cases, your PCs/NPCs can become prisms or even rectangular
boxes/parallelepipeds.

taking existing Game World State as a Client-State, figuring out how it
can be reduced to get Server-State

working on further reducing Server-State for transfer purposes,
obtaining Published-State

this process is likely to involve certain visually observable trade-
offs and degradations, and is going to take a while

at the same time, work of game designers on high-level scripts etc., and of 3D artists on
further improvements, may continue

[[TODO! – vigilance]]

While this Client-Driven development process is not a picnic, it is IMHO the best you can do for such
games given the tools currently available. Most importantly, it allows game designers to avoid thinking
too much about complexities related to state synchronization; while certain network-related issues
such as “what should happen with a player when she got disconnected” will still appear in the game
designer space, it is still much better than making them think about clients and servers all the time.

Client-Driv en Dev elopment Flow : Personal Suggestions

If you’re using one of the engines above (and not your own one), and your game
requires Client-Driven Development Flow, you may want to start with a single-
player Unity 5, or with a single-player UE4. Then (as a part of “client-server
separation project” described above), you will be able to proceed either to Unity 5
HLAPI, or to UE4 Replication/RPCs. And as a further step, as discussed above, you
may need to rewrite state sync into LLAPI or on top of plain sockets respectively.

While Photon Server SDK might work for Client-Driven Development too, I expect
it to be too cumbersome here. As for Photon Cloud and PUN – just as with Server-
Driven Development workflow, you IMO still should keep away from them at least
until you realize how Photon Plugins will help to deal with cheaters, and figure out
Photon Cloud Enterprise pricing.

As for DIY network engine, you can certainly use it for “client-server separation”
too (and that’s what I would personally suggest if you have reasonably good
network developers).

Important Clarification: Development Flow vs Data Flow

One important thing to note that regardless of game development flow being
Server-Driven or Client-Driven, from the technical point of view the completed

“

“

or w ith a single-
player UE4.

« IDL: Encodings, Mappings, and Backw ard Compatibility

 Pre-Coding Checklist: Things Ev erybody Hates, but Ev erybody Needs Them T… »

game will always be server-driven: as our server needs to be authoritative, all
decisions are always made by the server and are propagated to the clients, which
merely render things as prescribed by the server (see more discussion on data
flows in Chapter VII). What we’re speaking about here, is only Development Flow (and yes, having
development flow different from program data flow is a major source of confusion among multi-
player game developers).

[[To Be Continued…
This concludes beta Chapter VIII from the upcoming book “Development and
Deployment of Massively Multiplayer Games (from social games to MMOFPS, with
social games in between)”. Stay tuned for beta Chapter IX, “Pre-Development
Checklist: Things everybody hates but everybody needs too”]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: game, multi-player, Photon, UE, unity

Copyright © 2014-2016 ITHare.com

[–] References
[UNet] “Unity 5 Network System Concepts”, Unity
[UNetSync] “Unity 5 State Synchronization”, Unity
[UnityClientPrediction] Christian Arellano, “UNET Unity 5 Networking Tutorial Part 2 of 3 - Client Side
Prediction and Server Reconciliation”, Gamasutra
[UnrealGC] https://wiki.unrealengine.com/Garbage_Collection_Overview

http://docs.unity3d.com/Manual/UNetConcepts.html
http://docs.unity3d.com/Manual/UNetStateSync.html
http://www.gamasutra.com/blogs/ChristianArellano/20151009/255873/UNET_Unity_5_Networking_Tutorial_Part_2_of_3__Client_Side_Prediction_and_Server_Reconciliation.php
https://wiki.unrealengine.com/Garbage_Collection_Overview
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/idl-encodings-mappings-and-backward-compatibility/
http://ithare.com/pre-coding-checklist-things-everybody-hates-but-everybody-needs-them-too-from-source-control-to-coding-guidelines/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/
http://ithare.com/tag/photon/
http://ithare.com/tag/ue/
http://ithare.com/tag/unity/

Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Pre-Coding Checklist: Things Everybody Hates, but
Everybody Needs Them Too. From Source Control to
Coding Guidelines
posted February 29, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter IX from the upcoming book
“Development&Deployment of Massively Multiplayer
Online Games”, which is currently being beta-tested.
Beta-testing is intended to improve the quality of the book,
and provides free e-copy of the “release” book to those
who help with improving; for further details see “Book
Beta Testing“. All the content published during Beta
Testing, is subject to change before the book is
published.

To navigate through the book, you may want to
use Development&Deployment of MMOG: Table of
Contents.]]

We’ve discussed a lot of architectural issues specific and not-so-specific to MMOs,
and now you’ve hopefully already drawn a nice architecture diagram for your
multiplayer game.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/wp-content/uploads/BB_part081_BookChapter009_v1.png
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

I don't w ant
to go into a

discussion why
you need source
control system,
just saying that

there is a
consensus out

there on it being
necessary

However, before actually starting coding, you still need to do quite a few things.
And I am perfectly aware that there are lots of developers. Let’s take a look at them
one by one.

Source Control System
To develop pretty much anything, you do need a source
control system. I don’t want to go into a discussion why you
need source control system, just saying that there is a
consensus out there on it being necessary for all the
meaningful development environments. Even if you’re single
developer, you still need source control: the source control
system will act as a natural backup of your code, plus being
able to rollback to that-version-which-worked-just-
yesterday, will save you lots of time in the long run. And if
you’re working in a team, benefits of source control are so
numerous that nobody out there dares to develop without it.

The very first question about source control is “what to put
under your source control system?” And as a rule of thumb,
the answer is like

Y ou should put under source control
pretty much everything you need to build

your game, but usually NOT the results of the builds

And yes, “pretty much everything” generally includes assets, such as meshes and
textures.

On the other hand, as with most of the rules of thumb out there, there are certain
(but usually very narrow) exceptions to both parts of this statement. For “pretty
much everything” part, you MIGHT want to keep some egregiously large-and-
barely-connected-to-your-game things such as in-game videos outside of your
source control system (for example, replacing them with stubs), but such cases
should be very few and far between. Most importantly,

the game should be buildable from source control
system, and the build should be playable

, that’s the strict requirement, other than that – you MIGHT bend the rules a bit.

