
Deterministic Components
for Interactive Distributed Systems
Benefits and Implementation

by
 ‘N

o
Bu

gs
’ H

ar
e,

 n
ob

ug
s@

ith
ar

e.
co

m

Slides Are Available at http://ithare.com/

Part I. Determinism. Definitions and Benefits

Outline

Definition 1
non_deterministic == not_fully_testable

Definition 2
recording/replay

 Same-Executable Determinism
vs Cross-Platform one

Benefits:
Testability

Replay-based regression testing
Equivalence testing, Fuzz Testing

Production post-factum debugging
Low-latency fault tolerance
Some Others

Part II. Implementing Deterministic Components
Isolation Perimeter
Sources of non-Determinism
Dealing with non-Determinism

Multithreading
(Re)Actors
Circular logging

System calls
Call wrapping
Pre-Calculation
Non-Blocking Calls

Risky Behaviours
Compatibility Issues

CPU, Compiler, Libraries
Floating-point Determinism
C++ vs Others
Don’t Apply to Same-Executable Determinism

Non-issues (PRNG, logging, caches)

Outline

Part III. Building Interactive Distributed Systems
Properties
Typical Structure
The Problem
The Solution
Making System Deterministic as a Whole

Outline

The Guy to Blame

‘NO BUGS’ HARE

http://ithare.com/

Slides Online

Part I. Determinism.
Definitions and Benefits

Definition 1:
A program is deterministic
 if and only if
 its outputs are 100% defined
 by its inputs

Defining Determinism, Take 1

Observation 1:
Non-deterministic program
cannot be fully testable using
only deterministic testing

Defining Determinism, Take 1

Observation 2:
“Non-deterministic tests have two
problems, firstly they are useless,
secondly they are a virulent
infection that can completely ruin
your entire test suite.” — Martin
Fowler

Observation 3:
Non-deterministic programs are not
fully testable

Deterministic Example:

Defining Determinism, Take 1

void f1(int a, int b) {
 printf(“%d\n”, a+b);
}

Non-Deterministic Example:
void f2(int a, int b) {
 time_t now = time(NULL);
 printf(
 “As of %s, a+b=%d\n”,
 asctime(localtime(&now)),
 a+b);
}

Not Fully Testable✘

Fully Testable✔

Definition 2:
For a program to be deterministic
 it is sufficient that
 (a) we can record all its inputs;
 (b) when replaying these
 recorded inputs against
 the same program,
 we always get the same outputs

Defining Determinism, Take 2

Definition 2a:
Program is “same-executable-
deterministic” if replay guarantees
to produce the same result only
when it is run on exactly the same
executable as the one where
recording was made

Defining Determinism, Take 2

Definition 2b:
Program is “cross-platform-
deterministic” if replay guarantees
to produce the same result on ANY
platform as long as source code is
the same

Doable✔

Very Difficult ✘

Determinism Benefits - Testability

100% Reproducibility
Reproducible Bug is a Dead Bug

Same-executable determinism is sufficient

Determinism Benefits - Testability

Replay-based Regression Testing
Needs EXACTLY the same
 functionality to work

Required: Same-platform determinism against minor changes

 Solution:
 - split all changes intended for
 version N+1 into 2 categories:
 - not supposed to modify
 existing logic (this will include
 most of new functionality)
 - modifying existing logic
 - make version N½ consisting
 only of version N +
 non-modifying changes,
 and replay-test it using records
 from version N.

Determinism Benefits - Testability

Replay-Based Equivalence Testing
if you need to:
- test new implementation of the same thing, or
- separate code bases, or
- test equivalence under different platforms/compilers.

Required determinism: depends

Fuzz Testing
- strictly speaking, fuzz testing does
 require determinism (but in practice
 does work without it <wink />)
- replayable records are an ideal
 substrate for fuzz testing
 - fuzz tester such as afl will just mutate
 the records and replay them

Determinism Benefits - Production Debugging

Production post-factum debugging

Ultimate developer’s nightmare:
bug in production.

