
Home »
On.System A rchitecture »
On.Security »
On.Programming »
On Team.Management »
IT Hare School »
IT Jobs in Y our A rea »

IT Hare on Soft.ware
Asynchronous Processing for Finite State
Machines/Actors: from plain event processing to Futures
(with OO and Lambda Call Pyramids in between)
posted January 11, 2016 by "No Bugs" Hare, translated by Sergey Ignatchenko

[[This is Chapter VI(d) from the upcoming book
“Development&Deployment of Massively Multiplayer Online
Games”, which is currently being beta-tested. Beta-testing is
intended to improve the quality of the book, and provides free
e-copy of the “release” book to those who help with
improving; for further details see “Book Beta Testing“. All the
content published during Beta Testing, is subject to change
before the book is published.

To navigate through the book, you may want to use
Development&Deployment of MMOG: Table of Contents.]]

[[I was planning the next part of Chapter VI to be
about server-side programming languages, but have
found that to speak about them, it would be better to describe a bit more about FSMs
and an important part of them – futures and exception-related FSM-specific stuff. My
apologies for this change in plans, and I hope that the part about server-side
programming languages will be the next one]]

When programming Finite State Machines (FSMs, with Erlang/Akka-style Actors, or
more generally – non-blocking event-driven programs, being very close) in a really
non-blocking manner, two practical questions arise: “how to deal with
communications with the other A in a non-blocking way”, and “what to do with timed
actions”.

/
/category/system-architecture/
/category/security/
/category/programming
/category/team-management
/category/it-hare-school/
/recent-software-jobs/?q=(programmer+or+developer)
/
http://ithare.com/author/nobugs/
/real-people-behind-the-hare#sergey-ignatchenko
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc
/book-beta-testing-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/
/contents-of-development-and-deployment-of-massively-multiplayer-games-from-social-games-to-mmofps-with-stock-exchanges-in-between/#toc

For the purposes of this section, we’ll use C++ examples; however, leaving aside syntax,
most of the reasoning here will also apply to any other modern programming
language (with an obvious notion that the part on functional-style implementation will
need support for lambdas); one obvious example is JavaScript as it is used in Node.js
(more on it below).

Also, for the purpose of our examples, we assume that we have
some kind of IDL compiler (more on in in Chapter VII), which
takes function definitions and produces C++ stubs for them. The
idea behind an IDL is to have all the inter-FSM communications
defined in a special Interface Definition Language (see examples
below), with an IDL compiler producing stubs (and relevant
marshalling/unmarshalling code) for our programming
language(s). IDL serves two important purposes: first, it
eliminates silly-but-annoying bugs when manual marshalling is
done differently by sender and receiver; second, it facilitates
cross-language interactions.

Take 1. Naïve Approach: Plain Events (will
work, but is Plain Ugly)
Both inter-FSM communication and timed actions can be dealt
with without any deviation from FSM/Actor model, via
introducing yet another couple of input events. Let’s say that we
have a non-blocking RPC call from FSM A to a FSM B, which
returns a value. RPC call translates into a message coming from

IDL
Interf ace
def inition
language (IDL) is
a specif ication
language used
to describe a
sof tw are
component's
application
programming
interf ace (API).
IDLs describe an
interf ace in a
language-
independent
w ay, enabling

/wp-content/uploads/BB_part075_BookChapter006plus_v1.png
https://en.wikipedia.org/wiki/Interface_description_language

FSM A to FSM B (how it is delivered, is a different story, which will
be discussed in Chapter [[TODO]]). FSM B gets this message as an
input event, processes it, and sends another message to FSM A.
FSM A gets this message as an input event, and performs some
actions (which are FSM-specific, so FSM writer needs to specify
them).

In a similar manner, whenever we’re scheduling a timer, it is just a
special timer event which will be delivered by FSM framework
(=”the code outside of FSM”) to FSM more or less around
requested time.

First, let’s consider a very simple example. Let’s say our Game World FSM needs to
report that our player has gained level, to DB (so that even if our Game World crashes,
the player won’t lose level, see “Containment of Game World server failures” section
above for further discussion). In this case, our IDL may look as follows:

After this IDL is compiled, we may get something like:

Then, calling code in FSM A may look like this:

So far, so simple, with no apparent problems in sight. Now, let’s see what happens in a
more elaborated “item purchase” example. Let’s say that we want to show player the
list of items available for purchase (with items for which he has enough money on the
account, highlighted), allow her to choose an item, get it through DB (which will
deduct item price from player’s account and add item to his DB inventory), and add
the item to the game world.

Don’t worry if you think that the code in Take 1 is ugly.
It is. Skip to OO-based and function-based versions if

this one affects your sensibilities

To do this, our IDL will look as follows:

communication
betw een
sof tw are
components
that do not
share one
language

— Wikipedia —

1
2

void dbLevelGained(int user_id, int level);
 //ALL RPC calls are NON-BLOCKING!!