For not including results-of-your-build – I’ve seen examples when having YACC-
compiled .c files within source control has simplified development flow (i.e. not all

“

Even I
myself , being a
w ell-
recognized
retrograde, has
been convinced
that git has
enough
advantages to
qualif y as “the
w ay to go”

developers needed to setup YACC on their local machines), but once again – this is
merely a very narrow exception from the common rule of thumb stated above.

Git
The next obvious question with regards to source control is
“Which source control system to use?”. Fortunately or not,
there is a pretty much consensus about the-best-source-
control-system-out-there being git. Even I myself, being a
well-recognized retrograde, has been convinced that git has
enough advantages to qualify as “the way to go” for objective
reasons (opposed to just being a personal preference).

Whether to host git server yourself or whether to use some
third-party service such as github – is less obvious, especially
for games. I would say that if by any (admittedly slim) chance
your game is open source – you should go ahead with a github.

If your game is closed-source – then the choice becomes less
obvious and depends on lots of things: from the size of your
team to having on the team somebody who’s willing to
administrate (and backup!) your own git server (while it is
certainly not a rocket science, it will involve some command-
line stuff). Even more importantly, if your game has lots (such
as multiple gigabytes) of assets – you probably should settle
for an in-house git server, at least because downloading all that stuff over the
Internet will take too much time.

 Actually, you can do more or less the same things with Mercurial, but unless you
already have it in place, in most cases I suggest to stick with git, even in spite of
Git’s lack of support for locks, see “Git and unmergeable files” section below

Git and unmergeable files
For game development (and unlike most of other software development projects),
you’re likely to have binary files which need to be edited. More precisely, it is not
only about binary files, but also includes any file which cannot be effectively merged
by git. One example of these is Unity scene files, but there are many others out
there (even simple text-based Wavefront .obj is not really mergeable).

A question “what to do with such files” is not really addressed by Git philosophy.
The best way would be to learn how to merge these unmergeable files, but this is
so much work that doing it for all the files your artists and game designers need, is

“
1

1

2

hardly realistic .

The second best option would be to have a ‘lock’ so that only one person really
works with the asset file at any given time. However, git’s position with regards of
locks is that there won’t be mandatory locks, and that advisory locks are just a way
of communication so that should be done out-of-git (!). The latter statement leads
to having chat channels or mailing lists just for the purposes of locking (ouch!). I
strongly disagree with such approaches:

all stuff which is related to source-controlled code,
SHOULD be within source control system, locks

(advisory or not) included

To use advisory (non-enforced) locks in git, I suggest to avoid stuff such as chat
channels, and to use lock files (located within git, right near real files) instead. Such
a lock file MUST contain the name (id) of the person who locked it, as a part of file
contents (i.e. having lock file with just “locked” in it is not sufficient for several
reasons). Such an approach does allow to have a strict way of dealing with the
unmergeable files (that is, if people who’re working with it, are careful enough to
update – and push(!) – lock file before starting to work with the unmergeable file),
and also doesn’t require any 3rd-party tools (such as an IM or Skype) to work. For
artists/game designers, it SHOULD be wrapped into a “I want to work with this file
– get it for me” script (with the script doing all the legwork and saying “Done” or
“Sorry, it’s already locked by such-and-such user”). If you like your artists better
than that, you can make a shell extension which calls this script for them.

The approach of lock-files described above is known to work (though creating
commits just for locking purposes), but still remains quite a substantial headache.
Actually, for some projects it can be so significant that they MIGHT be better with
Mercurial and it’s Lock Extension (which supports mandatory locking).

Let’s note that there is also an issue which is often mentioned in this context, the
one about storing large files in git, but this is a much more minor problem, which
can be easily resolved (for example, by using git LFS plugin).

 Actually, for merging Unity scene files there was an interesting project
[GitMergeForUnity], but it seems abandoned now
 and of course, another script “I’m done with file”, which will be doing unlock-and-

push

Git and 3rd-party Libraries

3

2

3

How to
handle those

3rd-party
libraries you're

going to use?

One of the
things you need
to decide w hen
using git, is how
do you w ork

One subtle issue with regards to source control system is how
to handle those 3rd-party libraries you’re going to use.
Ideally, 3rd-party libraries should be present in your source
control system as links-pointing-to-specific-version of the
library, with your source control system automagically
extracting them before you’re building your game. It is
important to point to a specific version of the library (and not
just to head), as otherwise a 3rd-party update can
cause your code to start crashing, with you having no idea what
happened. On the other hand, such an approach means that it
is your responsibility to update this link-to-specific-version to
newer versions, at the points when you’re comfortable with
doing it.

git submodule does just that, and git submodule update will allow you to update your
links to the most recent version of the 3rd-party library. However, it works only
when your 3rd-party libraries are git repositories themselves

If your 3rd-party library is available as an svn repository instead of git – you may
setup a git mirror of svn repository and then to use git submodule
[StackOverflow.SvnAsGitSubmodule]. A similar trick can be used with Mercurial too
(see [HgGitMirror] on creating git mirror from Mercurial).

And if you’re using a non-open-source library – you’ll probably need to put a copy
of it under your source control system .

BTW, about open-source and non-open-source 3rd-party libraries: there is
another (even more important) issue with them, make sure to read “3rd-party
Libraries: Licensing” section below.

Git Branching
As noted above, as a rule of thumb, you should be using git. And
one of the things you need to decide when using git, is how do
you work with branches. In pre-git source control systems,
branching was a second- (if not third-) class citizen, and
developers were avoiding branches at all costs. In git, however,
everything is pretty much about branches, and in fact this
ease-of-branching-and-merging is what gives git an advantage
over svn etc.