Holy grail of production debugging:
fix bugs from the very first occurrence
 — ideally - reproduce it under debugger

With deterministic replay, it becomes
perfectly possible. Just record all inputs
on the production box - and send them
to developers after the problem occurs.

Required: Same-executable determinism

Determinism Benefits - Production Debugging

Fragment from David Aldridge’s presentation
“I Shot You First: Networking the Gameplay of HALO: REACH”

Courtesy of David Aldridge and GDC Vault

Determinism Benefits - Low-Latency Stuff

Low-Latency Fault Tolerance for Stateful Objects
Using determinism - it is possible to achieve low-
latency fault tolerance. Very shortly:
- we’re recording inputs all the time (with record
 including state snapshots)
- record and main object are kept on different
 physical boxes
- in case of failure - object can be reconstructed
 from record-with-snapshot
- similar to “Virtual Lockstep”

Required determinism: Same-Executable

Low-Latency Migration
 of Stateful Objects

- implementation is along the same
lines

Determinism Benefits - Others

Deterministic Lockstep Protocol
Used in games and simulations.

User Replay
Used in games.

Determinism Required: Cross-Platform

Part II. Implementing
 Deterministic Components

Observation 4.

Sources of Non-Determinism

Program becomes deterministic
as soon as we have eliminated all
the sources of non-determinism

Observation 5.
As soon as we establish an
“Isolation Perimeter” with
everything inside the perimeter
being deterministic, and recording
all the data crossing the perimeter
in the “inside” direction - the part of
the Program within the Isolation
Perimeter complies with our
Definition 2.

Sources of Non-Determinism
Multithreading

System Calls
- most of system calls are
 non-deterministic
- relief: we can try to exclude malloc() -
 though see below

Risky Behaviours
- non-initialised memory (more generally
 - relying on an Undefined Behaviour)
- relying on pointer values (incl. sorting)

Compatibility Issues
- CPU
- Compiler
- Libraries

Multithreading
Enemy #1 of determinism is multi-threading. With
multi-threading - you should consider your
program non-deterministic until proven otherwise

Sources of Non-Determinism

This is related to an observation
that timings in different threads are
not guaranteed (at least because of
external interrupts).

Sources of Non-Determinism

My Favourite Way to Deal with MT: (Re)Actors
- a.k.a. Actors, Reactors, ad-hoc FSMs,
 and Event-Driven Programs

There are other architectures which allow to deal with
multithreading in deterministic manner - but you’ll need to
prove correctness of them yourself.

- don’t introduce non-determinism
- also it is very straightforward to record
 all the input events.

- very straightforward, and
 tend to perform very well
- contrary to popular belief -
 (Re)Actors are scalable too

(Re)Actors and Inputs-Log

class GenericReactor {
 virtual void react(const Event& ev) = 0;
};

Generic (Re)Actor

GenericReactor* r =
 reactorFactory.createReactor(...);
while(true) { //event loop
 Event ev = get_event();
 //from select(), libuv, ...
 r->react(ev);
}

Infrastructure Code - Event Loop

class SpecificReactor :public GenericReactor {
 void react(const Event& ev) override;
};

Specific (Re)Actor

Recording Loop
while(true) {
 Event ev = get_event();
 if(mode == Recording)
 write_ev_log_frame(ev);
 r->react(ev);
}

Replaying Loop
while(true) {
 Event ev = read_ev_log_frame();
 r->react(ev);
}

(Re)Actors and Inputs-Log

Circular Inputs-Log
- No need to store ALL events from the very beginning
- Need to ensure that there is a serialised state within
 the inputs-log at all times
 - if necessary - we can try
 incremental serialization
- Can be in-memory one, to use only
 in case of problems

(Re)Actors and Inputs-Log

Sources of Non-Determinism

Multithreading

✔- (Re)Actors
- Circular Logging
System Calls

Risky Behaviours

Compatibility Issues

System Calls

System Calls and Determinism

- As noted above, most of system calls
 are non-deterministic, including:
 - I/O
 - time etc.
 - real RNG
 - and so on
- However, I suggest to exclude
 malloc() etc. - and say that we do
 not rely on specific pointer values
 instead