1
2
3
4

//GENERATED FROM IDL, DO NOT MODIFY!
int dbLevelGained_send(FSMID fsm_id, int user_id, int level);
 //sends a message to fsm_id
 //returns request id

1 dbLevelGained(db_fsm_id,user_id,level);

After this IDL is compiled, we may get something like:

And, our code in FSM A will look like the following (this is where things start getting
ugly):

1
2
3
4
5
6
7

int dbGetAccountBalance(int user_id);
list<StoreItem> dbGetStoreItems();
void dbBuyItemFromAccount(int user_id, ITEMID item);
 //MUST be a separate call to ensure data integrity without external locking,
 // see "Containment of Game World server failures" subsection for discussion

int clientSelectItemToBuy(list<StoreItem>,int current_balance);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

//GENERATED FROM IDL, DO NOT MODIFY!
#define DB_GET_ACCOUNT_BALANCE 123
#define DB_GET_STORE_ITEMS 124
#define DB_BUY_ITEM_FROM_ACCOUNT 125
#define CLIENT_SELECT_ITEM_TO_BUY 126

int dbGetAccountBalance_send(FSMID fsm_id, int user_id);
 //sends a message, returns request_id
pair<bool,int> dbGetAccountBalance_recv(Event& ev, int request_id);
 //return.first indicates if incoming message matches request_id
int dbGetStoreItems_send(FSMID fsm_id);
pair<bool,list<StoreItem>> dbGetStoreItems_recv(Event& ev, int request_id);
int dbBuyItemFromAccount_send(FSMID fsm_id, int user_id, ITEMID item);
pair<bool,bool> dbBuyItemFromAccount_recv(Event& ev, int request_id);

int clientSelectItemToBuy_send(FSMID fsm_id, const list<StoreItem>& items,
 int current_balance);
pair<bool,int> clientSelectItemToBuy_recv(Event& ev, int request_id);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

//WARNING: SEVERELY UGLY CODE AHEAD!!
void MyFSM::process_event(Event& ev) {
 switch(ev.type) {
 case SOME_OTHER_EVENT:
 //...
 //decided to make a call
 int request_id = dbGetAccountBalance_send(db_fsm_id,user_id);
 account_balance_requests.push(pair<int,int>(request_id,user_id));
 //account_balance_requests is a member of MyFSM
 //need it to account for multiple users requesting purchases
 // at the same time
 //...
 break;

 case DB_GET_ACCOUNT_BALANCE:
 for(auto rq:account_balance_requests) {
 auto ok = dbGetAccountBalance_recv(ev, rq.first);
 if(ok.first) {
 int user_id = rq.second;
 int balance = ok.second;
 //got account balance, let's get list of items now
 int request_id2 = dbGetStoreItems_send(db_fsm_id);
 store_items_requests.push(

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

 store_items_requests.push(
 pair<int,pair<int,int>>(request_id2,pair<int,int>(user_id,balance)));
 break;
 }
 MY_ASSERT(false,"Cannot happen");
 //throws an exception, more on MY_ASSERT in Chapter[[TODO]]
 }
 break;

 case DB_GET_STORE_ITEMS:
 for(auto rq:store_item_requests) {
 auto ok = dbGetStoreItems_recv(ev, rq.first);
 if(ok.first) {
 pair<int,int> user_id_and_balance = rq.second;
 list<StoreItem>& items = ok.second;
 //got everything client needs, let's send it to client now
 int request_id3 = clientSelectItemToBuy_send(user_fsm_id,
 items,user_id_and_balance.second);
 client_select_items_to_buy_requests.push(
 pair<int,int>(request_id,user_id));
 break;
 }
 MY_ASSERT(false,"Cannot happen");
 //throws an exception, more on MY_ASSERT in Chapter[[TODO]]
 }
 break;

 case CLIENT_SELECT_ITEM_TO_BUY:
 for(auto rq:store_item_requests) {
 auto ok = clientSelectItemsToBuy_recv(ev, rq.first);
 if(ok.first) {
 int user_id = rq.second;
 ITEMID selected_item = ok.second;
 //got client selection, let's try buying now
 int request_id4 = dbBuyItemFromAccount_send(db_fsm_id,
 user_id,selected_item);
 buy_item_requests.push(pair<int,pair<int,ITEMID>>(
 request_id,pair<int,int>(user_id,selected_item)));
 break;
 }
 MY_ASSERT(false,"Cannot happen");
 //throws an exception, more on MY_ASSERT in Chapter[[TODO]]
 }
 break;

 case DB_BUY_ITEM_FROM_ACCOUNT:
 for(auto rq:store_item_requests) {
 auto ok = dbBuyItemFromAccount_recv(ev, rq.first);
 if(ok.first) {
 pair<int,ITEMID> user_id_and_item = rq.second;
 bool item_ok = ok.second;
 //got DB confirmation, let's modify our game world now
 players[user_id].addItem(user_id_and_item.second);
 //phew
 break;
 }
 MY_ASSERT(false,"Cannot happen");

If you feel that this code has been beaten with an ugly
stick – that’s because it is

Over 60 lines of code with only about 5 being meaningful (and the
rest being boilerplate stuff) is pretty bad. Not only it takes a lot of
keystrokes to write, but it is even worse to read (what really is
going on is completely hidden within those tons of boilerplate
code). And it is very error-prone too, making maintenance a
nightmare. If such a thing happens once for all your 1e6-LOC
game – that’s ok, but you will need these things much more than
once. Let’s see what can we do to improve it.