IMO, most of the time you should be following the branching
model by Vincent Driessen described in [GitFlow] and is known
as “Git Flow”. When you look at it for the very first time, it may

“

“

There is a
breed of
developers out
there w ho
pref er to live
w ithin their
ow n f eature
branch f or
many w eeks
and months,
implementing
many dif f erent
f eatures under
the same

w ith brancheslook complicated, but for the time being you’ll just need a few
pieces of it:

master branch. As a rule of thumb, you should merge here only when
milestone/release comes. All the commits to the master branch should come
from merges from develop branch. Direct commits (i.e. commits which are not
merges from develop) into master branch SHOULD NOT happen.

develop branch. The branch which is expected to work. More precisely – it is
usually understood as a branch that compiles and passes all the automated
tests, though it is understood that no amount of automated testing can really
guarantee that it is working. You should merge to develop branch as soon as
you’ve got your feature working “for you” (and all the automated regression
tests do pass). Direct commits (not from feature branches) into
develop branch are usually allowed. On the other hand, leaving develop branch
in a non-compilable or failing-automated-test state is a major fallacy, and
you’ll be beaten by fellow developers pretty hard for doing it (and for a good
reason). Note that having develop branch temporary failing to compile or run
tests (in a sequence like developer committed to develop – automated build
failed – developer fixed the problem or reverted the merge) is not
considered a problem; it is leaving develop branch in unusable state for several
hours which causes a backlash (and rightly so). More on it in “Continuous
Integration” section below.

feature branch. You should create your own feature
branches as you develop new features. These
feature branches should be merged into develop branch as
soon as your feature (fix, whatever) is ready. Consider
feature branch as your private playground where you’re
developing the feature until it is ready to be merged into
develop branch. Feature branches are generally not
required even to compile.

A note of caution: there is a breed of developers out
there who prefer to live within their own feature
branch for many weeks and months, implementing
many different features under the same branch and
postponing integration as long as they can. This is a
Bad Practice™, and a rule-of-thumb of one-feature-
for-one-feature-branch should be observed as soon
as you’ve past your very first milestone.

It is also interesting and useful to note that modern
source control systems (git included) tend to punish
those who do their merges later. When both you and
a fellow developer are working on your respective
branches, and she got committed her merge 5
minutes before you, then it becomes your problem to

4

“

branch and
postponing
integration as
long as they can

The basic
idea behind
Continuous

Integration is
simple: as soon
as you commit

something, a
build is

automatically
run w ith all the

tests you w ere
able to invent

by that time

resolve any conflicts which may arise from the
changes both of you have made. In most cases for a
reasonably mature codebase, there won’t be any
conflicts, but sometimes they do happen, and

it is the second developer who
becomes a rotten egg responsible for

resolving conflicts

Print this profound truth in a 144pt font and post it on the wall to make
your fellow developers merge their feature branches more frequently.

 not that revert of the merge in git is very peculiar and counter-intuitive, see
[kernel.RevertFaultyMerge] for discussion

Continuous Integration
One thing which is closely related to source control, and which you should start
using as soon as possible for any sizeable project, is Continuous Integration a.k.a.
CI (not to be confused with Continuous Deployment, a.k.a. CD which is a very
different beast and will be discussed in Chapter [[TODO]]).

The basic idea behind Continuous Integration is simple: as
soon as you commit something (usually it applies to develop
branch merges/commits as described above), a build is
automatically run with all the tests you were able to invent by
that time. If the build or tests fail – whoever made the “bad”
commit, gets notified immediately.

In a sense, continuous integration is an extension of a long-
standing practice of “night builds”, but instead of builds being
made overnight, they’re made in real-time, further reducing
the impact from “bad commits”.

In general, continuous integration is almost a must-have for
any serious development, how to implement it – is a different
story.

In this regard, I tend to agree with [Bugayenko2014] that
build-before-commit is a better way to implement
Continuous Integration than classical build-after-commit.

The problem with build-after-commit is the following. If (as in

4

“

5

Instead of
running the
build after
commit has
happened, you
should make
sure that your
build is clean
before
committing

nightly builds and with classical Continuous Integration) developers commit first,
and only then automated build+test runs, then there is a risk that the build/test
fails. And if it happens – there is a strong pressure to fix the commit-which-caused-
failure (instead of reverting it) – in part, because of git peculiar behaviour when it
comes to merge reverts (mentioned above). Which means that the whole team will
stop development and will be working on the fix, ouch. This practice is very
disruptive, and can easily introduce “commit fear” mentioned in [Bugayenko2014].

To address this problem, instead of running the build
after commit has happened, you should make sure that your
build is clean before committing. It means that “faulty” builds
never happen, yahoo!

To follow “build-before-commit” approach within your CI
system, you may want to do one of the following:

create a VM image with your “build server” and give every
developer a copy. Not that I really like this option, but it
does exist.

it MUST be a responsibility of every developer to run
a build+test before every commit to develop branch

write your own script which takes your-feature-branch as a
parameter, merges it with develop (without committing it
yet!), builds, runs all the tests, and commits-the-merge-
provided-that-everything-went-smoothly

it MUST be a responsibility of every developer to use
ONLY this script for committing into develop branch

use Travis CI as your Continuous Integration tool. Make all commits to
develop branch ONLY via “pull requests” (they still should reside within
your feature branches(!)).

in this case, Travis CI will report whether current pull request would
build ok after merge [TravisPullRequests]. It MUST be a responsibility of
every developer to check this “Travis OK” status before performing
merge (at least in GitHub it is shown as a nice green checkbox near the
pull request, if you have Travis integration enabled)

use Rultor set of scripts (by the very same Bugayenko). NB: I didn’t try it, so I
cannot vouch for it.

 I don’t agree with [Bugayenko2014] that “Continuous Integration is Dead”, but I do
agree that what he names “read-only master branch”, and I name “building-before-
committing” is a better way of doing things (though I consider it being yet another
way to implement Continuous Integration, and not something radically different)
 an alternative would be to fix merge revert in git, and to rely on merge reverts

“

6

5

6

Be caref ul
w ith open-

source projects
w hich don't

have any
license at all

instead. However, as current behaviour is considered a feature rather than a bug,
this is not going to happen any time soon

3rd-party Libraries: Licensing
One really important thing to remember when developing your game is that no
3rd-party library can be used without taking into account its license. Even open-
source libraries can come with all kinds of nasty licenses which may prevent you
from using them for your project.

In particular, beware of libraries which are licensed under GPL family of licenses
(and of so-called “copyleft” licenses in general). These licenses, while they do allow
you to use code for free, come with a caveat which forces you to publish (under the
very same license) all the code which is distributed together with the 3rd-party
library. There are a few mitigating factors though. First, LGPL license (in contrast
to GPL license) is not that aggressive, and usually might be used without the need
to publish all of your own code (while changes to library code itself will still need to
be published, this is rarely a problem). Second, if you’re not distributing your
server-side code – then only the client-side code will usually need to be published
(which tends to help a lot for web-based games). In any case, if in doubt – make
sure to consult your legal team.

