Slides Are Available at http://ithare.com/

by ‘No Bugs’ Hare, nobugs@ithare.com

Deterministic Components

for Interactive Distributed Systems
Benefits and Implementation

Part |. Determinism. Definitions and Benefits

Definition 1
non_deterministic == not_fully_testable
Definition 2
recording/replay
Same-Executable Determinism
vs Cross-Platform one
Benefits:
Testability
Replay-based regression testing
Equivalence testing, Fuzz Testing
Production post-factum debugging
Low-latency fault tolerance
Some Others

Outline

Outline

Part Il. Implementing Deterministic Components

Isolation Perimeter
Sources of non-Determinism
Dealing with non-Determinism
Multithreading
(Re)Actors
Circular logging
System calls
Call wrapping
Pre-Calculation
Non-Blocking Calls
Risky Behaviours
Compatibility Issues
CPU, Compiler, Libraries
Floating-point Determinism
C++ vs Others
Don't Apply to Same-Executable Determinism
Non-issues (PRNG, logging, caches)

Outline

Part Ill. Building Interactive Distributed Systems
Properties

Typical Structure
The Problem

The Solution
Making System Deterministic as a Whole

The Guy to Blame

‘NO BUGS’ HARE

Slides Online

http://ithare.com/

Part . Determinism.
Definitions and Benefits

Defining Determinism, Take 1

Definition 1:

A program is deterministic
if and only if
its outputs are 100% defined
by its inputs

Defining Determinism, Take 1

Observation 1:
Non-deterministic program
cannot be fully testable using
only deterministic testing

Observation 2:
“Non-deterministic tests have two
problems, firstly they are useless,
secondly they are a virulent
infection that can completely ruin
your entire test suite.” — Martin
Fowler

Observation 3:

Non-deterministic programs are not
fully testable

Defining Determinism, Take 1

Deterministic Example:

void fl(int a, 1nt b) {
printf (“%d\n”, a+b

) 7
} 'i""
Fully Testable

Non-Deterministic Example:

void fZ(1int a, 1nt b) {
time t now = time (NULL) ;
printf (
“As of %s, at+b=%d\n”,
asctime (localtime (&now)),
atb);

}
Not Fully Testablex

Defining Determinism, Take 2

Definition 2:

For a program to be deterministic
it is sufficient that
(a) we can record all its inputs;
(b) when replaying these
recorded inputs against
the same program,
we always get the same outputs

Defining Determinism, Take 2

Definition 2a:

Program is “same-executable-
deterministic” if replay guarantees
to produce the same result only
when it is run on exactly the same
executable as the one where
recording was made V
Definition 2b:

Program is “cross-platform-
deterministic” if replay guarantees
to produce the same result on ANY
platform as long as source code is

the same x
Very Difficult

Doable

Determinism Benefits - Testability

100% Reproducibility
Reproducible Bug is a Dead Bug

Same-executable determinism is sufficient

Determinism Benefits - Testability

Replay-based Regression Testing

Needs EXACTLY the same
functionality to work

Solution:
- split all changes intended for
version N+1 into 2 categories:
- not supposed to modify
existing logic (this will include
most of new functionality)
- modifying existing logic
- make version N2 consisting
only of version N +
non-modifying changes,
and replay-test it using records
from version N.

Determinism Benefits - Testability

Replay-Based Equivalence Testing

if you need to:

- test new implementation of the same thing, or

- separate code bases, or

- test equivalence under different platforms/compilers.

Fuzz Testing

- strictly speaking, fuzz testing does
require determinism (but in practice
does work without it <wink />)

- replayable records are an ideal
substrate for fuzz testing

- fuzz tester such as afl will just mutate
the records and replay them

Required determinism: depends

Determinism Benefits - Production Debugging

Production post-factum debugging

Ultimate developer’s nightmare:
bug in production.