Take 2. OO-Style: Less Error-Prone, but Still
Unreadable
In OO-style, we will create a Callback class, will register it with
our FSM, and then it will be FSM framework (“the code outside of
FSMs”) dealing with most of the mechanics within. Rewriting our
“item purchase” example int OO-style will change the whole thing
drastically. While IDL will be the same, both generated code and
calling code will look very differently. For OO-style asynchronous calls, stub code
generated from IDL may look as follows:

And our calling code may look as follows:

79
80
81
82
83
84

 MY_ASSERT(false,"Cannot happen");
 //throws an exception, more on MY_ASSERT in Chapter[[TODO]]
 }
 break;
 }
}

LOC
Lines of Code is
a sof tw are
metric used to
measure the
size of a
computer
program by
counting the
number of lines
in the text of the
program's
source code

— Wikipedia —

1
2
3
4
5
6
7
8
9

10
11
12
13
14

//GENERATED FROM IDL, DO NOT MODIFY!
void dbGetAccountBalance_send(FSM* fsm, /* new */ Callback* cb,
 FSMID target_fsm_id, int user_id);
 //sends a message, calls cb->process_callback() when done
int dbGetAccountBalance_parsereply(Event& ev);

void dbGetStoreItems_send(FSM* fsm, /* new */ Callback* cb, FSMID target_fsm_id);
list<StoreItem> dbGetStoreItems_parsereply(Event& ev);
void dbBuyItemFromAccount_send(FSM* fsm, /* new */ Callback* cb,
 FSMID target_fsm_id, int user_id, ITEMID item);
bool dbBuyItemFromAccount_parsereply(Event& ev);
void clientSelectItemToBuy_send(FSM* fsm, /* new */ Callback* cb,
 FSMID target_fsm_id, const list<StoreItem>& items, int current_balance);
ITEMID clientSelectItemToBuy_parsereply(Event& ev);

1
2
3

//LESS ERROR-PRONE THAN TAKE 1, BUT STILL UNREADABLE
//TO BE AVOIDED IF YOUR COMPILER SUPPORTS LAMBDAS
class BuyItemFromAccountCallback : public Callback {

https://en.wikipedia.org/wiki/Source_lines_of_code

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

class BuyItemFromAccountCallback : public Callback {
 private:
 MyFSM* fsm;
 int user_id;
 ITEMID item;

 public:
 BuyItemFromAccountCallback(MyFSM* fsm_,int user_id_, ITEMID item_)
 : fsm(fsm_),user_id(user_id_), item(item_)
 {
 }
 void process_callback(Event& ev) override {
 bool ok = dbBuyItemFromAccount_parsereply(ev);
 if(ok)
 fsm->players[user_id].addItem(user_id_and_item.second);
 }
};
class ClientSelectItemToBuyCallback : public Callback {
 private:
 MyFSM* fsm;
 int user_id;

 public:
 ClientSelectItemToBuyCallback(MyFSM* fsm_,int user_id_)
 : fsm(fsm_),user_id(user_id_)
 {
 }
 void process_callback(Event& ev) override {
 ITEMID item = clientSelectItemToBuy_parsereply(ev);
 dbBuyItemFromAccount_send(fsm,
 new BuyItemFromAccountCallback(fsm,user_id,item),
 fsm->getDbFsmId(), user_id, item);
 }
};
class GetStoreItemsCallback : public Callback {
 private:
 MyFSM* fsm;
 int user_id;
 int balance;

 public:
 GetStoreItemsCallback(MyFSM* fsm_,int user_id_, int balance_)
 : fsm(fsm_),user_id(user_id_), balance(balance_)
 {
 }
 void process_callback(Event& ev) override {
 list<StoreItem> items = dbGetStoreItems_parsereply(ev);
 clientSelectItemToBuy_send(fsm,
 new ClientSelectItemToBuyCallback(fsm, user_id),
 fsm->getClientFsmId(user_id), items, balance);
 }
};

class GetAccountBalanceCallback : public Callback {
 private:
 MyFSM* fsm;
 int user_id;

This one is less error-prone than the code in Take 1, but is still very verbose, and
poorly readable. For each meaningful line of code there is still 10+ lines of boilerplate
stuff (though it is easier to parse it out while reading, than for Naïve one).

In [Facebook] it is named “callback hell” . Well, I wouldn’t be that categoric (after all,
there was life before 2011), but yes – it is indeed very annoying (and poorly
manageable). If you don’t have anything better than this – you might need to use this
kind of stuff, but if your language supports lambdas, the very same thing can be
written in a much more manageable manner.