Another two things to be aware of in open-source projects, is
(a) “something under license which is not a recognised open-
source license (see [OpenSource] for the list of recognised
ones), and (b) “something without any license at all” (you’ll see
quite a few such projects on github). (a) is usually a huge can
of worms, and in case of (b) you cannot really use the project
in any meaningful way (by default, everything out there is
subject to copyright, so to use it – you generally need some
kind of license).

On the other hand, anything which goes under BSD license,
MIT license, or Apache license – can usually be used without
licensing issues.

And of course, if you’re using commercial libraries – make sure that you’re
complying with their terms (paying for the library does not necessarily mean that
you are allowed to use it as you wish).

 in practice, it is more complicated than that, but if you want legally correct
answers – you better ask your legal team
 distribution of server-side code may happen, for example, if you’re selling your

7

8

“

7

8

I am not
going to discuss
advantages and
disadvantages
of dif f erent
processes here,
as the
associated
debates are
going to be even
more heated
then Linux-vs-
Window s and
C++-vs-Java
holy w ars
combined.

server-side as an engine

Development Process
The next thing which you will need is almost-universally necessary (that is, unless
you’re a single-developer shop) and pretty much universally hated among
developers. It is related to the mechanics of the development process. All of us
would like to work at our leisure, doing just those things which we feel like doing at
the moment. Unfortunately, in reality development is very far from this idyllic
picture.

For your game, you do need a process, and you do need to follow it. What kind of
process to use – old-school project Gannt-chart-based planning with milestones,
or agile stuff such as XP, Scrum, or Kanban – is up to you, but you need to
understand how your development process is going to work.

I am not going to discuss advantages and disadvantages of
different processes here, as the associated debates are going
to be even more heated then Linux-vs-Windows and C++-vs-
Java holy wars combined. Usually, however, you will end up
with some kind of a process, which is (whether you realize it or
not) will be some combination of agile methods; in at least two
of my teams, we were using a combination of Scrum and XP
long before we learned these terms .

BTW, if you happen to consider Agile as a disease (like, for
example, [AgileDisease]) – that’s IMNSHO not because agile is
bad per se, but most likely because you’ve had a bad
experience dealing with an overly-confident (and way too
overzealous) Certified Scrum Master who was all about
following the process without even remote understanding of
specifics of your project (and quite often – without any clue
about programming). While I do admit that such guys are
indeed annoying (and often outright detrimental for the
project), I don’t agree that it makes the concepts behind agile
development, less useful even by a tiny bit.

One thing which should be noted about agile criticisms (such
as [AgileDisease]), is that there is no real disagreement about
what needs to be done; the sentiment in such criticisms is
usually more along the lines of “we’re doing it anyway, so do we
need fancy names and external consultants?” To summarize
my own feelings about it:

9

“

Do you need to have a well-defined

development process?

Certainly. A ll successful projects hav e

one, ev en if it is not formalized.

Do you need to have it written

down?

Up to you. At some point you’ll probably need

some rules written down, but it is not a strict

requirement.

Does your project need to be

iterative?
Certainly

Do you need to have your

iterations reasonably short (3

months being “way too much”)?

Certainly

Do you need to name your

iterations “sprints”?
Doesn’t matter at all

Do you need to have your iteration

carved in stone after it started?

It depends, pick the one which works for you

at a certain stage of your project

Do you need to analyze how your

iteration went?

A good idea, w hether naming it

“iteration” or “sprint”

Do you need to describe your goals

in terms of ‘use cases’/’user

stories’?

Certainly

Do you need to name them ‘use

cases’/’user stories’?
Doesn’t matter at all

Do you need to name your project

“Agile”, or “Scrum”, or <insert-

some-name-here>?

Doesn’t matter at all

Do you need a daily stand-up

meeting?
Up to you, but often it is not so bad idea

Y ou SHOULD. It is damn important to

10

Do you need Product Owner (as a

role)
hav e opinion of stakeholders to be

represented

Do you need Product Owner as a

full-time role?
Not necessarily, it depends

Do you need to name this role

“Product Owner”?
Doesn’t matter at all

Do you need Scrum Master (as a

role)?

You will have somebody-taking-care-of-

your-development-process (usually more

than one person), whether you name it

“Scrum Master” or not

Do you need a Kanban board? Up to you

Do you need to use XP’s techniques

such as pair programming,

merciless refactoring, test-driven

development?

Up to you on case by case basis

Do you need a Certified Scrum

Master on your team?
Probably not

Do you need an external

consultant to run your Agile

project?

If you do – your team is already in lots of

trouble

Ultimately, whether you’re using fancy names or not, your process will be a
combination of agile processes, using quite a few agile techniques along the road.
And it doesn’t matter too much whether you’re doing it because you read a book on
agile, or because you’ve invented them yourself.

 it applies to any kind of development, game or not
 while they’re not exactly similar, they’re close enough for our purposes now

9

10

Whether w e
like it or not,
there w ill be

bugs and other
issues w ithin

our game.

Issue Tracking System
Whether we like it or not, there will be bugs and other issues
within our game. And even if there would be a chance that we
wouldn’t have any bugs – we’ll have features which need to be
added. To handle all this stuff, we need an issue tracking
system.

If you’re hosted on github, and your team is really small (like <5
developers) – you MIGHT get away with github built-in issue
tracker. If you’re hosting your own git server (or if your team is
larger), you’re likely to use some 3rd-party issue tracking. The
most popular choices in this regard range from free Bugzilla,
Trac, and Redmine, to proprietary (and non-free as in “no free
beer”) JIRA.

Which one is better – honestly, IMHO it doesn’t matter much, and any of them will
do the job, at least until you’re running a 1000-people company (in particular, all 4
systems above do allow to integrate with git).

One extra thing to think about in this regard is support for the artifacts used within
your development process. Whether you want to use a Kanban board, Scrum
“burndown chart”, or a good old Gantt chart (or all of them together) – having
these artefacts well-integrated into the same system which provides you with issue
tracking can save you quite a bit of time. More importantly – it may help you to
follow your own development process. So think about artifacts of your
development process, and take it into account when choosing your issue tracking
system. Also keep in mind that some of the plugins which implement this
functionality (even for free systems(!)) can become pricey, so it is better to check
pricing for them in advance.