Holy grail of production debugging:
fix bugs from the very first occurrence
— ideally - reproduce it under debugger

With deterministic replay, it becomes
perfectly possible. Just record all inputs
on the production box - and send them
to developers after the problem occurs.

Required: Same-executable determinism

Determinism Benefits - Production Debugging

Culmination!

BUNG:

Fragment from David Aldridge’s presentation

“I Shot You First: Networking the Gameplay of HALO: REACH”
Courtesy of David Aldridge and GDC Vault

Determinism Benefits - Low-Latency Stuff

Low-Latency Fault Tolerance for Stateful Objects
Using determinism - it is possible to achieve low-

latency fault tolerance. Very shortly:

- we're recording inputs all the time (with record
including state snapshots)

- record and main object are kept on different

physical boxes
- in case of failure - object can be reconstructed

from record-with-snapshot
- similar to “Virtual Lockstep”

Low-Latency Migration

of Stateful Objects
- implementation is along the same
lines

Required determinism: Same-Executable

Determinism Benefits - Others

Deterministic Lockstep Protocol
Used in games and simulations.

') User Replay
Used in games.

Determinism Required: Cross-Platform

Part Il. Implementing
Deterministic Components

Sources of Non-Determinism

Observation 4.

Program becomes deterministic
as soon as we have eliminated all
the sources of non-determinism

Observation 5.

As soon as we establish an
“Isolation Perimeter” with
everything inside the perimeter
being deterministic, and recording
all the data crossing the perimeter
in the “inside” direction - the part of
the Program within the Isolation
Perimeter complies with our
Definition 2.

Sources of Non-Determinism

Multithreading

System Calls

- most of system calls are
non-deterministic

- relief: we can try to exclude malloc() -
though see below

Risky Behaviours

- non-initialised memory (more generally
- relying on an Undefined Behaviour)
- relying on pointer values (incl. sorting)

Compatibility Issues
- CPU

- Compiler

- Libraries

Sources of Non-Determinism

Multithreading

Enemy #1 of determinism is multi-threading. With
multi-threading - you should consider your
program non-deterministic until proven otherwise

This is related to an observation
that timings in different threads are
not guaranteed (at least because of
external interrupts).

Sources of Non-Determinism

My Favourite Way to Deal with MT: (Re)Actors

- a.k.a. Actors, Reactors, ad-hoc FSMs,
and Event-Driven Programs

- very straightforward, and
tend to perform very well

- contrary to popular belief -
(Re)Actors are scalable too

- don’t introduce non-determinism
- also it is very straightforward to record
all the input events.

There are other architectures which allow to deal with
multithreading in deterministic manner - but you’ll need to
prove correctness of them yourself.

(Re)Actors and Inputs-Log

Generic (Re)Actor
class GenericReactor {
virtual void react (const Event& ev) = 0;

b
Infrastructure Code - Event Loop
GenericReactor* r =

reactorFactory.createReactor(...);
while (true) { //event loop
Event ev = get event();

//from select (), libuv,
r—->react (ev) ;

}

Specific (Re)Actor

class SpecificReactor :public GenericReactor ({
vold react (const Event& ev) override;

}r

(Re)Actors and Inputs-Log

Recording Loop
while (true) {
Event ev = get event();
1f (mode == Recording)
write ev log frame (ev) ;
r->react(ev) ;

J

Replaying Loop
while (true) {

Event ev = read ev log frame();
r->react (ev);

(Re)Actors and Inputs-Log

Circular Inputs-Log

- No need to store ALL events from the very beginning
- Need to ensure that there is a serialised state within
the inputs-log at all times
- if necessary - we can try
incremental serialization
- Can be in-memory one, to use only
in case of problems

Sources of Non-Determinism

v

Multithreading

- (Re)Actors
- Circular Logging

System Calls

Risky Behaviours

Compatibility Issues

System Calls and Determinism

System Calls

- As noted above, most of system calls
are non-deterministic, including:
- 1I/0
- time etc.
- real RNG
- and so on
- However, | suggest to exclude
malloc() etc. - and say that we do
not rely on specific pointer values
instead