System Calls and Determinism: Call Wrapping

void f2(int a, int b) {
 time_t now = time(NULL); //(TROUBLE)
 printf(
 “As of %s, a+b=%d\n”,
 asctime(localtime(&now)),
 a+b);
}

Non-deterministic example:

time_t now = time(NULL);
Let’s deal with:

System Calls and Determinism: Call Wrapping

Non-deterministic:
time_t now = time(NULL);

Replace with deterministic:
time_t now = my_time();

Where:
time_t my_time() {
 if(mode==Recording) {
 time_t ret = time(NULL);
 write_time_log_frame(ret);
 return ret;
 }
 else {
 assert(mode==Replay);
 return read_time_log_frame();
 }
}

The Trick
Due to deterministic nature of our
program, all the calls will happen in
exactly the same places in relation
to input events and other calls, so
whenever my_time() is called during
replay - there will be a
corresponding inputs-log frame
waiting for us at the current position
within the inputs-log.

System Calls and Determinism: Call Wrapping

Formally - position of the my_time() frame within the
inputs-log is a function of the previous inputs and return
values of the previous calls, and as long as this function
is deterministic - position is deterministic too.

Call Wrapping: Pros and Cons
Pros:
- works for ALL the system calls
 — exceptions are related to returned
 pointers but are quite rare.

Cons:
- not resilient to small changes
 — not a problem for Same-Executable
 Determinism, but is quite a
 headache for Equivalence Testing
 and Replay-Based Regression
 Testing

System Calls and Determinism: Call Wrapping

System Calls and Determinism: Call Wrapping

Version 1:
time_t t = my_time(NULL);
printf(“%d\n”, t);
//...
time_t t2 = my_time(NULL);
printf(“%d\n”, t2);

Version 2:
time_t t = my_time(NULL);
printf(“%d\n”, t);
//...
printf(“%d\n”, t);

System Calls and Determinism: Pre-Calculation

time_t t = ev.current_time;
printf(“%d\n”, t);
//...
time_t t2 = ev.current_time;
printf(“%d\n”, t2);

Field of Event:

thread_local current_time;
 //pre-populated by Infrastructure Code
 // before calling react()

time_t my_time2() {
 return current_time;
}

TLS-based my_time2():

System Calls and Determinism: Non-Blocking Calls

switch(ev.type) {
 case EVENT_A: {
 do_something1();
 X x = long_call();
 do_something2();
 } break;
}

Blocking version:

switch(ev.type) {
 case EVENT_A:
 do_something1();
 start_long_call();
 break;
 case LONG_CALL_RETURNED: {
 X x = ev.parse_return();
 do_something2();
 } break;
}

Non-Blocking version:

Sources of Non-Determinism

Multithreading

✔- (Re)Actors
- Circular Logging

- Call Wrapping
- Pre-Calculation
- Non-Blocking Calls

System Calls

Risky Behaviours

Compatibility Issues

✔

- Undefined Behaviours:
 — reading uninitialized memory
 — violating strict weak ordering for
 STL containers
 — etc.

- Using Unsupported Inter-Thread
 Communication Mechanisms.
 — No non-const globals(!)

- Relying on pointer values
 — we MUST NOT do ANYTHING but dereferencing
 — Can be avoided entirely if we “wrap” malloc() and
 guarantee stack location, but is usually too expensive
 this way.

Risky Behaviours

Non-Determinism Sources: Risky Behaviours

Sources of Non-Determinism

Multithreading

✔- (Re)Actors
- Circular Logging

- Call Wrapping
- Pre-Calculation
- Non-Blocking Calls

System Calls

✔
Risky Behaviours

Compatibility Issues

- Under our Control
- Feasible to Avoid ✔

- Sources:
 — CPU
 — compiler (and compiler settings)
 — libraries

Compatibility Issues

Non-Determinism Sources: Compatibility Issues

- Special Case: Floating-point Determinism
 — Particularly Nasty, especially for C/C++
 — Non-associative: (a+b)+c != a+(b+c)
 — Library functions (sin() etc.)