On the other hand, this support-for-development-process-artifacts is only a nice-
to-have feature of your tracking system; you can certainly live without it, and it only
comes into play when all-other-parameters of your issue tracking system are
about-the-same for your purposes. On the third hand , these days issue tracking
systems are pretty much about-the-same from purely issue-tracking point of
view.

 and if you do, you should look for a better source than this book for choosing your
issue tracking system, as issue tracking is very far from being a focus here

 I realise how hard I will be beaten for this statement by hardcore-zealots-of-
<insert-your-favorite-issue-tracking-system> but as an honest person I still need
to say it

“

11

12

11

12

One last thing
you should
establish bef ore
you start
coding, is
coding
guidelines f or
your specif ic

Issue Tracking: No Bypassing Allowed
There is one very important concept which you MUST adhere to while developing
pretty much any software product:

ALL the development MUST go through the issue
tracking system

It means that there MUST be an issue for ANY kind of development (and for each
commit too). Granted, there will be mistakes in this regard, but you MUST have
“each commit MUST mention its own issue” policy. The only exception to this rule
should be if it is not a feature, but an outright bug, and the whole issue can be
described by developer in the commit message.

It is perfectly normal for a BA to come into developer’s cubicle and saying “hey, we
need such and such feature, let’s do it” . What is not normal – is not to open an issue
for this feature (before or after speaking to the developer). As for using e-mails for
discussing features – I am against it entirely, and suggest to have an issue open on
the feature, and to have all the discussion within the issue. Otherwise, 3 months
down the road you will have lots of problems trying to find all those e-mails and to
reconstruct the reasons why the feature was implemented this way (and whether it
is ok to change it to a different way).

Even for a team of 5, for every change in the code, it is crucial to know why it has
been made, and there should be one single source of this information – your issue
tracking system.

Coding Guidelines
One last (but certainly not least) thing you should establish
before you start coding, is coding guidelines for your specific
project. In this regard my suggestion is not to copy a Big
Document from a reputable source, but rather start writing
your own (initially very small) list of DO’s and DON’Ts for your
specific project. This list SHOULD include such things as
naming conventions, and all the not-so-universal things which
you’re using within your project. More on naming conventions
and project peculiarities below.

Of course, your guidelines.txt file belongs to your source
control system. And while you’re at it – do yourself a favor and
find for it the most prominent place you can think of (root
directory/folder of your project is usually a pretty good
candidate).

“
13

project

For a C++
project there is
a common
question
w hether you'll
be using printf ()
or ostream f or
f ormatted
output –
regardless of
your decision, it
needs to be

 this book included; in Chapter [[TODO]] there will be an
example of my personal guidelines for C++, but as with any
other source – don’t copy it blindly

Naming Conventions
With naming conventions the situation is simple: it doesn’t really matter which
naming convention you use (myFunction() vs my_function() won’t make any
realistic difference, and debating it for hours is not worth the time spent). What is
important though, is to do it uniformly across the whole project, so you should just
quickly agree on some naming conventions and then adhere to them.

That being said, there is one thing in this regard which I actively dislike and which I
am arguing against (on the basis that it reduces readability) – it is so-called
“Hungarian notation”. If you really really feel like naming your name variable as
lpszName – the sky won’t fall, but I suggest to drop these prefixes completely.

As for having some kind of naming convention for class data members – two
popular conventions are mDataMember and data_member_, this is up to you whether
to have such convention, it won’t make that much difference anyway (that is, as long
as you’re using it consistently across the whole project).

Project Peculiarities
For pretty much every project you will have some peculiarities.
For example, as we’ll be programming within our ad-hoc FSMs,
then threads will be pretty much out of question (at least
outside of well-defined areas) – ok, so let’s write it down into
our guidelines.txt file (to the part which tells about FSMs). For
a C++ project there is a common question whether you’ll be
using printf() or ostream for formatted output and logging –
regardless of your decision, it needs to be consistent for the
whole project, so it also belongs to Code Guidelines. And so on,
and so forth.

For C++, my personal set of Coding Guidelines will be
discussed in Chapter [[TODO]], but as with any other 3 -party
source, you shouldn’t copy it blindly and should develop your
own one, based on your own task, your own style, and your own
design decisions.

 FWIW, my answer is ‘neither – use cppformat instead’, see
Chapter [[TODO]] for further discussion

13

“14

rd

15

14

15

consistent f or
the w hole
project

 roughly translated as: “whatever nonsense I write there, it is
your responsibility to filter it out, so don’t blame me if it
doesn’t work for you”

Per-Subproject Guidelines
One important thing to be mentioned here is that most of the projects will actually
need more than one set of coding guidelines. Not only the subprojects can be
written in different programming languages, but also subprojects can perform
very different jobs, what in turn requires different guidelines.

For example, even if all your code is written in C++, the guidelines for
infrastructure layer (the one outside of FSMs) and application layer (implementing
FSMs) is going to be quite different. The former is going to use threads, will
probably provide logging facilities so it will need to have direct file access (and
probably access OS-specific services too), etc., and the latter is basically going just
to call whatever-is-provided-by-infrastructure layer (concentrating on game logic
rather than on “how to interact with OS”).

As a result, I strongly suggest to use different guidelines for different layers of
your game even if all of them are written in the same programming language; at the
very least, they should be quite different between 3D engine, network engine, and
game logic.

Enforcement and Static Analysis Tools
All the rules and guidelines are useless if nobody cares to follow them. Even if it is
only somebody who ignores the guidelines, if such ignoring-guidelines-code is not
rectified soon enough, it is often used as an example for some other piece of code,
and so on, and so forth, which means a slippery road towards most of the code
ignoring the guidelines .

To deal with all such guideline violations, there is no real substitute for code
reviews. However, to catch some of them, it is usually a good thing to use an
automated tool which will complain about most obvious violations. Such tools are
specific to the programming language; list of such “static analysis” tools which (as
I’ve heard, no warranties of any kind) work in real-world projects, include:

checkstyle (Java). Checks for naming convention compliance etc.

astyle (C/C++/Objective-C/C#/Java). Re-formats your source according to
your preferences. Personally, I like to have a policy of “before committing
to develop branch, all the code should be run through astyle”.

StyleCop (C#).

15

cpplint (C++). Style checks against Google C++ style guide. Not to be confused
with lint.

Actually, static analysis tools go much broader than mere style checking, and quite
a few of them can find bugs. Most popular static analysis tools in this regard
include:

cppcheck (C++)

PMD (Java)

PC-lint (C/C++). Commercial.