Take 3. Lambda Continuations to the rescue! Callback
Pyramid
As soon as we get lambda functions (i.e. more or less since C++11), the whole thing
becomes much easier to write down. First of all, we could simply replace our classes
with lambda functions. In this case, code generated from the very same IDL, may look
as follows:

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

 int user_id;

 public:
 GetAccountBalanceCallback(MyFSM* fsm_,int user_id_)
 : fsm(fsm_), user_id(user_id_)
 {
 }
 void process_callback(Event& ev) override {
 int balance = dbGetAccountBalance_parsereply(ev);
 dbGetStoreItems_send(fsm,
 new GetStoreItemsCallback(fsm,user_id, balance), fsm->getDbFsmId());
 }
};

void MyFSM::process_event(Event& ev){
 switch(ev.type) {
 case SOME_OTHER_EVENT:
 //...
 //decided to make a call
 dbGetAccountBalance_send(this,
 new GetAccountBalanceCallback(this, user_id), db_fsm_id, user_id);
 //...
 break;
 }
}

And calling code might look as follows:

Compared to our previous attempts, such a “callback pyramid” is indeed a big relief.
Instead of previously observed 50+ lines of code for meaningful 5 or so (with
meaningful ones scattered around), here we have just about 2 lines of overhead per

1
2
3
4
5
6
7
8
9

10
11
12

//GENERATED FROM IDL, DO NOT MODIFY!
void dbGetAccountBalance(FSM* fsm, FSMID target_fsm_id, int user_id,
 std::function<void(int)> cb);
 //sends a message, calls cb when done

void dbGetStoreItems(FSM* fsm, FSMID target_fsm_id,
 std::function<void(const list<StoreItem>&)> cb);
void dbBuyItemFromAccount(FSM* fsm, FSMID target_fsm_id, int user_id, ITEMID item,
 std::function<void(book ok)> cb);
void clientSelectItemToBuy(FSM* fsm, FSMID target_fsm_id,
 const list<StoreItem>& items, int current_balance,
 std::function<void(ITEMID item)> cb);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

//inside MyFSM::process_event():
//...
//decided to make a call
dbGetAccountBalance(this,db_fsm_id,user_id,
 [=](int balance) {
 //this lambda is a close cousin of
 // Take2::GetAccountBalanceCallback
 // You may think of lambda object created at this point,
 // as of Take2::GetAccountBalanceCallback
 // automagically created for you
 dbGetStoreItems(this,db_fsm_id,
 [=](const list<StoreItem>& items) {
 //this lambda is a close cousin of
 // Take2::GetStoreItemsCallback
 clientSelectItemToBuy(this,user_fsm_id,items,balance,
 //here, 'this', 'user_fsm_id', and 'balance' are 'captured'
 // from the code above
 [=](ITEMID item) {
 //this lambda is a close cousin of
 // Take2::ClientSelectItemToBuyCallback
 dbBuyItemFromAccount(this,db_fsm_id,user_id,item_id,
 [=](bool ok) {
 //this lambda is a close cousin of
 // Take2::BuyItemFromAccountCallback
 if(ok) {
 players[user_id].addItem(item_id);
 }
 }
);
 }
);
 }
);
 }
);

Don't even
think of
converting all of
your code to a
so-called
Continuation-
Passing-Style

each meaningful line (instead of previous 10(!)), and also all our meaningful lines of
code are nicely gathered in one place (and in their right order too). Phew. With all my
dislike to using lambdas just for the sake of your code being “cool” and functional, this
is one case when using lambdas makes very obvious sense (despite the syntax looking
quite weird).

In fact, this code is very close to the way Node.js programs handle asynchronous calls.
Actually, as it was mentioned in Chapter V [[TODO!: mention it there]] the whole task
we’re facing with our QnFSMs (which is “event-driven programming with a completely
non-blocking API”) is almost exactly the same as the one for Node.js, so there is no
wonder that the methods we’re using, are similar.

On Continuations

Those lambdas we’re using here, are known as “continuations”. In
general, “continuation” is a thing, which says what we should do
when we reach certain point within our logical flow. To make our
FSMs (and Node.js) work – continuations are the only feasible way
to do it (in fact, our Take 1 and Take 2 also implemented
continuations, albeit in an unusual way).

However, don’t even think of converting all of your code to a so-
called Continuation-Passing-Style (the one with an explicit
prohibition for any function to return any value, instead each and
every function taking additional function parameter to be called
with would-be return value). Full conversion to continuation-
passing-style will make your code significantly less readable, and
will hit your performance too. Think of our “callback pyramid”
code above not as a final proof of lambdas being the-utlimate-
solution-to-all-your-problems, but as of a useful pattern, which can be used to
simplify coding in this specific scenario.

Exceptions

Now, as we got rid of those ugly Take 1 and Take 2 (where any additional complexity
would make them absolutely incomprehensible), we can start thinking about adding
exceptions to our code. Indeed, we can add exceptions to the “callback pyramid”, by
adding (to each of RPC stubs and each of the lambdas) another lambda parameter to
handle exceptions (corresponding to usual ‘catch’ statement). Keep in mind that to
provide usual try-catch semantics (with topmost-function exception handler catching
all the stuff on all the levels), we need to pass this ‘catch’ lambda downstream:

“
1

w ith
'callback
pyramid' it is
not easy to
express the
concept of 'w ait
f or more than
one thing to
complete' ,
w hich leads to
unnecessary
sequencing,
adding to

As we can see, while handling exceptions with ‘callback pyramid’ is possible, it
certainly adds to boilerplate code, and also starts to lead us towards the Ugly Land
.

Limitations

For the ‘callback pyramid’ above, I see two substantial limitations.
The first one is that adding exceptions, while possible, adds to
code ugliness and impedes readability (see example above).

The second limitation is that with ‘callback pyramid’ it is not easy
to express the concept of “wait for more than one thing to
complete” , which leads to unnecessary sequencing, adding to
latencies (which may or may not be a problem for your purposes,
but still a thing to keep in mind).