System Calls and Determinism: Call Wrapping

Non-deterministic example:

void fZ2 (1int a, 1nt b) {
time t now = time (NULL); // (TROUBLE)
printf (
“As of %s, a+tb=%d\n”,
asctime (localtime (&now)),
at+b) ;

J

Let’'s deal with:
time t now = time (NULL);

System Calls and Determinism: Call Wrapping

Non-deterministic:
time t now = time (NULL) ;

Replace with deterministic:
time t now = my time();

Where:
time t my time()
1f (mode==Recording) {
time t ret = time (NULL) ;
write time log frame (ret);
return ret;
}
else {
assert (mode==Replay);
return read time log frame();

J

System Calls and Determinism: Call Wrapping

The Trick

Due to deterministic nature of our
program, all the calls will happen in
exactly the same places in relation
to input events and other calls, so
whenever my_time() is called during
replay - there will be a
corresponding inputs-log frame
waiting for us at the current position
within the inputs-log.

Formally - position of the my_time() frame within the
inputs-log is a function of the previous inputs and return
values of the previous calls, and as long as this function
is deterministic - position is deterministic too.

System Calls and Determinism: Call Wrapping

Call Wrapping: Pros and Cons

Pros:
- works for ALL the system calls
— exceptions are related to returned
pointers but are quite rare.

Cons:
- not resilient to small changes
— not a problem for Same-Executable
Determinism, but is quite a
headache for Equivalence Testing
and Replay-Based Regression
Testing

System Calls and Determinism: Call Wrapping

Version 1:
time t t = my time (NULL);
printf (“¢d\n”, t);

[/ ...
time t t2 = my time (NULL);

printf (“$d\n”, t2);

Version 2:

time t t = my time (NULL);
printf (“$d\n”, t);

/] ...

printf (“$d\n”, t);

System Calls and Determinism: Pre-Calculation

Field of Event:

time t t = ev.current time;
printf (“sd\n”, t);

/] ...

time t tZ2 = ev.current time;

printf (“$d\n”, t2);

TLS-based my_time2():

thread local current time;
//pre-populated by Infrastructure Code

// before calling react/()

time t my time2 () {
return current time;

J

System Calls and Determinism: Non-Blocking Calls

Blocking version:
switch(ev.type) {
case EVENT A: {

do somethingl () ;
X X = long call();
do somethingZ2 ()
} break;
} Non-Blocking version:

switch(ev.type) {
case LELVENT A:

do somethingl () ;
start long call();

’

break;
case LONG CALL RETURNED: {
X X = ev.parse return();

do somethingz () ;
} break;

Sources of Non-Determinism

Multithreading

- (Re)Actors
- Circular Logging

System Calls

- Call Wrapping
- Pre-Calculation
- Non-Blocking Calls

Risky Behaviours

Compatibility Issues

Non-Determinism Sources: Risky Behaviours

Risky Behaviours

- Undefined Behaviours:
— reading uninitialized memory
— violating strict weak ordering for
STL containers
— elc.

- Using Unsupported Inter-Thread
Communication Mechanisms.
— No non-const globals(!)

- Relying on pointer values
— we MUST NOT do ANYTHING but dereferencing
— Can be avoided entirely if we “wrap” malloc() and
guarantee stack location, but is usually too expensive
this way.

Sources of Non-Determinism

Multithreading
- (Re)Actors
- Circular Logging

System Calls

- Call Wrapping
- Pre-Calculation
- Non-Blocking Calls

Risky Behaviours

- Under our Control
- Feasible to Avoid

Compatibility Issues

Non-Determinism Sources: Compatibility Issues

Compatibility Issues

- Sources:
- CPU
— compiler (and compiler settings)
— libraries

Non-Determinism Sources: Compatibility Issues

Compatibility Issues

- Special Case: Floating-point Determinism
— Particularly Nasty, especially for C/C++
— Non-associative: (a+b)+c != a+(b+c)
— Library functions (sin() etc.)