There are also lots of other static analysis tools out there (see
[Wikipedia.StaticCodeAnalysis.Tools]), but quite a few of them are known to cause
more trouble then provide benefits (one of common problems of many tools is
having too many false positives), so don’t hold your breath until you tested the
tool and see that it works for you.

[[This Concludes V ol.1 “Architecture”. To Be Continued in
V ol.2 “Development”…

This concludes beta Chapter IX from the upcoming book
“Development and Deployment of Massively Multiplayer
Games (from social games to MMOFPS, with social games in
between)”. Moreover, this concludes “beta” of the whole vol.1
“Architecture”, yahoo! Further chapters from vol.2
“Development” will be published soon…]]

Acknowledgement

[–] References
[GitMergeForUnity] “GitMerge for Unity”
[StackOverflow.SvnAsGitSubmodule] “Is it possible to have a Subversion repository
as a Git submodule?”, StackOverflow
[HgGitMirror] “Create a Git Mirror”, hg tip
[GitFlow] Vincent Driessen, “A successful Git branching model”
[kernel.RevertFaultyMerge] kernel.org,
https://www.kernel.org/pub/software/scm/git/docs/howto/revert-a-faulty-
merge.txt
[Bugayenko2014] Yegor Bugayenko, “Continuous Integration is Dead”
[TravisPullRequests] “Travis CI. Building Pull Requests”
[OpenSource] “Open Source Initiative. Licenses by Name”
[AgileDisease] Luke Halliwell, “The Agile Disease”
[Wikipedia.StaticCodeAnalysis.Tools] “List of tools for static code analysis”,
Wikipedia

https://flashg.github.io/GitMerge-for-Unity/
http://stackoverflow.com/questions/465042/is-it-possible-to-have-a-subversion-repository-as-a-git-submodule
http://hgtip.com/tips/advanced/2009-11-09-create-a-git-mirror/
http://nvie.com/posts/a-successful-git-branching-model/
https://www.kernel.org/pub/software/scm/git/docs/howto/revert-a-faulty-merge.txt
http://www.yegor256.com/2014/10/08/continuous-integration-is-dead.html
https://docs.travis-ci.com/user/pull-requests
https://opensource.org/licenses/alphabetical
https://lukehalliwell.wordpress.com/2008/11/16/the-agile-disease/
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

« Unity 5 v s UE4 v s Photon v s DIY for MMO

Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System
Architecture, Uncategorized
Tagged With: Agile, game, git, issue tracking, multi-player

Copyright © 2014-2016 ITHare.com

/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/unity-5-vs-ue4-vs-photon-vs-diy-for-mmo/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/category/uncategorized/
http://ithare.com/tag/agile/
http://ithare.com/tag/game/
http://ithare.com/tag/git/
http://ithare.com/tag/issue-tracking/
http://ithare.com/tag/multi-player/

	Chapter I: “Business Requirements” from upcoming book “Development and Deployment of MMOG”
	Preface
	Part A. Conception: Before the Very Beginning
	Chapter I. Understanding Business Requirements
	Project Stakeholders
	Stakeholders and Business Requirements
	Requirements vs Implementation Details
	Subject to Change, Seven Days a Week
	The Over-Generic Fallacy
	Keeping Quality under Time-To-Market Pressure: Priorities, MVP, and Planning
	Limited-Life-Span vs Undefined-Life-Span Games
	Your Requirements List

	[[To Be Continued…
	Acknowledgement

	Chapter II: “Game Entities and Interactions” from upcoming book “Development and Deployment of MMOG”
	On Importance of Holding Your Horses
	Game Entities: What are You Dealing With?
	Interactions Between Game Entities
	What Should You Get? Entities&Interactions Diagram
	Examples of Entities and Interactions
	Social Farming and Farming-Like Games
	Casino Multiplayer Games
	Stock Exchanges, Sports Betting and Auction Sites
	Virtual World Games (MMOTBS/MMORTS/MMORPG/MMOFPS)

	On Arbitrary Player Separation
	Entities&Relations Diagram as a Starting Point to Architect Your Game
	[[To Be Continued…
	Acknowledgement

	Chapter III. On Cheating, P2P, and [non-]Authoritative Servers from “D&D of MMOG” book
	If you’re popular enough, they Will find Reasons to Cheat
	The Big Fat Hairy Difference from e-commerce
	Dealing with Cheaters
	Attacks: The Really Big Advantage of the Home Turf
	Low-Impact and High-Impact Attacks
	Stealing User DB
	DDoS
	Affecting Gameplay
	Duplicate Accounts
	Attacking Another User’s Device
	Bots

	Attack Type Summary
	Peer-to-Peer: Pretty Much Hopeless
	Non-Authoritative Client-Server: Simpler but still Hopeless
	Authoritative Server: As Safe As They Go
	Authoritative Servers: Scalability is Imperfect, But is Workable
	A Very Example Calculation

	Summary: Authoritative Server is not ideal, but is The Only Thing Workable
	Bottom Line: Yes, It is Going to Be Client-Server
	[[To Be Continued…
	[–]References
	Acknowledgement

	Chapter IV. DIY vs Re-Use: In Search of Balance from upcoming book “Design&Development of MMOG”
	Business Perspective: DIY Your Added Value
	Engine-Centric Approach: an Absolute Dependency a.k.a. Vendor Lock-In
	Engine-Centric Approach: Pretty Much Inevitable for MMORPG/MMOFPS
	Engine-Centric Approach: You Still Need to Understand How It Works
	Engine-Centric Approach: on “Temporary” dependencies

	“Re-Use Everything in Sight” Approach: An Integration Nightmare
	“DIY Everything”: The Risk of Never-ending Story
	“Responsible Re-Use” a.k.a. “Modular” Approach: Looking for Balance
	Modular Approach: Examples
	Modular Approach: on “Temporary” dependencies

	Summary
	[[To Be Continued…
	[–]References
	Acknowledgement

	Chapter V(a). Modular Architecture: Client-Side. Graphics from “D&D of MMOG” upcoming book
	Graphics
	On Developers, Game Designers, and Artists
	On Using Game Engines as Pure Graphics Engines, and Vendor Lock-In
	Games with Rudimentary Graphics
	Games with 2D Graphics
	On pre-rendered 3D
	Games with 3D Graphics
	Logic-to-Graphics Layer
	Dual Graphics, including 2D+3D Graphics