On the other hand, as soon as we have lambdas, we can make
another attempt to write our asynchronous code, and to obtain
the code which is free from these two limitations.

 which is the first thing Google throws at you when you’re typing
in “node.js continuation”

Take 4. Futures

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

dbGetAccountBalance(this,db_fsm_id,user_id,
 [=](int balance, std::function<void(std::exception&)> catc) {
 dbGetStoreItems(this,db_fsm_id,
 [=](const list<StoreItem>& items, std::function<void(std::exception&)> catc) {
 clientSelectItemToBuy(this,user_fsm_id,items,balance,
 [=](ITEMID item, std::function<void(std::exception&)> catc) {
 dbBuyItemFromAccount(this,db_fsm_id,user_id,item_id,
 [=](bool ok, std::function<void(std::exception&)> catc) {
 if(ok) {
 players[user_id].addItem(item_id);
 }
 }
 ,catc);
 }
 ,catc);
 }
 ,catc);
 },
 [=](std::exception&) {//'catch'
 //do something
 }
);

“

1

latencies
(w hich may or
may not be a
problem f or
your purposes,
but still a thing
to keep in
mind).

While lambda-based ‘callback pyramid’ version is indeed a Big Fat
Improvement over our first two takes, let’s see if we can improve
it further. Here, we will use a concept known as “futures” (our
FSMFuture is similar in concept, but different in implementation,
from std::future, boost::future, and folly::Future, see “Similarities
and Differences” section below for discussion of differences
between the these). In our interpretation, “future” is a value which
is already requested, but not obtained yet. With such “futures”,
IDL-generated code for the very same “item purchase” example,
may look as follows :

And the calling code will look along the lines of:

1
2
3
4
5
6
7

FSMFuture<int> dbGetAccountBalance(FSM* fsm, FSMID db_fsm_id, int user_id);
FSMFuture<list<StoreItem>> dbGetStoreItems(FSM* fsm, FSMID db_fsm_id);
FSMFuture<void> dbBuyFromAccount(FSM* fsm, FSMID db_fsm_id,
 int user_id, ITEMID item);

FSMFuture<ITEMID> clientSelectItemToBuy(FSM* fsm, FSMID client_fsm_id,
 list<StoreItem>, int current_balance);

While being a bit more verbose than lambda-based “call pyramid” version, at least for
me personally it is more straightforward and more readable. Also, as a side bonus, it
allows to describe scenarios when you need two things to continue your calculations
(in our example – results of dbGetAccountBalance() and dbGetStoreItems()) quite
easily, and without unnecessary sequencing which was present in all our previous
versions. In other words, the future-based version as written above, will issue two first
non-blocking RPC requests in parallel, and then will wait for both of them before
proceeding further (opposed to all previous versions issuing the same calls
sequentially and unnecessary losing on latency). While writing the same parallel logic
within the previous takes is possible (except maybe for Take 3), it would result in a

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

//inside MyFSM::process_event():
//...
//decided to make a call
FSMFuture<int> balance = dbGetAccountBalance(this, db_fsm_id ,user_id);
 //sends non-blocking RPC request
FSMFuture<list<StoreItem>> items = dbGetStoreItems(this, db_fsm_id);
 //sends non-blocking RPC request

// all further calls don't normally do anything right away,
// just declaring future actions
// to be performed when the results are ready

//declare that we want to wait for both non-blocking RPC calls to complete
FSMFutureBoth<int,list<StoreItem>> balance_and_items(this, balance, items);

//declare what we will do when both balance and items are ready
FSMFuture<ITEMID> clientSelection = balance_and_items.then(
 [=]() {
 return clientSelectItemToBuy(this, user_fsm_id,
 balance_and_items.secondValue(), balance_and_items.firstValue());
 }
).exception(
 //NOTE that when we're attaching exception handler to a future,
 // FSMFuture implementation can also apply it
 // to all the futures 'downstream'
 // unless it is explicitly overridden
 [=]() {
 //handle exception
 }
);

//declare what we will do when
FSMFuture<bool> purchase_ok = clientSelection.then(
 [=]() {
 return dbBuyFromAccount(this, db_fsm_id, user_id, clientSelection.value());
 }
);

purchase_ok.then(
 [=]() {
 players[user_id].addItem(clientSelection.value());
 }
);

Perf ormance-
w ise, the
dif f erences
betw een
dif f erent code
versions
discussed above
w ill be
negligible f or
pretty much
any
conceivable
scenario.

code which is too ugly to deal with and maintain at application level; with futures, it is
much more straightforward and obvious.

Similarities and Differences
All the different takes are similar

It should be noted that for our “item purchase” example (and actually any other
sequence-of-calls scenario), all our versions are very similar to each other, with most
of the differences being about “syntactic sugar”. On the other hand, when faced with
code from Take 1, and equivalent one from Take 4, I would certainly prefer the latter
one .