Non-Determinism Sources: Compatibility Issues

Compatibility Issues

- C/C++: pretty bad
— LOTS of UB
— floating point is a nightmare
— library standards
- Java: significantly better
— MUCH more rigid behaviour
— strictfp for floats
— some libraries still need care
- Other languages: case by case

Non-Determinism Sources: Compatibility Issues

Compatibility Issues
- Completely non-existing for V
Same-Executable Determinism

- Often can be dealt with for Equivalence Testin and
Replay-Based Regression Testing scenarios

- Extremely Nasty for Cross-Platform Determinism

— can become hopeless for intensive floating-point
calculations x

Sources of Non-Determinism

Multithreading

- (Re)Actors
- Circular Logging

System Calls

- Call Wrapping
- Pre-Calculation
- Non-Blocking Calls

Risky Behaviours

- Under our Control
- Feasible to Avoid

Compatibility Issues C/C++ Java Others

Same-Executable V V /
v ?
9

Cross-Platform X

Non-Determinism Sources: Non-Issues

Non-Issues
- PRNG

- Text Logging/Tracing
— time()/timeEnd() can call time() within
without “call wrapping”

- Caching
— either treated as a part of our deterministic program
— or treated as residing “outside” of our
deterministic program
— may be useful to reduce size of serialised state

Part lll. Building Interactive
Distributed Systems

Distributed Interactive Systems

Interactive Distributed System

Properties:
- Distributed: built from components
— components are usually stateful
— communicate via messages
- Interactive
— typical response times are from single-digit
milliseconds to single-digit seconds

Examples:
- Multiplayer Games

— including stock exchanges and auctions
- Any Reasonably Complex Device

— including laptops, smartphones, TVs, etc.
- Internet as a whole

Distributed Interactive Systems

Typical Structure

oo

------'

)
O
N ®

\---------’

—-——-—q)—-—f

--_-_-_-__'

I've seen a system with thousands of (mostly)
Deterministic Components on hundreds of Servers - and a
few millions of (mostly) Deterministic Components running
on hundreds of thousands of Client devices across the
world.

Distributed Interactive Systems

The Problem

One of the biggest challenges for
real-world Distributed Interactive
Systems, is debugging and testing
them.

For such systems, at least 80% of the
bugs which have made it to
production - are related to unusual
sequences of incoming events.

Such bugs are especially nasty, as
we cannot predict them in advance -
and therefore cannot test them
either.

Distributed Interactive Systems

The Solution

To address this problem, Deterministic
Components help us with:
- improved overall testability
— if we have a problem - we can
reproduce it, and reproducible bug
is a dead bug
— bugs found in simulation testing
- Replay-Based Regression Testing
- production post-factum debugging
— Over 80% of bugs fixed from first crash

Observed Result:
3x to 5x less downtime than industry average.

Distributed Interactive Systems

Making System Deterministic as a Whole

- System built from Deterministic
Components in not necessarily
deterministic as a whole
— unless special measures are

taken - more often not than yes
— most of the time - it is NOT a
problem in practice

- Making the whole System
deterministic is equivalent to
establishing one single time for all
the Components.

- To do it - several methods exist,
including CMS/LBTS, and
“rewind” techniques similar to
both financial “value date” and
gaming “Server Rewind”

Deterministic Components

Summary:
- Deterministic Components improve

system quality significantly, via:

— improved debugging V

— improved testing (including
Replay-Based Regression Testing)

— production post-factum debugging

- Deterministic Components are
achievable, via:
| WANT YOU — (Re)Actors (or a reasonable facsimile)

to go — Circular Logging ’

deterministic — “Call Wrapping” and
a few other techniques

- WHAT ARE YOU WAITING FOR?
2=)

Further Info

Development and Deployment of

nobugs@ithare.com Q
Chapter 5