	[[To Be Continued…
	[–]References
	Acknowledgement

	Chapter V(b). Modular Architecture: Client-Side. Programming Languages for Games, including Resilience to Reverse Engineering and Portability
	Programming Language for Game Client
	One Language for Programmers, Another for Game Designers (MMORPG/MMOFPS etc.)
	A word on CUDA and OpenCL
	Different Languages Provide Different Protection from Bot Writers
	Resilience to Reverse Engineering of Different Programming Languages
	Language Availability for Game Client-Side Platforms

	Sprinkle with All The Usual Considerations
	C++ as a Default Game Programming Language
	On C++ and Cross-Platform Libraries

	Big Fat Browser Problem

	[[To Be Continued…
	[–]References
	Acknowledgement

	Chapter V(c). Modular Architecture: Client-Side. On Debugging Distributed Systems, Deterministic Logic, and Finite State Machines
	Distributed Systems: Debugging Nightmare
	The Holy Grail of Post Mortem

	Portability: Platform-Independent Logic as “Nothing But Moving Bits Around”
	Stronger than Platform-Independent: Strictly-Deterministic
	Strictly-Deterministic Logic: Benefits
	Strictly-Deterministic Logic: On User Replay
	Implementing Strictly-Deterministic Logic: Definitions
	Implementing Inputs-Log
	Implementing Strictly-Deterministic Logic: Original Non-Strictly-Deteministic Code
	Implementing Strictly-Deterministic Logic: Strictly-Deteministic Code via Intercepting Calls
	Implementing Strictly-Deterministic Logic: “Pure Logic”
	Implementing Strictly-Deterministic Logic: TLS-based Compromise
	Implementing Strictly-Deterministic Logic: Passing Input Parameters as Data Members
	Implementing Strictly-Deterministic Logic: Which Model to Choose?
	Implementing Strictly-Deterministic Logic: Which system functions we’re speaking about?
	Strictly-Deterministic Logic: Non-Issues
	Strictly-Deterministic Logic: No Access to Globals
	Strictly-Deterministic Logic: Pointers
	Strictly-Deterministic Logic: Cross-Platform Issues
	Strictly-Deterministic Logic: Implementation summary
	Strictly-Deterministic Logic: Overall summary

	Event-Driven Programming and Finite State Machines
	Relation to Finite Automata as taught in Uni
	Implementing Deterministic Finite State Machines
	EventProcessor Variations: Circular Buffers
	Deterministic Finite State Machines: Nothing too New But…
	Deterministic Finite State Machines: Summary

	[[To Be Continued…
	[–]References
	Acknowledgement

	Chapter V(d). Modular Architecture: Client-Side. Client Architecture Diagram, Threads, and Game Loop
	Queues-and-FSMs (QnFSM) Architecture: Generic Diagram
	Migration from Classical 3D Single-Player Game
	Interaction Examples in 3D World: Single-Player vs MMO

	FSMs and their respective States
	Game Logic FSM
	Game Logic FSM & Graphics
	Game Logic FSM: Miscellaneous

	Animation&Rendering FSM
	Game Loop
	Animation&Rendering FSM: Running from Game Logic Thread

	Communications FSM
	Communications FSM: Running from Game Logic Thread

	Sound FSM
	Sound FSM: Running from Game Logic Thread

	Other FSMs

	On Additional Threads and Task-Based Multithreading
	On Latencies
	Variations
	On Code Bases for Different Platforms
	QnFSM Architecture Summary
	Relation to Actor Concurrency
	Relation to Erlang Concurrency and Akka Actors

	Bottom Line for Chapter V
	[[To Be Continued…
	[–]References
	Acknowledgement

	Chapter VI(a). Server-Side MMO Architecture. Naïve, Web-Based, and Classical Deployment Architectures
	Deployment Architectures, Take 1
	Don’t Do It: Naïve Game Deployment Architectures
	Web-Based Game Deployment Architecture
	Web-Based Deployment Architecture: How It Works
	Taming DB Load: Write-Back Caches and In-Memory States
	Write-Back Caches: Locking
	Web-Based Deployment Architecture: FSMs
	Web-Based Deployment Architecture: Merits

	Classical Game Deployment Architecture
	Game Servers
	Implementing Game Servers under QnFSM architecture
	On Inter-Server Communications
	QnFSM on Server Side: Flexibility and Deployment-Time/Run-Time Options.
	Threads and Processes
	Communication as an Implementation Detail
	Moving Game Worlds Around (at the cost of client reconnect)
	Online Upgrades
	On Importance of Flexibility

	DB Server
	DB API and DB FSM(s)
	Meanwhile, at the King’s Castle…

	Failure Modes & Effects
	Communication Failures
	Server Failures
	Containment of Game World server failures
	Server Fault Tolerance: King is Dead, Long Live the King!
	Fault-Tolerant Servers: Damn Expensive
	Fault-Tolerant VMs

	Classical Game Deployment Architecture: Summary

	[[To Be Continued…
	[–]References
	Acknowledgement

	Chapter VI(b). Server-Side Architecture. Front-End Servers and Client-Side Random Load Balancing
	Enter Front-End Servers
	Front-End Servers: Benefits
	Front-End Servers: Latencies and Inter-Player Latency Differences
	Client-Side Random Balancing and Law of Big Numbers
	DNS Round-Robin
	Client-Side Random Balancing
	Law of Large Numbers According to the law, the average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed. — Wikipedia — Client-Side Random Balancing: a Law of Large Numbers, and comparison with DNS Round-Robin
	Server-Side Load Balancers
	Balancing Summary

	Front-End Servers as a CDN
	Front-End Servers + Game Servers as a kinda-CDN
	On Affinity
	Front-End Servers: Implementation
	Front-End Servers: QnFSM Implementation
	Routing&Data FSMs in Game Servers and Clients