Performance-wise, the differences between different code
versions discussed above will be negligible for pretty much any
conceivable scenario. Consistently with Erlang/Akka/Node.js
approaches, our unit of processing is always a message/event.
Events as such roughly correspond to context switches, and
context switches are quite expensive beasts (for x64 – very
roughly of the order of 10’000 CPU clocks, that is, if we account
for cache reloads, YMMV, batteries not included). So, even if
we’re using our non-blocking RPCs to off-load some calculations
to different threads (and not for inter-server communications,
where the costs are obviously higher), the costs of each
message/event processing are quite high, and things such as
dynamic dispatching or even dynamic allocations won’t be large
enough to produce any visible performance difference.

Differences from std::future etc.

Traditionally, discussions about asynchronous processing are
made in the context of “Off-loading” some calculations into a
different thread, doing some things in parallel, and waiting for
the result (at the point where it becomes necessary to calculate
things further). This becomes particularly obvious when looking
at std::future: among other things, it has get() method, which waits until the future
result is ready (the same goes for boost::future, and folly::Futures have wait() method
which does pretty much the same thing). As our FSMs in QnFSM model are completely
non-blocking, we are not allowed to have things such as std::future::get() or
folly::Future::wait().

Whenever an std::future (or folly::Future) completes computation, it reports back to
original future object via some kind of inter-thread notification. Also for this kind of
futures, the code in callbacks/continuations MAY (and usually will) be called from a
different thread, which means that callbacks are normally not allowed to interact with
the main thread (except for setting a value within the future).

“2

All of this
w ill happen
w ithout any
thread
synchronization.

Similarities to Node.js

In contrast, our asynchronous processing is based on the premise that whenever a
future is available, it is delivered as a yet another message to FSM::process_event(). It
stands for all our four different versions of the code (with the differences, while
important practically, being more of syntactic nature). As a consequence, all versions
of our code guarantee that all our callbacks (whether lambda or not) will always be
called from the same thread, which means that

we are allowed to use FSM object and all it’s fields from
all our callbacks (lambdas or not) and without any

thread synchronization

It allows to handle much more sophisticated scenarios than that
of linear calculation/execution. For example, if in our “item
purchase” example there is a per-world limit of number of items
of certain type, we MAY add the check for number of items which
are already present within our world, into processing of
clientSelectItemToBuy reply, to guarantee that the limit is not
exceeded. If there is only one item left, but there are many clients
willing it, all of them will be allowed to go up until to
clientSelectItemToBuy, but those who waited too long there, will
get an error message at the point after clientSelectItemToBuy
returns. All this will happen without any thread synchronization.

From this point of view, our futures (as well as the other our
Takes on the asynchronous communications) are more similar to Node.js approach
(where all the callbacks are essentially made within the same thread, so no thread
synchronizations issues arise).

Alternatively, we can see Take 3 and Take 4 as a quite special case of
coroutines/fibers. In such interpretation, we can say that there is an implicit
coroutine “yield” before each RPC call in a chain, which allows other messages to be
processed while we’re waiting for the reply. Still, when a reply comes back, we’re back
in the same context and in the same thread where we were before this implicit “yield”
point.

 context switches being that expensive is one reason why off-loading micro-
operations to other threads doesn’t work (in other words: don’t try to off-load lone
“int a+ int b” to a different thread, it won’t do any good)
 strictly speaking, in some fairly unusual deployment scenarios there can be

exceptions to this rule, but no-synchronization needed claim always stands
 which is why we have significant simplification for our lambda version compared to

the one in [Facebook]

3

4

“

2

3

4

On serializable lambdas in C++
To have all the FSM goodies (like production post-mortem etc.), we need to be able to
serialize those captured values within lambdas (this also applies to FSMs). For most of
the languages out there, pretty much everything is serializable, including lambda
objects, but for C++, serializing lambda captured values is not easy .

The best way of doing it which I currently know, is the following:

write and debug the code written as in the examples above. It won’t give you
things such as production post-mortem, or full FSM serialization, but they’re
rarely needed at this point in development (if necessary, you can always go via
production route described below, to get them)

add prefix such as SERIALIZABLELAMBDA before each such lambda; define it to
an empty string (alternatively, you may use specially formatted comment, but I
prefer empty define as more explicit)

have your own pre-processor which takes all these SERIALIZABLELAMBDAs and
generates code similar to that of in Take 2, with all the generated classes
implementing whatever-serialization-you-prefer (and all the generated classes
derived from some base class SerializableLambda or something). Complexity of
this pre-processor will depend on the amount of information you provide in your
SERIALIZABLELAMBDA macro:

if you write it as SERIALIZABLELAMBDA(int i, string s), specifying all the
captured variables with their types once again, then your pre-processor
becomes trivial

if you want to write it as SERIALIZABLELAMBDA w/o parameters, it is still
possible, but deriving those captured parameters and their types can be
not too trivial

which way to go, is up to you, both will work

in production mode, run this pre-processor before compiling

in production mode, make sure that RPC functions don’t accept std::function
(accepting class SerializableLambda instead), so that if you forget to specify
SERIALIZABLELAMBDA, your code won’t compile (which is better than if it
compiles, and fails only in runtime)

TL;DR for Asynchronous Communications in FSMs
We’ve discussed in detail asynchronous RPC calls, but handling of timer-related
messages can be implemented in a very similar way

As our FSMs are non-blocking, being asynchronous becomes the law (exactly as
for Node.js)

You will need IDL (and IDL compiler) one way or another (more on it in Chapter
[[TODO]])