Non-Determinism Sources: Compatibility Issues

Compatibility Issues

- C/C++: pretty bad
 — LOTS of UB
 — floating point is a nightmare
 — library standards
- Java: significantly better
 — MUCH more rigid behaviour
 — strictfp for floats
 — some libraries still need care
- Other languages: case by case

Non-Determinism Sources: Compatibility Issues

Compatibility Issues

- Extremely Nasty for Cross-Platform Determinism
 — can become hopeless for intensive floating-point
 calculations

- Completely non-existing for
 Same-Executable Determinism

Compatibility Issues

Non-Determinism Sources: Compatibility Issues

✔

✘

?- Often can be dealt with for Equivalence Testing and
 Replay-Based Regression Testing scenarios

Sources of Non-Determinism

Multithreading

✔- (Re)Actors
- Circular Logging

- Call Wrapping
- Pre-Calculation
- Non-Blocking Calls

System Calls

✔
Risky Behaviours

Compatibility Issues

✔

Equivalence Testing ? ✔ ?
Cross-Platform ✘ ? ?

- Under our Control
- Feasible to Avoid

C/C++ Java Others
Same-Executable ✔ ✔ ✔

Non-Determinism Sources: Non-Issues

- PRNG
Non-Issues

- Text Logging/Tracing
 — time()/timeEnd() can call time() within
 without “call wrapping”

- Caching
 — either treated as a part of our deterministic program
 — or treated as residing “outside” of our
 deterministic program
 — may be useful to reduce size of serialised state

Part III. Building Interactive
 Distributed Systems

Properties:
- Distributed: built from components
 — components are usually stateful
 — communicate via messages
- Interactive
 — typical response times are from single-digit
 milliseconds to single-digit seconds

Examples:
- Multiplayer Games
 — including stock exchanges and auctions
- Any Reasonably Complex Device
 — including laptops, smartphones, TVs, etc.
- Internet as a whole

Interactive Distributed System

Distributed Interactive Systems

Typical Structure

Distributed Interactive Systems

I’ve seen a system with thousands of (mostly)
Deterministic Components on hundreds of Servers - and a
few millions of (mostly) Deterministic Components running
on hundreds of thousands of Client devices across the
world.

The Problem
One of the biggest challenges for
real-world Distributed Interactive
Systems, is debugging and testing
them.

Distributed Interactive Systems

For such systems, at least 80% of the
bugs which have made it to
production - are related to unusual
sequences of incoming events.

Such bugs are especially nasty, as
we cannot predict them in advance -
and therefore cannot test them
either.

The Solution
To address this problem, Deterministic
Components help us with:
- improved overall testability
 — if we have a problem - we can
 reproduce it, and reproducible bug
 is a dead bug
 — bugs found in simulation testing
- Replay-Based Regression Testing
- production post-factum debugging
 — Over 80% of bugs fixed from first crash

Distributed Interactive Systems

Observed Result:
3x to 5x less downtime than industry average.

Making System Deterministic as a Whole
- System built from Deterministic
 Components in not necessarily
 deterministic as a whole
 — unless special measures are
 taken - more often not than yes
 — most of the time - it is NOT a
 problem in practice

Distributed Interactive Systems

- Making the whole System
 deterministic is equivalent to
 establishing one single time for all
 the Components.
 - To do it - several methods exist,
 including CMS/LBTS, and
 “rewind” techniques similar to
 both financial “value date” and
 gaming “Server Rewind”

Summary:
- Deterministic Components improve
 system quality significantly, via:
 — improved debugging
 — improved testing (including
 Replay-Based Regression Testing)
 — production post-factum debugging

- Deterministic Components are
achievable, via:
 — (Re)Actors (or a reasonable facsimile)
 — Circular Logging
 — “Call Wrapping” and
 a few other techniques

- WHAT ARE YOU WAITING FOR?

Deterministic Components

✔

✔

?!

I WANT YOU
to go

deterministic

;-)

nobugs@ithare.com

Further Info

OR

Chapter 5