	Front-End Servers Summary

	[[To Be Continued…
	[–]References
	Acknowledgement

	MMOG Server-Side. Eternal Linux-vs-Windows Debate
	Operating Systems
	New Generation Chooses Cross-Platform! Well, at least it SHOULD…
	Eternal Windows-vs-Linux Debate
	Open-Source
	Stability/Reliability
	Security
	Fast Network Packet Processing
	Other Technical Differences (kernel scheduler, TCP stack, etc)
	C++ Compilers
	Is it Enough to Decide?
	Free as in “Free Beer”
	TCO wars
	On ISPs and Windows-vs-Linux Cost
	Time To Market: Familiarity to your Developers
	It is All about Money
	Mixed Bags
	Linux-vs-Windows: Time to Decide
	Things to Keep in Mind: Windows
	Things to Keep in Mind: Linux
	Things to Keep in Mind: All Platforms

	[[To Be Continued…
	[–]References
	Acknowledgement

	Asynchronous Processing for Finite State Machines/Actors: from plain event processing to Futures (with OO and Lambda Call Pyramids in between)
	Take 1. Naïve Approach: Plain Events (will work, but is Plain Ugly)
	Take 2. OO-Style: Less Error-Prone, but Still Unreadable
	Take 3. Lambda Continuations to the rescue! Callback Pyramid
	On Continuations
	Exceptions
	Limitations

	Take 4. Futures
	Similarities and Differences
	All the different takes are similar
	Differences from std::future etc.
	Similarities to Node.js

	On serializable lambdas in C++
	TL;DR for Asynchronous Communications in FSMs
	FSMs and Exceptions
	Validate-Calculate-Modify Pattern
	Enforcing const-ness for Validate-Calculate-Modify (C++-specific)
	Exceptions before Modification Stage are Safe, including CPU exceptions
	Exception-based Determinism
	FSM Exception Summary
	[[To Be Continued…
	[–]References
	Acknowledgement

	MMOG Server-Side. Programming Languages
	Going Cross-Platform
	Cross-platform C++
	Cross-platform Languages
	Pros (compared to C++)
	Cons (compared to C++)
	Personal Preferences and FSMs

	Scripting Languages
	On Languages as Such
	Which Language is the Best? Or On Horses for Courses
	Supporting ANY language/compiler/JIT: Is It Worth the Trouble?
	Supporting Different Environments
	Line-to-Line Translations: “1.5 code bases”
	Line-to-Line Translations: Are They Practical?

	Inter-Language Equivalence Testing: FSM Replay Benefits

	On Code Generators and YACC/Lex (or Bison/Flex)
	[[To Be Continued…
	[–]References
	Acknowledgement

	MMOG. RTT, Input Lag, and How to Mitigate Them
	Data Flow Diagram, Take 1
	Input Lag: the Worst Nightmare of an MMO developer
	Input Lag: User Expectations
	Input Lag: How Much We Have Left for MMO
	Input Lag: Taking a Bit Back
	RTT
	Back to Input Lag

	Data Flow Diagram, Take 2: Fast-Paced Games Specifics
	Internet is Packet-Based, and Packets can be Lost
	Cutting Overhead
	Accounting for Losses and Jitter
	Take 2 Diagram

	Data Flow Diagram, Take 3: Client-Side Prediction and Interpolation
	Client-Side Interpolation
	Client-Side Extrapolation a.k.a. Dead Reckoning
	Running into the Wall, and Server Reconciliation
	Client-Side Prediction
	Take 3 Diagram
	Lag Compensation
	There Are So Many Options! Which ones do I need?

	[[To Be Continued…
	[–]References
	Acknowledgement

	MMOG: World States and Reducing Traffic
	Server-Side, Publishable, and Client-Side Game World States
	Client-Side State
	Server-Side State
	Publishable State
	Why Not Keep them The Same?
	Non-Sim Games and Summary

	Publishable State: Delivery, Updates, Interest Management, and Compression
	Interest Management: Traffic Optimization AND Preventing Cheating
	Before Compression: Minimizing Data
	Compression
	Delta Compression
	Dead Reckoning as Compression
	Classical Compression
	Combining Different Compression Mechanisms and Law of Diminishing Returns
	Traffic Optimization: Recommendations

	[[To Be Continued…
	[–]References
	Acknowledgement

	MMOG. Point-to-Point Communications and non-blocking RPCs
	RPCs
	Implementing Non-Blocking RPCs
	Specifics of Non-blocking RPCs
	Non-void RPCs
	Same-thread operation

	Client-to-Server and Server-to-Client Point-to-Point communications
	Inputs
	Input Timestamping
	“Macroscopic” Client Actions
	Server-to-Client

	Server-to-Server Communications
	[[To Be Continued…
	Acknowledgement

	IDL: Encodings, Mappings, and Backward Compatibility
	IDL Development Flow
	Developing your own IDL compiler

	IDL + Encoding + Mapping
	Example: IDL
	Example: Mapping
	Mapping to Existing Classes
	Example: Encoding
	Backward Compatibility
	On Google Protocol Buffers
	[[To Be Continued…
	Acknowledgement

	Unity 5 vs UE4 vs Photon vs DIY for MMO
	Unity 5
	Event-driven Programming/FSMs
	Unity for MMOG
	Communications: HLAPI
	State Synchronization
	RPCs (a.k.a. “Remote Actions”)
	HLAPI summary

	Communications: LLAPI
	Unity 5/UNet Summary

	Unreal Engine 4
	Event-driven Programming/FSMs
	UE for MMOG
	UE Communications: very close to Unity 5 HLAPI

	Photon Server
	Photon Server SDK: Communications
	Photon Cloud / PUN: Communications

	Summary
	Engine-Centric Development Flow
	Server-Driven Development Flow
	Server-Driven Development Flow: Personal Suggestions

	Client-Driven Development Flow
	Client-Driven Development Flow: Personal Suggestions

	Important Clarification: Development Flow vs Data Flow

	[[To Be Continued…
	[–]References
	Acknowledgement

	Pre-Coding Checklist: Things Everybody Hates, but Everybody Needs Them Too. From Source Control to Coding Guidelines
	Source Control System
	Git
	Git and unmergeable files
	Git and 3rd-party Libraries

	Git Branching
	Continuous Integration
	3rd-party Libraries: Licensing
	Development Process
	Issue Tracking System
	Issue Tracking: No Bypassing Allowed

	Coding Guidelines
	Naming Conventions
	Project Peculiarities
	Per-Subproject Guidelines
	Enforcement and Static Analysis Tools
	[[This Concludes Vol.1 “Architecture”. To Be Continued in Vol.2 “Development”…
	[–]References
	Acknowledgement