Ef f ects of any
exception
happening
bef ore Modif y
stage are
trivial: as w e
didn't modif y
anything, any
exception w ill

Ways of handling asynchronous stuff in FSMs are well-known, but are quite ugly
(see Take 1 and Take 2)

With introduction of lambdas, it became much better and simpler to write and
understand (see Take 3 and Take 4)

Futures can be seen as an improvement over “call pyramid” use of lambdas
(which is consistent with findings in [Facebook])

in particular, it simplifies handling of “wait-for-multiple-results-before-
proceeding” scenarios

FSM futures, while having the concept which is similar to std::future and
folly:Future, are not identical to them

in particular, FSM futures allow interaction with FSM state from
callbacks without any thread synchronization

To get all FSM goodies in C++, you’ll need to implement serializing lambdas, see
details above

FSMs and Exceptions
One more FSM-related issue which was uncovered until now, is related to subtle
relations between FSMs and exceptions. Once again, most of our discussion (except
for the part marked “C++-specific”) will apply to most programming languages, but
examples will be given in C++.

V alidate-Calculate-Modify Pattern
One very important practical pattern for FSMs, is Validate-Calculate-Modify. The
idea behind is that most of the time, when processing incoming event/message within
our FSM, we need to do the following three things:

V alidate. check that the incoming event/message is valid

Calculate. calculate changes which need to be made to the
state of our FSM

Modify. Apply those calculated changes.

This pattern has quite a few useful applications; however, the
most important uses are closely related to exceptions. As long as
we don’t modify state of our FSM within Validate and Calculate
stages, effects of any exception happening before Modify stage
are trivial: as we didn’t modify anything, any exception will lead
merely to ignoring incoming message (without any need to
rollback any changes, as there were none; handling of on-stack
allocations depends on the programming language and is
discussed below), which exactly what is necessary most of the
time (and this has some other interesting uses, see “Exception-
based Determinism” section below). And Modify stage is usually

“

lead merely to
ignoring
incoming
message,
w ithout any
need to rollback
any changes, as
there w ere
none

Depending on

trivial enough to avoid vast majority of the exceptions.

Enforcing const-ness for V alidate-Calculate-
Modify (C++-specific)
To rely on “no-rollback-necessary” exception property within
Validate-Calculate-Modify pattern, it is important to enforce
immutability of FSM state before Modify stage. And as it was
noted in [[GDC2015 – TODO!]], no rule is good if it is not enforced.
Fortunately, at least in C++ we can enforce immutability relatively
easily (that is, for reasonable and non-malicious developers). But
first, let’s define our task. We want to be able to enforce const-ness along the
following lines:

To make it work this way, for C++ I suggest the following (reasonably dirty) trick:

While not 100% neat, it does the trick, and prevents from
accidental writing to FSM state before modify_stage_fsm() is
called (as compiler will notice modifying const this pointer, and
will issue an error). Of course, one can call modify_stage_fsm() at
the very beginning of the process_event() negating all the
protection (or use one of several dozens another ways to bypass
const-ness), but we’re assuming that you do want to benefit from
such a split, and will honestly avoid bypassing protection as long

1
2
3
4
5
6
7
8
9

10

void MyFSM::process_event(Event& ev) {
 ///VALIDATE: 'this' is const
 //validating code

 //CALCULATE: 'this' is still const
 //calculating code

 //MODIFY: 'this' is no longer const
 //modifying code
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void MyFSM::process_event(Event& ev) const {
 //yes, process_event() is declared const(!)

 //VALIDATE: 'this' is enforced const
 //validating code
 //CALCULATE: 'this' is still enforced const
 //calculate code

 //MODIFY:
 MyFSM* fsm = modify_stage_fsm();
 //modify_stage_fsm() returns const_cast<MyFSM*>(this)

 //modifying code
 // uses 'fsm' which is non-const
}

“

your game and
FSM
f ramew ork,
post_message()
f unction may
be implemented
either as as a
non-const
f unction (then
you'll need to
call it only af ter
modif y_stage_f sm()),
or as a const
f unction (and
then it can be
called bef ore
modif y_stage_f sm())

as it is possible.

Note that depending on your game and FSM framework,
post_message() function (the one which posts messages to other
FSMs) may be implemented either as as a non-const function
(then you’ll need to call it only after modify_stage_fsm()), or as a
const function (and then it can be called before
modify_stage_fsm()). To achieve the latter, your FSM framework
need to buffer all the messages which were intended to be sent via
post_message() (NOT actually sending them), and to post them
after the process_event() function successfully returns (silently
dropping them in case of exception).

Now to the goodies coming out of such separation.

Exceptions before Modification Stage are Safe,
including CPU exceptions
There are certain classes of bugs in your code which are very
difficult to test, but which do occasionally happen. Some of them
are leading to situations-which-should-never-happen (MYASSERTs throwing
exception, see Chapter [[TODO]] for further discussion), or even to CPU exceptions
(dereferencing NULL pointer and division-by-zero being all-time favourites).

If you’re following the Validate-Calculate-Modify pattern, then all such exceptions
(that is, if you can convert CPU exception into your-language-exception, see Chapter
[[TODO]] for details for C++) become safe, in a sense that offending packet is merely
thrown away, and your system is still in a valid state, ready to process the next
incoming message. Yes, in extreme cases it may lead certain parts of your system to
hang, but in practice most of the time the impact is very limited (it is much better to
have a crazy client to hang, than your whole game world to hang, to terminate, or to
end up in an inconsistent state).

This resilience to occasional exceptions has been
observed to be THAT important in practice, that I

think it alone is sufficient to jump through the hoops
above, enforcing clean separation along V alidate-

Calculate-Modify lines.

Exception-based Determinism
One of the ways to achieve determinism which was mentioned in Chapter V with
description postponed until later, is exception-based determinism.

“

Let’s consider the following scenario: your FSM MIGHT need some non-determinstic
data, but chances for it happening are fairly slim, and requesting it for each call to
process_event() would be a waste. One example of such a thing is random data from
physical RNG. Instead of resorting to “call interception” (which is not the cleanest
method available, and also won’t work well if your RNG source is slow or on a different
machine), you MAY implement determinism via exceptions. It would work along the
following lines:

RNG_data becomes one of the parameters to process_event(), but is normally
empty.

Alternatively, you MAY put it alongside with current_time to TLS, see
Chapter V for details

if, by any chance, you find out that you need RNG_data
during your CALCULATE stage with RNG_data being empty
– you throw a special exception NeedRNGData

as your VALIDATE and CALCULATE stages didn’t
change FSM state, there is nothing to rollback within
the state

on-stack variable handling will be different for C++ and
garbage-collected languages:

for C++, as long as you’re always using
RAII/std::unique_ptr<> for all on-stack resources
(which you should for C++ anyway), all such objects
will be rolled back automagically without any
additional effort from your side

for garbage-collected languages, all on-stack
objects will be cleaned by garbage collector

on receiving such an exception, the framework outside of
FSM will obtain RNG_data, and then will call MyFSM::process_event() once
again, this time providing non-empty RNG_data

this time, your code will go along exactly the same lines until you’re trying to use
RNG_data, but as you already have non-empty RNG_data, you will be able to
proceed further this time.

Bingo! You have your determinism in a clean way, without “call interception” (and all
because of clean separation between Validation-Calculation-Modification).

FSM Exception Summary
To summarize my main points about FSM and exceptions:

Validate-Calculate-Modify is a pattern which simplifies life after deployment
significantly (while it is not MUST-have, it is very-nice-to-have)

if you’re following it, enforcing it is a Good Thing(tm)

RAII
Resource
Acquisition Is
Initialization is
a programming
idiom used in
several object-
oriented
languages, most
prominently
C++, but also D,
Ada, Vala, and
Rust.

— Wikipedia —

https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

« MMOG Serv er-Side. Eternal Linux-v s-W indow s Debate

 MMOG Serv er-Side. Programming Languages »

Following it will allow you to safely ignore quite a few things-you-forgot-about
without crashing (don’t overrely on it though, it is not a silver bullet)

It also allows to achieve determinism without “call interception” via using
exception-based Determinism in some practically important cases

What are you waiting for? Do It!

[[To Be Continued…
This concludes beta Chapter VI(d) from the upcoming book
“Development and Deployment of Massively Multiplayer Games
(from social games to MMOFPS, with social games in between)”.
Stay tuned for beta Chapter VI(d), “Modular Architecture:
Server-Side. Programming Languages.]]

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Filed Under: Distributed Systems, Network Programming, Programming, System Architecture
Tagged With: asynchronous, finite state machine, game, multi-player

Copyright © 2014-2016 ITHare.com

[–] References
[Facebook] Hans Fugal, “Futures for C++11 at Facebook”

https://code.facebook.com/posts/1661982097368498/futures-for-c-11-at-facebook/
/real-people-behind-the-hare#sergey-gordeev
http://gagltd.eu/
http://ithare.com/mmog-server-side-eternal-linux-vs-windows-debate/
http://ithare.com/mmog-server-side-programming-languages/
http://ithare.com/category/system-architecture/distributed-systems/
http://ithare.com/category/programming/network-programming/
http://ithare.com/category/programming/
http://ithare.com/category/system-architecture/
http://ithare.com/tag/asynchronous/
http://ithare.com/tag/finite-state-machine/
http://ithare.com/tag/game/
http://ithare.com/tag/multi-player/

	Asynchronous Processing for Finite State Machines/Actors: from plain event processing to Futures (with OO and Lambda Call Pyramids in between)
	Take 1. Naïve Approach: Plain Events (will work, but is Plain Ugly)
	Take 2. OO-Style: Less Error-Prone, but Still Unreadable
	Take 3. Lambda Continuations to the rescue! Callback Pyramid
	On Continuations
	Exceptions
	Limitations

	Take 4. Futures
	Similarities and Differences
	All the different takes are similar
	Differences from std::future etc.
	Similarities to Node.js

	On serializable lambdas in C++
	TL;DR for Asynchronous Communications in FSMs
	FSMs and Exceptions
	Validate-Calculate-Modify Pattern
	Enforcing const-ness for Validate-Calculate-Modify (C++-specific)
	Exceptions before Modification Stage are Safe, including CPU exceptions
	Exception-based Determinism
	FSM Exception Summary
	[[To Be Continued…
	[–]References
	Acknowledgement

